WO2022027235A1 - Beam feedback based on object movement in wireless sensing - Google Patents

Beam feedback based on object movement in wireless sensing Download PDF

Info

Publication number
WO2022027235A1
WO2022027235A1 PCT/CN2020/106826 CN2020106826W WO2022027235A1 WO 2022027235 A1 WO2022027235 A1 WO 2022027235A1 CN 2020106826 W CN2020106826 W CN 2020106826W WO 2022027235 A1 WO2022027235 A1 WO 2022027235A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
repetition cycle
sensing signal
sweeping pattern
beam sweeping
Prior art date
Application number
PCT/CN2020/106826
Other languages
French (fr)
Inventor
Min Huang
Jing Dai
Qiaoyu Li
Chao Wei
Yu Zhang
Hao Xu
Yin Huang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/106826 priority Critical patent/WO2022027235A1/en
Publication of WO2022027235A1 publication Critical patent/WO2022027235A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to beam feedback based on object movement in wireless sensing.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • Radio frequency (RF) sensing may include passive sensing techniques where a sensing signal may be transmitted from a wireless transmitter, reflected by an object, and received by a wireless receiver. In this manner, an object in an environment may be sensed based on communications of the wireless transmitter and the wireless receiver. The wireless receiver may report, to the wireless transmitter, the indexes of the beams determined to be reflected from the object.
  • the target object may include a plurality of areas that have different moving speeds/Doppler frequencies. For example, if the target object is a person, an arm area may have a faster moving speed than a head area. If the moving speeds of the plurality of areas are not separately determined, all of the transmitted beams may have a same repetition length for beam sweeping operations. Using the same repetition length for all beams may result in wasted resources for beams with unnecessarily short repetition lengths and/or result in increased beam sweeping latency and sensing latency for beams with unnecessarily long repetition lengths.
  • a wireless transmitter may indicate a beam sweeping pattern to a wireless receiver where each of a first plurality of beams may initially have a same repetition length. At least a subset of the first plurality of beams may be transmitted by the wireless transmitter based on the beam sweeping pattern and reflected from a target object to the wireless receiver.
  • the wireless receiver may determine speed information (e.g., Doppler frequencies) associated with each of the reflected beams received by the wireless receiver, such that some areas of the target object may be determined to have different moving speeds than other areas of the target object.
  • the wireless receiver may report, to the wireless transmitter, beam indexes and corresponding speed information for the reflected beams received by the wireless receiver.
  • the wireless transmitter may determine, based on the reported beam- specific speed information, a second beam sweeping pattern having a second plurality of beams where the beams may have different repetition lengths/cycles. After the wireless transmitter indicates the second beam sweeping pattern to the wireless receiver, the wireless transmitter may transmit the second plurality of beams (e.g., having the different repetition lengths/cycles) based on the second beam sweeping pattern.
  • the apparatus may be a wireless transmitter that includes a memory and at least one processor coupled to the memory.
  • the memory may include instructions that, when executed by the at least one processor, cause the at least one processor to transmit a first radio frequency (RF) sensing signal over a first range that covers a first plurality of beams; receive a report from a wireless receiver based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams; and transmit a second RF sensing signal over a second range that covers a second plurality of beams that have different repetition cycle lengths based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams indicated in the report.
  • RF radio frequency
  • the apparatus may be a wireless receiver that includes a memory and at least one processor coupled to the memory.
  • the memory may include instructions that, when executed by the at least one processor, cause the at least one processor to receive a first RF sensing signal over a first range that covers a first plurality of beams; and transmit a report to a wireless transmitter based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a call flow diagram illustrating communications between a wireless transmitter and a wireless receiver.
  • FIGs. 5A-5B are diagrams for passive sensing techniques.
  • FIGs. 6A-6B are diagrams for passive sensing techniques.
  • FIG. 7 illustrates a diagram and a table associated with beam transmission repetitions for different areas of a target object.
  • FIG. 8 is a diagram for reporting beam indexes and associated speed information for the different areas of the target object.
  • FIG. 9 illustrates beam reporting techniques by a wireless receiver.
  • FIG. 10 illustrates a plurality of diagrams associated with beam repetition patterns.
  • FIG. 11 is a flowchart of a method of wireless communication of a wireless transmitter.
  • FIG. 12 is a flowchart of a method of wireless communication of a wireless receiver.
  • FIG. 13 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • FIG. 14 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102/UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152/AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180/UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180/UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the base station 180 may be configured to transmit a first RF sensing signal over a first plurality of beams; receive a report indicative of Doppler frequency and/or repetition cycle based on the transmitted first plurality of beams; and transmit, based on the received report, a second RF sensing signal over a second plurality of beams that have different repetition cycle lengths (198) .
  • a first RF sensing signal over a first plurality of beams
  • receive a report indicative of Doppler frequency and/or repetition cycle based on the transmitted first plurality of beams and transmit, based on the received report, a second RF sensing signal over a second plurality of beams that have different repetition cycle lengths (198) .
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While subframes 3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB.
  • CCEs control channel elements
  • REGs RE groups
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) .
  • CORESET control resource set
  • a UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression/decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.
  • Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354 RX receives a signal through its respective antenna 352.
  • Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with header
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
  • Wireless communication systems may be configured to share available system resources and provide various telecommunication services (e.g., telephony, video, data, messaging, broadcasts, etc. ) based on multiple-access technologies such as CDMA systems, TDMA systems, FDMA systems, OFDMA systems, SC-FDMA systems, TD-SCDMA systems, etc. that support communication with multiple users.
  • multiple-access technologies such as CDMA systems, TDMA systems, FDMA systems, OFDMA systems, SC-FDMA systems, TD-SCDMA systems, etc.
  • common protocols that facilitate communications with wireless devices are adopted in various telecommunication standards.
  • communication methods associated with eMBB, mMTC, and URLLC may be incorporated in the 5G NR telecommunication standard, while other aspects may be incorporated in the 4G LTE standard.
  • 5G NR telecommunication standard As mobile broadband technologies are part of a continuous evolution, further improvements in mobile broadband remain useful to continue the progression of such technologies.
  • FIG. 4 is a call flow diagram 400 illustrating communications between a wireless transmitter 404 and a wireless receiver 402.
  • the wireless transmitter may transmit a first radio frequency (RF) sensing signal that covers a first plurality of beams. At least a subset of the first plurality of beams may be received by the wireless receiver 402.
  • the first RF sensing signal may be transmitted, at 406, by the wireless transmitter 404 based on a first beam sweeping pattern.
  • the first beam sweeping pattern may be indicated to the wireless receiver 402 prior to being transmitted, at 406, by the wireless transmitter 404.
  • the first plurality of beams transmitted, at 406, may have a same repetition cycle length.
  • the wireless receiver 402 may transmit a report indicative of Doppler frequency and/or repetition cycle length of one or more beams included in the first plurality of beams received, at 406, by the wireless receiver 402.
  • the wireless transmitter 404 may determine a second beam sweeping pattern based on the report received, at 408, from the wireless receiver 402. The second beam sweeping pattern may be transmitted over a second plurality of beams that have different repetition lengths.
  • the wireless transmitter 404 may indicate the second beam sweeping pattern to the wireless receiver 402.
  • the wireless transmitter 404 may transmit a second RF sensing signal that covers the second plurality of beams having the different repetition lengths. In examples, the second RF sensing signal may be transmitted, at 414, by the wireless transmitter 404 based on the second beam sweeping pattern.
  • FIGs. 5A-5B and 6A-6B are diagrams 500-550 and 600-650 that illustrate passive sensing techniques.
  • beam feedback may be provided for wireless sensing (e.g., in NR systems) based on object movement.
  • Object sensing may serve an important role in some applications/systems. For instance, in a smart home that utilizes 5G NR, a sensor may sense the environment in rooms of the smart home for determining information associated with human presence, gesture, gait, activity, breath, heartbeat, etc.
  • radio sensing techniques may be utilized when other types of sensing techniques are weak or undetected. For example, if lighting is dim, such as at night, during bad weather, in sub-surface locations, etc., video sensing may have degraded performance. Further, LiDAR technology may be economically impractical to incorporate for some applications (e.g., medium-class or low-class vehicles) . However, radio sensing associated with transmission and reception of radio signals may be an efficient and effective alternative due to an insensitivity to light and relatively low cost.
  • Radio sensing techniques may be associated with active sensing or passive sensing, depending on whether the received signal is self-transmitted. If the received signal is self-transmitted, the radio sensing technique may be based on active sensing techniques. If the received signal is not self-transmitted, the radio sensing technique may be based on passive sensing techniques. That is, the signal may be received directly from a separate Tx device (e.g., as shown in the diagram 500) or based on a reflection from a target object (e.g., as shown in the diagram 550) . Passive sensing may be utilized in cases where a sensor/receiver is not configured to transmit signals or determine to disable signal transmission (e.g., to reduce co-channel interference or save power) .
  • Passive sensing may be further associated with two types of sensing that include passive sensing type 1 and passive sensing type 2.
  • passive sensing type 1 the signal may be transmitted directly from a signal transmitter to a signal receiver.
  • the target object e.g., the signal receiver
  • the target object e.g., the signal receiver
  • the target object e.g., a person
  • the target object may be a reflector that is not the signal transmitter/receiver.
  • a sensing signal may be transmitted from a sensing signal Tx device, reflected by the target object, and received by a sensing signal Rx device.
  • a waveform of the sensing signal may be associated with a frequency modulated continuous wave (FMCW) signal, a Golay sequence, and/or other kinds of signals used for 5G NR applications, such as reference signals.
  • the sensing signal Rx device may execute an algorithm to estimate Doppler frequency-related metrics, such as Doppler frequency vs. range, Doppler frequency vs.time, etc., of a radio channel between the target object and the sensing signal Rx device. Based on such metrics, the sensing signal Rx device may determine a distance, a speed, and/or a direction of the target object.
  • Doppler frequency-related metrics such as Doppler frequency vs. range, Doppler frequency vs.time, etc.
  • a preferred beam direction of the sensing signal may not be indicated to the sensing signal Tx device.
  • the sensing signal Tx device may use beamforming techniques to improve a signal strength in certain directions and/or groups of directions. If the target object is located in the direction of the beamforming, the transmitted signal may be reflected via the target object and detected/received by the sensing signal Rx device. A beam that is more accurately directed toward the target object may provide a higher signal strength for the sensing signal Rx device.
  • the sensing signal Tx device may not be configured to determine which beam direction (s) cause the sensing signal to be reflected by the target object, which may require the sensing signal Tx device to periodically sweep all beams.
  • the sensing beam may not be directed toward the target object and sensing performance may be decreased. If the sweeping granularity is small, beam sweeping may cause sensing delay since the sensing signal Rx device may need to wait for the proper beam before the sensing signal Rx device may sense beams reflected from the target object.
  • feedback-based beamforming techniques may be utilized for the sensing signal Rx device to determine the beams that are directed toward the target object from an initial omnidirectional beam sweeping.
  • the sensing signal Rx device may report the indexes of the determined beams to the sensing signal Tx device (e.g., in UL or sidelink) .
  • the reported beams may correspond to the beams that are reflected from the target object.
  • the sensing signal Tx device may adjust beam sweeping directions for selected beams that are direct toward the target object.
  • Such techniques may improve beam sweeping efficiency, reduce sensing latency, and/or enhance sensing performance (e.g., accuracy and precision) .
  • transmitted beams may be directed toward different parts/positions of the target object.
  • FIG. 7 illustrates a diagram 700 and a table 720 associated with beam transmission repetitions for different areas of a target object (e.g., the target object 710) .
  • different areas of a moving object/target object 710 may have different moving speeds/Doppler frequencies.
  • gesture recognition may be based on head movement, leg movement, arm movement, etc.
  • a head area of the target object 710 may correspond to a slow moving speed
  • a leg area of the target object 710 may correspond to a medium moving speed
  • an arm area of the target object 710 may correspond to a fast moving speed.
  • a time interval for transmitting beams that correspond to the specific areas of the target object 710 may need to be shortened so that beam transmission repetition may occur more frequently.
  • the beams that correspond to each of the areas of the target object 710 may have the same repetition lengths for beam sweeping operations.
  • the transmission time interval T may be the same length for each of the corresponding head area beams, leg area beams, and arm area beams, notwithstanding each area of the target object 710 having different moving speeds.
  • Example Doppler frequencies and maximum beam sensing periods for the target object 710 are shown in the table 720 based on the moving speeds of each area of the target object 710.
  • the head area may have a maximum moving speed of 0.1 m/s
  • the leg area may have a maximum moving speed of 0.3 m/s
  • the arm area may have a maximum moving speed of 0.5 m/s.
  • the Doppler frequency (f d ) may be determined based on the formula: where v is the object moving speed, ⁇ is the angle between the moving direction and the receiver direction, c is the speed of light (e.g., 3x10 8 m/s) , and f c is the carrier frequency (e.g., 5 GHz) .
  • the maximum beam sensing period may be based on the determined Doppler frequency. Accordingly, using the same repetition length for all beams, as illustrated in the diagram 700, may cause some beams to have unnecessarily short repetition lengths, which may result in waste of sensing resources and power, and other beams to have unnecessarily long repetition lengths, which may increase beam sweeping and sensing latency.
  • FIG. 8 is a diagram 800 for reporting beam indexes and associated speed information for the different areas of the target object.
  • a sensing signal Tx device may indicate a beam sweeping pattern to a sensing signal Rx device prior to performing the beam sweeping. Each beam transmitted by the sensing signal Tx device may initially have a same repetition length.
  • a sensing signal Rx device may receive sensing signals of the beam sweeping operation that are reflected from the target object. The sensing signal Rx device may determine the indexes of selected/received sensing signals reflected from the target object and associated speed information for each of the selected/received sensing signals.
  • the associated speed information for the sensing signals may correspond to a Doppler frequency, a repetition cycle, etc.
  • the beam indexes and the associated speed information may be reported to the sensing signal Tx device for the sensing signal Tx device to determine, based on the reported beam-specific speed information, a subsequent beam sweeping pattern where each of the beams may have different repetition cycles.
  • the sensing signal Tx device may indicate the subsequent beam sweeping pattern to the sensing signal Rx device, prior to the sensing signal Tx device transmitting sensing signals based on the subsequent beam sweeping pattern.
  • FIG. 9 illustrates beam reporting techniques 900-950 by the sensing signal Rx device.
  • the content of the report provided from the sensing signal Rx device to the sensing signal Tx device may include beam index information and speed information indicators, amongst other information.
  • the sensing signal Rx device may report speed information for each selected beam individually.
  • a speed information indicator value may be reported in association with a beam index. That is, the report may include a beam-specific index and beam-specific speed information indicator for each of the reported beams (e.g., Beam 1, Beam 2, and Beam 3) .
  • the sensing signal Rx device may report a plurality of beam groups. Each beam group may include one or more beam indexes for the specific beams of the beam group. The sensing signal Rx device may further report respective speed information indicator values for each beam group as well as the number of beams respectively included in each of the beam groups. For example, Beam Group 1 may be reported based on an indication of the number of beams included in Beam Group 1, followed by one or more beam indexes for the specific beams of Beam Group 1, further followed by a speed information indicator for Beam Group 1. Such protocols may be repeated for Beam Group 2, Beam Group 3, and so forth. The report may be transmitted to the sensing signal Tx device via RRC signaling, MAC-control element (MAC-CE) , physical control information (e.g., UCI, DCI, or sidelink control information (SCI) ) , or combinations thereof.
  • MAC-CE MAC-control element
  • SCI sidelink control information
  • FIG. 10 illustrates a plurality of diagrams 1000-1020 associated with beam repetition patterns.
  • a solid line may correspond to a beam that is associated with a fast moving speed (e.g., arm area)
  • a dashed line may correspond to a beam that is associated with a medium moving speed (e.g., leg area)
  • a dotted line may correspond to a beam that is associated with a slow moving speed (e.g., head area) .
  • the slow moving speed area, the medium moving speed area, and the fast moving speed area may each correspond to 1 beam in the beam sweeping pattern.
  • the repetition lengths for the three types of beams may be 6T for the slow moving speed area, 2T for the medium moving speed area, and 1T for the fast moving speed area, where T may be a basic sensing period.
  • the diagram 1010 shows that some moving speed areas may be associated with multiple beams in the beam sweeping pattern.
  • the slow moving speed area may be associated with 6 beams in the beam sweeping pattern and the medium moving speed area may be associated with 2 beams in the beam sweeping pattern, while the fast moving speed area may be maintained with 1 beam.
  • the beam sweeping pattern may include 9 beams (e.g., 6 + 2 + 1) based on 3 different repetition lengths.
  • beam sweeping techniques that are based on the diagram 1010 may be used to increase spectral efficiency by 200%.
  • the sensing signal Tx device may indicate the beam sweeping pattern to the sensing signal Rx device.
  • the sensing signal Tx device may indicate each beam individually. That is, the sensing signal Tx device may indicate respective repetition lengths for each beam. For example, for a sensing beam with an initial time-frequency position, the sensing signal Tx device may indicate the repetition length of the sensing beam.
  • the sensing signal Tx device may indicate a beam set.
  • the sensing signal Tx device may indicate a plurality of sensing radio resource sets to the sensing signal Rx device.
  • Each sensing radio resource set may include one or more sensing radio resources. Further, each sensing radio resource set may be allocated based on determined time-frequency resources (e.g. a number of OFDM symbols per slot) .
  • the sensing radio resource sets may have a sensing repetition length (e.g., n slots) such that a sensing beam transmitted in a corresponding sensing radio resource may apply the sensing repetition length associated with the sensing radio resource set. Accordingly, if a sensing beam is received in a sensing radio resource, the sensing signal Rx device may determine the sensing repetition length of the sensing beam based on the corresponding sensing radio resource set.
  • the diagram 1020 illustrates sensing repetition lengths for a plurality of radio resource sets.
  • Orthogonal frequency division multiplexing (OFDM) symbols in the slots of the diagram 1020 may correspond to three radio resource sets, where each of the radio resource sets may have different repetition lengths.
  • each radio resource of radio resource set 1, radio resource set 2, and radio resource set 3 may be transmitted over 1 slot, 2 slots, and 3 slots, respectively.
  • the values indicated for each slot may be associated with an index of the radio resource/beam, so that when the sensing signal Rx device receives a beam at determined OFDM symbol/radio resource, the sensing signal Rx device may further determine the repetition length.
  • the indication may be provided based on RRC signaling, MAC-CE, physical control information (e.g., UCI, DCI, or SCI) , or combinations thereof. Accordingly, the techniques described herein may decrease radio resource consumption for sensing operations, decrease sensing beam sweeping latency, and/or decrease power consumption at the sensing signal Rx device.
  • FIG. 11 is a flowchart 1100 of a method of wireless communication.
  • the method may be performed by a wireless transmitter, e.g., wireless transmitter 404, the base station 102, etc., which may include the memory 376 and which may be the entire wireless transmitter 404/base station 102 or a component of the wireless transmitter 404/base station 102, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375.
  • a wireless transmitter e.g., wireless transmitter 404, the base station 102, etc.
  • the memory 376 which may be the entire wireless transmitter 404/base station 102 or a component of the wireless transmitter 404/base station 102, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375.
  • the wireless transmitter may transmit a first RF sensing signal over a first range that covers a first plurality of beams.
  • the wireless transmitter 404 may transmit, at 406, the first RF sensing signal that covers a first plurality of beam.
  • the wireless transmitter 404 may transmit the first RF sensing signal, at 406, over each of the first plurality of beams in a first beam sweeping pattern.
  • Each of the first plurality of beams transmitted, at 406, may have a same repetition cycle length.
  • the wireless transmitter may receive a report from a wireless receiver based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
  • the wireless transmitter 404 may receive, at 408, a report indicative of Doppler frequency and/or repetition cycle length from the wireless receiver 402 based on the first RF sensing signal that covers the first plurality of beams transmitted, at 406.
  • the report received, at 408, may include a speed information indicator for each of the one or more beams.
  • the speed information indicator may be associated with a beam index.
  • the report received, at 408, may further include a speed information indicator for a beam group corresponding to at least a subset of the one or more beams.
  • the speed information indicator may be associated with a beam group size identifier (e.g., an identifier of a number of beams in the group) and one or more beam indexes.
  • the wireless transmitter may determine, based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams, a second beam sweeping pattern for the second RF sensing signal transmitted over the second plurality of beams. For example, referring to FIG. 4, the wireless transmitter 404 may determine, at 410, a second beam sweeping pattern based on the report received, at 408, indicative of the Doppler frequency and/or repetition cycle length.
  • the second beam sweeping pattern may include a repetition cycle length based on the Doppler frequency, where a plurality of indexed beams associated with the Doppler frequency may be transmitted over the repetition cycle length.
  • the wireless transmitter may indicate the second beam sweeping pattern to the wireless receiver prior to transmitting the second RF sensing signal over each of the second plurality of beams in the second beam sweeping pattern.
  • the wireless transmitter 404 may indicate, at 412, a second beam sweeping pattern to the wireless receiver 402.
  • the indication, at 412, of the second beam sweeping pattern may include individual repetition cycle lengths for each of the second plurality of beams. Additionally or alternatively, the indication, at 412, of the second beam sweeping pattern may include respective repetition cycle lengths for beam sets included in the second plurality of beams.
  • the wireless transmitter may transmit a second RF sensing signal over a second range that covers a second plurality of beams that have different repetition cycle lengths based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams indicated in the report.
  • the wireless transmitter 404 may transmit, at 414, the second RF sensing signal that covers the second plurality of beams (e.g.., having different repetition cycle lengths) based on the Doppler frequency and/or repetition cycle length reported at 408. Further, the wireless transmitter 404 may transmit, at 414, the second RF sensing signal over each of the second plurality of beams based on the second beam sweeping pattern.
  • FIG. 12 is a flowchart 1200 of a method of wireless communication.
  • the method may be performed by a wireless receiver, e.g., wireless receiver 402, the UE 104, etc., which may include the memory 360 and which may be the entire wireless receiver 402/UE 104 or a component of the wireless receiver 402/UE 104, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359.
  • a wireless receiver e.g., wireless receiver 402, the UE 104, etc.
  • the memory 360 which may be the entire wireless receiver 402/UE 104 or a component of the wireless receiver 402/UE 104, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359.
  • the wireless receiver may receive a first RF sensing signal over a first range that covers a first plurality of beams.
  • the wireless receiver 402 may receive, at 406, the first RF sensing signal that covers the first plurality of beams.
  • the wireless receiver 402 may receive, at 406, the first RF sensing signal over each of the first plurality of beams in a first beam sweeping pattern, where each of the first plurality of beams may have a same repetition cycle length.
  • the wireless receiver may transmit a report to a wireless transmitter based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
  • the wireless receiver 402 may transmit, at 408, a report indicative of Doppler frequency and/or repetition cycle length based on the first RF sensing signal received at 406.
  • the report received, at 408, may include a speed information indicator for each of the one or more beams.
  • the speed information indicator may be associated with a beam index.
  • the report received, at 408, may further include a speed information indicator for a beam group corresponding to at least a subset of the one or more beams.
  • the speed information indicator may be associated with a beam group size identifier (e.g., an identifier of a number of beams in the group) and one or more beam indexes.
  • the wireless receiver may receive, based on the transmitted report, an indication of a second beam sweeping pattern from the wireless transmitter prior to receiving a second RF sensing signal over each of a second plurality of beams in a second beam sweeping pattern.
  • the wireless receiver 402 may receive, at 412, an indication of the second beam sweeping pattern from the wireless transmitter 404 based on transmission, at 408, of the report indicative of the Doppler frequency and/or repetition cycle length.
  • the indication of the second beam sweeping pattern received, at 412 may include individual repetition cycle lengths for each of the second plurality of beams. Additionally or alternatively, the indication of the second beam sweeping pattern received, at 412, may include respective repetition cycle lengths for beam sets included in the second plurality of beams.
  • the wireless receiver may receive, based on the transmitted report, a second RF sensing signal over a second range that covers a second plurality of beams in a second beam sweeping pattern, the second plurality of beams having different repetition cycle lengths.
  • the wireless receiver 402 may receive, at 414, the second RF sensing signal that covers the second plurality of beams (e.g., having different repetition cycle lengths) based on the Doppler frequency and/or repetition cycle length reported at 408.
  • the second beam sweeping pattern may include a repetition cycle length based on the Doppler frequency, where a plurality of indexed beams associated with the Doppler frequency may be transmitted over the repetition cycle length.
  • FIG. 13 is a diagram 1300 illustrating an example of a hardware implementation for an apparatus 1302.
  • the apparatus 1302 is a BS and includes a baseband unit 1304.
  • the baseband unit 1304 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 1304 may include a computer-readable medium /memory.
  • the baseband unit 1304 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory.
  • the software when executed by the baseband unit 1304, causes the baseband unit 1304 to perform the various functions described supra.
  • the computer-readable medium/memory may also be used for storing data that is manipulated by the baseband unit 1304 when executing software.
  • the baseband unit 1304 further includes a reception component 1330, a communication manager 1332, and a transmission component 1334.
  • the communication manager 1332 includes the one or more illustrated components.
  • the components within the communication manager 1332 may be stored in the computer-readable medium/memory and/or configured as hardware within the baseband unit 1304.
  • the baseband unit 1304 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the reception component 1330 is configured, e.g., as described in connection with 1104, to receive a report from a wireless receiver based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
  • the communication manager 1332 includes a determination component 1340 that is configured, e.g., as described in connection with 1106, to determine, based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams, a beam sweeping pattern for a second RF sensing signal transmitted over a second plurality of beams.
  • the communication manager 1332 further includes an indication component 1342 that is configured, e.g., as described in connection with 1108, to indicate the second beam sweeping pattern to the wireless receiver prior to transmitting the second RF sensing signal over each of the second plurality of beams in the second beam sweeping pattern.
  • the transmission component 1334 is configured, e.g., as described in connection with 1102 and 1110, to transmit a first RF sensing signal over a first range that covers a first plurality of beams; and transmit the second RF sensing signal over a second range that covers the second plurality of beams that have different repetition cycle lengths based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams indicated in the report.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIG. 11. As such, each block in the aforementioned flowcharts of FIG. 11 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 1302 includes means for transmitting, receiving, determining, and indicating.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1302 configured to perform the functions recited by the aforementioned means.
  • the apparatus 1302 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
  • FIG. 14 is a diagram 1400 illustrating an example of a hardware implementation for an apparatus 1402.
  • the apparatus 1402 is a UE and includes a cellular baseband processor 1404 (also referred to as a modem) coupled to a cellular RF transceiver 1422 and one or more subscriber identity modules (SIM) cards 1420, an application processor 1406 coupled to a secure digital (SD) card 1408 and a screen 1410, a Bluetooth module 1412, a wireless local area network (WLAN) module 1414, a Global Positioning System (GPS) module 1416, and a power supply 1418.
  • the cellular baseband processor 1404 communicates through the cellular RF transceiver 1422 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 1404 may include a computer-readable medium/memory.
  • the computer-readable medium/memory may be non-transitory.
  • the cellular baseband processor 1404 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory.
  • the software when executed by the cellular baseband processor 1404, causes the cellular baseband processor 1404 to perform the various functions described supra.
  • the computer-readable medium/memory may also be used for storing data that is manipulated by the cellular baseband processor 1404 when executing software.
  • the cellular baseband processor 1404 further includes a reception component 1430, a communication manager 1432, and a transmission component 1434.
  • the communication manager 1432 includes the one or more illustrated components.
  • the components within the communication manager 1432 may be stored in the computer-readable medium/memory and/or configured as hardware within the cellular baseband processor 1404.
  • the cellular baseband processor 1404 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 1402 may be a modem chip and include just the baseband processor 1404, and in another configuration, the apparatus 1402 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 1402.
  • the reception component 1430 is configured, e.g., as described in connection with 1202, 1206, and 1208, to receive a first RF sensing signal over a first range that covers a first plurality of beams; receive, based on the transmitted report, an indication of a beam sweeping pattern from the wireless transmitter; and receive, based on the transmitted report, a second RF sensing signal over a second range that covers a second plurality of beams in the beam sweeping pattern, the second plurality of beams having different repetition cycle lengths.
  • the transmission component 1434 is configured, e.g., as described in connection with 1204, to transmit a report to a wireless transmitter based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 12. As such, each block in the aforementioned flowchart of FIG. 12 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 1402 includes means for receiving and transmitting.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1402 configured to perform the functions recited by the aforementioned means.
  • the apparatus 1402 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • a wireless transmitter may indicate a beam sweeping pattern to a wireless receiver where each of a first plurality of beams may initially have a same repetition length. At least a subset of the first plurality of beams may be transmitted by the wireless transmitter based on the beam sweeping pattern and reflected from a target object to the wireless receiver.
  • the wireless receiver may determine speed information (e.g., Doppler frequencies) associated with each of the reflected beams received by the wireless receiver, such that some areas of the target object may be determined to have different moving speeds than other areas of the target object.
  • the wireless receiver may report, to the wireless transmitter, beam indexes and corresponding speed information for the reflected beams received by the wireless receiver.
  • the wireless transmitter may determine, based on the reported beam-specific speed information, a second beam sweeping pattern having a second plurality of beams where the beams may have different repetition lengths/cycles. After the wireless transmitter indicates the second beam sweeping pattern to the wireless receiver, the wireless transmitter may transmit the second plurality of beams (e.g., having the different repetition lengths/cycles) based on the second beam sweeping pattern.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides systems, devices, apparatus, and methods, including computer programs encoded on storage media, for beam feedback based on object movement in wireless sensing. A wireless transmitter may transmit a first RF sensing signal over a first range that covers a first plurality of beams. A wireless receiver may receive the first RF sensing signal and transmit a report to the wireless transmitter indicative of at least one of a Doppler frequency or a repetition cycle of one or more beams included in the first plurality of beams. Based on the one or more beams indicated in the report, the wireless transmitter may transmit a second RF sensing signal over a second range that covers a second plurality of beams having different repetition cycle lengths.

Description

BEAM FEEDBACK BASED ON OBJECT MOVEMENT IN WIRELESS SENSING BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to beam feedback based on object movement in wireless sensing.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Radio frequency (RF) sensing may include passive sensing techniques where a sensing signal may be transmitted from a wireless transmitter, reflected by an object, and received by a wireless receiver. In this manner, an object in an environment may be sensed based on communications of the wireless transmitter and the wireless receiver. The wireless receiver may report, to the wireless transmitter, the indexes of the beams determined to be reflected from the object. However, in some cases the target object may include a plurality of areas that have different moving speeds/Doppler frequencies. For example, if the target object is a person, an arm area may have a faster moving speed than a head area. If the moving speeds of the plurality of areas are not separately determined, all of the transmitted beams may have a same repetition length for beam sweeping operations. Using the same repetition length for all beams may result in wasted resources for beams with unnecessarily short repetition lengths and/or result in increased beam sweeping latency and sensing latency for beams with unnecessarily long repetition lengths.
Accordingly, a wireless transmitter may indicate a beam sweeping pattern to a wireless receiver where each of a first plurality of beams may initially have a same repetition length. At least a subset of the first plurality of beams may be transmitted by the wireless transmitter based on the beam sweeping pattern and reflected from a target object to the wireless receiver. The wireless receiver may determine speed information (e.g., Doppler frequencies) associated with each of the reflected beams received by the wireless receiver, such that some areas of the target object may be determined to have different moving speeds than other areas of the target object. The wireless receiver may report, to the wireless transmitter, beam indexes and corresponding speed information for the reflected beams received by the wireless receiver. The wireless transmitter may determine, based on the reported beam- specific speed information, a second beam sweeping pattern having a second plurality of beams where the beams may have different repetition lengths/cycles. After the wireless transmitter indicates the second beam sweeping pattern to the wireless receiver, the wireless transmitter may transmit the second plurality of beams (e.g., having the different repetition lengths/cycles) based on the second beam sweeping pattern.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a wireless transmitter that includes a memory and at least one processor coupled to the memory. The memory may include instructions that, when executed by the at least one processor, cause the at least one processor to transmit a first radio frequency (RF) sensing signal over a first range that covers a first plurality of beams; receive a report from a wireless receiver based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams; and transmit a second RF sensing signal over a second range that covers a second plurality of beams that have different repetition cycle lengths based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams indicated in the report.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a wireless receiver that includes a memory and at least one processor coupled to the memory. The memory may include instructions that, when executed by the at least one processor, cause the at least one processor to receive a first RF sensing signal over a first range that covers a first plurality of beams; and transmit a report to a wireless transmitter based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a call flow diagram illustrating communications between a wireless transmitter and a wireless receiver.
FIGs. 5A-5B are diagrams for passive sensing techniques.
FIGs. 6A-6B are diagrams for passive sensing techniques.
FIG. 7 illustrates a diagram and a table associated with beam transmission repetitions for different areas of a target object.
FIG. 8 is a diagram for reporting beam indexes and associated speed information for the different areas of the target object.
FIG. 9 illustrates beam reporting techniques by a wireless receiver.
FIG. 10 illustrates a plurality of diagrams associated with beam repetition patterns.
FIG. 11 is a flowchart of a method of wireless communication of a wireless transmitter.
FIG. 12 is a flowchart of a method of wireless communication of a wireless receiver.
FIG. 13 is a diagram illustrating an example of a hardware implementation for an example apparatus.
FIG. 14 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160  or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102/UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for  example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152/AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another  type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180/UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180/UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and  initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber  station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the base station 180 may be configured to transmit a first RF sensing signal over a first plurality of beams; receive a report indicative of Doppler frequency and/or repetition cycle based on the transmitted first plurality of beams; and transmit, based on the received report, a second RF sensing signal over a second plurality of beams that have different repetition cycle lengths (198) . Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While  subframes  3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes  may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The  RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . A UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the  particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression/decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX. Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354 RX receives a signal through its respective antenna 352. Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted  by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver  318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
Wireless communication systems may be configured to share available system resources and provide various telecommunication services (e.g., telephony, video, data, messaging, broadcasts, etc. ) based on multiple-access technologies such as CDMA systems, TDMA systems, FDMA systems, OFDMA systems, SC-FDMA systems, TD-SCDMA systems, etc. that support communication with multiple users. In many cases, common protocols that facilitate communications with wireless devices are adopted in various telecommunication standards. For example, communication methods associated with eMBB, mMTC, and URLLC may be incorporated in the 5G NR telecommunication standard, while other aspects may be incorporated in the 4G LTE standard. As mobile broadband technologies are part of a continuous evolution, further improvements in mobile broadband remain useful to continue the progression of such technologies.
FIG. 4 is a call flow diagram 400 illustrating communications between a wireless transmitter 404 and a wireless receiver 402. At 406, the wireless transmitter may transmit a first radio frequency (RF) sensing signal that covers a first plurality of beams. At least a subset of the first plurality of beams may be received by the wireless receiver 402. In examples, the first RF sensing signal may  be transmitted, at 406, by the wireless transmitter 404 based on a first beam sweeping pattern. The first beam sweeping pattern may be indicated to the wireless receiver 402 prior to being transmitted, at 406, by the wireless transmitter 404. In some configurations, the first plurality of beams transmitted, at 406, may have a same repetition cycle length.
At 408, the wireless receiver 402 may transmit a report indicative of Doppler frequency and/or repetition cycle length of one or more beams included in the first plurality of beams received, at 406, by the wireless receiver 402. At 410, the wireless transmitter 404 may determine a second beam sweeping pattern based on the report received, at 408, from the wireless receiver 402. The second beam sweeping pattern may be transmitted over a second plurality of beams that have different repetition lengths. At 412, the wireless transmitter 404 may indicate the second beam sweeping pattern to the wireless receiver 402. At 414, the wireless transmitter 404 may transmit a second RF sensing signal that covers the second plurality of beams having the different repetition lengths. In examples, the second RF sensing signal may be transmitted, at 414, by the wireless transmitter 404 based on the second beam sweeping pattern.
FIGs. 5A-5B and 6A-6B are diagrams 500-550 and 600-650 that illustrate passive sensing techniques. In examples, beam feedback may be provided for wireless sensing (e.g., in NR systems) based on object movement. Object sensing may serve an important role in some applications/systems. For instance, in a smart home that utilizes 5G NR, a sensor may sense the environment in rooms of the smart home for determining information associated with human presence, gesture, gait, activity, breath, heartbeat, etc.
In some cases, radio sensing techniques may be utilized when other types of sensing techniques are weak or undetected. For example, if lighting is dim, such as at night, during bad weather, in sub-surface locations, etc., video sensing may have degraded performance. Further, LiDAR technology may be economically impractical to incorporate for some applications (e.g., medium-class or low-class vehicles) . However, radio sensing associated with transmission and reception of radio signals may be an efficient and effective alternative due to an insensitivity to light and relatively low cost.
Radio sensing techniques may be associated with active sensing or passive sensing, depending on whether the received signal is self-transmitted. If the  received signal is self-transmitted, the radio sensing technique may be based on active sensing techniques. If the received signal is not self-transmitted, the radio sensing technique may be based on passive sensing techniques. That is, the signal may be received directly from a separate Tx device (e.g., as shown in the diagram 500) or based on a reflection from a target object (e.g., as shown in the diagram 550) . Passive sensing may be utilized in cases where a sensor/receiver is not configured to transmit signals or determine to disable signal transmission (e.g., to reduce co-channel interference or save power) .
Passive sensing may be further associated with two types of sensing that include passive sensing type 1 and passive sensing type 2. For passive sensing type 1, as shown in the diagram 500, the signal may be transmitted directly from a signal transmitter to a signal receiver. In some configurations, the target object (e.g., the signal receiver) may also be the signal transmitter. For passive sensing type 2, as shown in the diagram 550, the target object (e.g., a person) may be a reflector that is not the signal transmitter/receiver. More specifically, a sensing signal may be transmitted from a sensing signal Tx device, reflected by the target object, and received by a sensing signal Rx device.
A waveform of the sensing signal may be associated with a frequency modulated continuous wave (FMCW) signal, a Golay sequence, and/or other kinds of signals used for 5G NR applications, such as reference signals. After receiving the sensing signal, the sensing signal Rx device may execute an algorithm to estimate Doppler frequency-related metrics, such as Doppler frequency vs. range, Doppler frequency vs.time, etc., of a radio channel between the target object and the sensing signal Rx device. Based on such metrics, the sensing signal Rx device may determine a distance, a speed, and/or a direction of the target object.
In some passive sensing systems, a preferred beam direction of the sensing signal may not be indicated to the sensing signal Tx device. In further passive sensing systems, the sensing signal Tx device may use beamforming techniques to improve a signal strength in certain directions and/or groups of directions. If the target object is located in the direction of the beamforming, the transmitted signal may be reflected via the target object and detected/received by the sensing signal Rx device. A beam that is more accurately directed toward the target object may provide a higher signal strength for the sensing signal Rx device. In some cases, the sensing signal Tx device may not be configured to determine which beam  direction (s) cause the sensing signal to be reflected by the target object, which may require the sensing signal Tx device to periodically sweep all beams. If a sweeping granularity is large, the sensing beam may not be directed toward the target object and sensing performance may be decreased. If the sweeping granularity is small, beam sweeping may cause sensing delay since the sensing signal Rx device may need to wait for the proper beam before the sensing signal Rx device may sense beams reflected from the target object.
In the diagrams 600-650, feedback-based beamforming techniques may be utilized for the sensing signal Rx device to determine the beams that are directed toward the target object from an initial omnidirectional beam sweeping. The sensing signal Rx device may report the indexes of the determined beams to the sensing signal Tx device (e.g., in UL or sidelink) . The reported beams may correspond to the beams that are reflected from the target object. Based on the received report, the sensing signal Tx device may adjust beam sweeping directions for selected beams that are direct toward the target object. Such techniques may improve beam sweeping efficiency, reduce sensing latency, and/or enhance sensing performance (e.g., accuracy and precision) . However, if the target object is large in size or close to the sensing signal Tx device, transmitted beams may be directed toward different parts/positions of the target object.
FIG. 7 illustrates a diagram 700 and a table 720 associated with beam transmission repetitions for different areas of a target object (e.g., the target object 710) . More specifically, different areas of a moving object/target object 710 may have different moving speeds/Doppler frequencies. For instance, if the target object 710 is a human body, gesture recognition may be based on head movement, leg movement, arm movement, etc. In examples, a head area of the target object 710 may correspond to a slow moving speed, a leg area of the target object 710 may correspond to a medium moving speed, and an arm area of the target object 710 may correspond to a fast moving speed. As a moving speed (e.g., Doppler frequency) increases for specific areas of the target object 710, a time interval for transmitting beams that correspond to the specific areas of the target object 710 may need to be shortened so that beam transmission repetition may occur more frequently.
If moving parts or positions of the target object 710 are not separately determined, the beams that correspond to each of the areas of the target object 710 may have the same repetition lengths for beam sweeping operations. For example,  as illustrated in the timeline of the diagram 700, the transmission time interval T may be the same length for each of the corresponding head area beams, leg area beams, and arm area beams, notwithstanding each area of the target object 710 having different moving speeds.
Example Doppler frequencies and maximum beam sensing periods for the target object 710 are shown in the table 720 based on the moving speeds of each area of the target object 710. For example, the head area may have a maximum moving speed of 0.1 m/s, the leg area may have a maximum moving speed of 0.3 m/s, and the arm area may have a maximum moving speed of 0.5 m/s. The Doppler frequency (f d) may be determined based on the formula: 
Figure PCTCN2020106826-appb-000001
where v is the object moving speed, θ is the angle between the moving direction and the receiver direction, c is the speed of light (e.g., 3x10 8 m/s) , and f c is the carrier frequency (e.g., 5 GHz) . The maximum beam sensing period may be based on the determined Doppler frequency. Accordingly, using the same repetition length for all beams, as illustrated in the diagram 700, may cause some beams to have unnecessarily short repetition lengths, which may result in waste of sensing resources and power, and other beams to have unnecessarily long repetition lengths, which may increase beam sweeping and sensing latency.
FIG. 8 is a diagram 800 for reporting beam indexes and associated speed information for the different areas of the target object. A sensing signal Tx device may indicate a beam sweeping pattern to a sensing signal Rx device prior to performing the beam sweeping. Each beam transmitted by the sensing signal Tx device may initially have a same repetition length. A sensing signal Rx device may receive sensing signals of the beam sweeping operation that are reflected from the target object. The sensing signal Rx device may determine the indexes of selected/received sensing signals reflected from the target object and associated speed information for each of the selected/received sensing signals. The associated speed information for the sensing signals may correspond to a Doppler frequency, a repetition cycle, etc. The beam indexes and the associated speed information may be reported to the sensing signal Tx device for the sensing signal Tx device to determine, based on the reported beam-specific speed information, a subsequent beam sweeping pattern where each of the beams may have different repetition cycles. The sensing signal Tx device may indicate the subsequent beam sweeping  pattern to the sensing signal Rx device, prior to the sensing signal Tx device transmitting sensing signals based on the subsequent beam sweeping pattern.
FIG. 9 illustrates beam reporting techniques 900-950 by the sensing signal Rx device. The content of the report provided from the sensing signal Rx device to the sensing signal Tx device may include beam index information and speed information indicators, amongst other information. In the reporting technique 900, the sensing signal Rx device may report speed information for each selected beam individually. A speed information indicator value may be reported in association with a beam index. That is, the report may include a beam-specific index and beam-specific speed information indicator for each of the reported beams (e.g., Beam 1, Beam 2, and Beam 3) .
In the reporting technique 950, the sensing signal Rx device may report a plurality of beam groups. Each beam group may include one or more beam indexes for the specific beams of the beam group. The sensing signal Rx device may further report respective speed information indicator values for each beam group as well as the number of beams respectively included in each of the beam groups. For example, Beam Group 1 may be reported based on an indication of the number of beams included in Beam Group 1, followed by one or more beam indexes for the specific beams of Beam Group 1, further followed by a speed information indicator for Beam Group 1. Such protocols may be repeated for Beam Group 2, Beam Group 3, and so forth. The report may be transmitted to the sensing signal Tx device via RRC signaling, MAC-control element (MAC-CE) , physical control information (e.g., UCI, DCI, or sidelink control information (SCI) ) , or combinations thereof.
FIG. 10 illustrates a plurality of diagrams 1000-1020 associated with beam repetition patterns. In the timelines of diagrams 1000-1010, a solid line may correspond to a beam that is associated with a fast moving speed (e.g., arm area) , a dashed line may correspond to a beam that is associated with a medium moving speed (e.g., leg area) , and a dotted line may correspond to a beam that is associated with a slow moving speed (e.g., head area) .
In the diagram 1000, the slow moving speed area, the medium moving speed area, and the fast moving speed area may each correspond to 1 beam in the beam sweeping pattern. In order to save power while also providing a threshold level of sensing performance, the repetition lengths for the three types of beams may be 6T  for the slow moving speed area, 2T for the medium moving speed area, and 1T for the fast moving speed area, where T may be a basic sensing period.
Accordingly, the diagram 1010, shows that some moving speed areas may be associated with multiple beams in the beam sweeping pattern. For example, the slow moving speed area may be associated with 6 beams in the beam sweeping pattern and the medium moving speed area may be associated with 2 beams in the beam sweeping pattern, while the fast moving speed area may be maintained with 1 beam. As a result, the beam sweeping pattern may include 9 beams (e.g., 6 + 2 + 1) based on 3 different repetition lengths. In comparison to beam sweeping techniques where the transmission time interval T is the same length for all the moving speed areas of the target object (e.g., 1 + 1 +1 = 3 beams) , beam sweeping techniques that are based on the diagram 1010 may be used to increase spectral efficiency by 200%.
The sensing signal Tx device may indicate the beam sweeping pattern to the sensing signal Rx device. In a first configuration, the sensing signal Tx device may indicate each beam individually. That is, the sensing signal Tx device may indicate respective repetition lengths for each beam. For example, for a sensing beam with an initial time-frequency position, the sensing signal Tx device may indicate the repetition length of the sensing beam.
In a second configuration, the sensing signal Tx device may indicate a beam set. For example, the sensing signal Tx device may indicate a plurality of sensing radio resource sets to the sensing signal Rx device. Each sensing radio resource set may include one or more sensing radio resources. Further, each sensing radio resource set may be allocated based on determined time-frequency resources (e.g. a number of OFDM symbols per slot) . The sensing radio resource sets may have a sensing repetition length (e.g., n slots) such that a sensing beam transmitted in a corresponding sensing radio resource may apply the sensing repetition length associated with the sensing radio resource set. Accordingly, if a sensing beam is received in a sensing radio resource, the sensing signal Rx device may determine the sensing repetition length of the sensing beam based on the corresponding sensing radio resource set.
The diagram 1020 illustrates sensing repetition lengths for a plurality of radio resource sets. Orthogonal frequency division multiplexing (OFDM) symbols in the slots of the diagram 1020 may correspond to three radio resource sets, where each of the radio resource sets may have different repetition lengths. Further, each radio  resource of radio resource set 1, radio resource set 2, and radio resource set 3 may be transmitted over 1 slot, 2 slots, and 3 slots, respectively. The values indicated for each slot may be associated with an index of the radio resource/beam, so that when the sensing signal Rx device receives a beam at determined OFDM symbol/radio resource, the sensing signal Rx device may further determine the repetition length. The indication may be provided based on RRC signaling, MAC-CE, physical control information (e.g., UCI, DCI, or SCI) , or combinations thereof. Accordingly, the techniques described herein may decrease radio resource consumption for sensing operations, decrease sensing beam sweeping latency, and/or decrease power consumption at the sensing signal Rx device.
FIG. 11 is a flowchart 1100 of a method of wireless communication. The method may be performed by a wireless transmitter, e.g., wireless transmitter 404, the base station 102, etc., which may include the memory 376 and which may be the entire wireless transmitter 404/base station 102 or a component of the wireless transmitter 404/base station 102, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375.
At 1102, the wireless transmitter may transmit a first RF sensing signal over a first range that covers a first plurality of beams. For example, referring to FIG. 4, the wireless transmitter 404 may transmit, at 406, the first RF sensing signal that covers a first plurality of beam. In examples, the wireless transmitter 404 may transmit the first RF sensing signal, at 406, over each of the first plurality of beams in a first beam sweeping pattern. Each of the first plurality of beams transmitted, at 406, may have a same repetition cycle length.
At 1104, the wireless transmitter may receive a report from a wireless receiver based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams. For example, referring to FIG. 4, the wireless transmitter 404 may receive, at 408, a report indicative of Doppler frequency and/or repetition cycle length from the wireless receiver 402 based on the first RF sensing signal that covers the first plurality of beams transmitted, at 406. The report received, at 408, may include a speed information indicator for each of the one or more beams. For example, as illustrated in the diagrams 900-950, the speed information indicator may be associated with a beam index. The report received, at 408, may further include a speed information indicator for a beam group corresponding to at least a  subset of the one or more beams. As illustrated in the diagram 950, the speed information indicator may be associated with a beam group size identifier (e.g., an identifier of a number of beams in the group) and one or more beam indexes.
At 1106, the wireless transmitter may determine, based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams, a second beam sweeping pattern for the second RF sensing signal transmitted over the second plurality of beams. For example, referring to FIG. 4, the wireless transmitter 404 may determine, at 410, a second beam sweeping pattern based on the report received, at 408, indicative of the Doppler frequency and/or repetition cycle length. The second beam sweeping pattern may include a repetition cycle length based on the Doppler frequency, where a plurality of indexed beams associated with the Doppler frequency may be transmitted over the repetition cycle length.
At 1108, the wireless transmitter may indicate the second beam sweeping pattern to the wireless receiver prior to transmitting the second RF sensing signal over each of the second plurality of beams in the second beam sweeping pattern. For example, referring to FIG. 4, prior to transmitting, at 414, the second RF sensing signal that covers the second plurality of beams, the wireless transmitter 404 may indicate, at 412, a second beam sweeping pattern to the wireless receiver 402. The indication, at 412, of the second beam sweeping pattern may include individual repetition cycle lengths for each of the second plurality of beams. Additionally or alternatively, the indication, at 412, of the second beam sweeping pattern may include respective repetition cycle lengths for beam sets included in the second plurality of beams.
At 1110, the wireless transmitter may transmit a second RF sensing signal over a second range that covers a second plurality of beams that have different repetition cycle lengths based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams indicated in the report. For example, referring to FIG. 4, the wireless transmitter 404 may transmit, at 414, the second RF sensing signal that covers the second plurality of beams (e.g.., having different repetition cycle lengths) based on the Doppler frequency and/or repetition cycle length reported at 408. Further, the wireless transmitter 404 may transmit, at 414, the second RF sensing signal over each of the second plurality of beams based on the second beam sweeping pattern.
FIG. 12 is a flowchart 1200 of a method of wireless communication. The method may be performed by a wireless receiver, e.g., wireless receiver 402, the UE  104, etc., which may include the memory 360 and which may be the entire wireless receiver 402/UE 104 or a component of the wireless receiver 402/UE 104, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359.
At 1202, the wireless receiver may receive a first RF sensing signal over a first range that covers a first plurality of beams. For example, referring to FIG. 4, the wireless receiver 402 may receive, at 406, the first RF sensing signal that covers the first plurality of beams. The wireless receiver 402 may receive, at 406, the first RF sensing signal over each of the first plurality of beams in a first beam sweeping pattern, where each of the first plurality of beams may have a same repetition cycle length.
At 1204, the wireless receiver may transmit a report to a wireless transmitter based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams. For example, referring to FIG. 4, the wireless receiver 402 may transmit, at 408, a report indicative of Doppler frequency and/or repetition cycle length based on the first RF sensing signal received at 406. The report received, at 408, may include a speed information indicator for each of the one or more beams. For example, as illustrated in the diagrams 900-950, the speed information indicator may be associated with a beam index. The report received, at 408, may further include a speed information indicator for a beam group corresponding to at least a subset of the one or more beams. As illustrated in the diagram 950, the speed information indicator may be associated with a beam group size identifier (e.g., an identifier of a number of beams in the group) and one or more beam indexes.
At 1206, the wireless receiver may receive, based on the transmitted report, an indication of a second beam sweeping pattern from the wireless transmitter prior to receiving a second RF sensing signal over each of a second plurality of beams in a second beam sweeping pattern. For example, referring to FIG. 4, prior to receiving, at 414, a second RF sensing signal that covers a second plurality of beams, the wireless receiver 402 may receive, at 412, an indication of the second beam sweeping pattern from the wireless transmitter 404 based on transmission, at 408, of the report indicative of the Doppler frequency and/or repetition cycle length. The indication of the second beam sweeping pattern received, at 412, may include individual repetition cycle lengths for each of the second plurality of beams. Additionally or alternatively, the indication of the second beam sweeping pattern  received, at 412, may include respective repetition cycle lengths for beam sets included in the second plurality of beams.
At 1208, the wireless receiver may receive, based on the transmitted report, a second RF sensing signal over a second range that covers a second plurality of beams in a second beam sweeping pattern, the second plurality of beams having different repetition cycle lengths. For example, referring to FIG. 4, the wireless receiver 402 may receive, at 414, the second RF sensing signal that covers the second plurality of beams (e.g., having different repetition cycle lengths) based on the Doppler frequency and/or repetition cycle length reported at 408. The second beam sweeping pattern may include a repetition cycle length based on the Doppler frequency, where a plurality of indexed beams associated with the Doppler frequency may be transmitted over the repetition cycle length.
FIG. 13 is a diagram 1300 illustrating an example of a hardware implementation for an apparatus 1302. The apparatus 1302 is a BS and includes a baseband unit 1304. The baseband unit 1304 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 1304 may include a computer-readable medium /memory. The baseband unit 1304 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory. The software, when executed by the baseband unit 1304, causes the baseband unit 1304 to perform the various functions described supra. The computer-readable medium/memory may also be used for storing data that is manipulated by the baseband unit 1304 when executing software. The baseband unit 1304 further includes a reception component 1330, a communication manager 1332, and a transmission component 1334. The communication manager 1332 includes the one or more illustrated components. The components within the communication manager 1332 may be stored in the computer-readable medium/memory and/or configured as hardware within the baseband unit 1304. The baseband unit 1304 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The reception component 1330 is configured, e.g., as described in connection with 1104, to receive a report from a wireless receiver based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams. The communication manager 1332 includes a determination component 1340 that is  configured, e.g., as described in connection with 1106, to determine, based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams, a beam sweeping pattern for a second RF sensing signal transmitted over a second plurality of beams. The communication manager 1332 further includes an indication component 1342 that is configured, e.g., as described in connection with 1108, to indicate the second beam sweeping pattern to the wireless receiver prior to transmitting the second RF sensing signal over each of the second plurality of beams in the second beam sweeping pattern. The transmission component 1334 is configured, e.g., as described in connection with 1102 and 1110, to transmit a first RF sensing signal over a first range that covers a first plurality of beams; and transmit the second RF sensing signal over a second range that covers the second plurality of beams that have different repetition cycle lengths based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams indicated in the report.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIG. 11. As such, each block in the aforementioned flowcharts of FIG. 11 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 1302, and in particular the baseband unit 1304, includes means for transmitting, receiving, determining, and indicating. The aforementioned means may be one or more of the aforementioned components of the apparatus 1302 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 1302 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
FIG. 14 is a diagram 1400 illustrating an example of a hardware implementation for an apparatus 1402. The apparatus 1402 is a UE and includes a cellular baseband processor 1404 (also referred to as a modem) coupled to a cellular RF transceiver  1422 and one or more subscriber identity modules (SIM) cards 1420, an application processor 1406 coupled to a secure digital (SD) card 1408 and a screen 1410, a Bluetooth module 1412, a wireless local area network (WLAN) module 1414, a Global Positioning System (GPS) module 1416, and a power supply 1418. The cellular baseband processor 1404 communicates through the cellular RF transceiver 1422 with the UE 104 and/or BS 102/180. The cellular baseband processor 1404 may include a computer-readable medium/memory. The computer-readable medium/memory may be non-transitory. The cellular baseband processor 1404 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory. The software, when executed by the cellular baseband processor 1404, causes the cellular baseband processor 1404 to perform the various functions described supra. The computer-readable medium/memory may also be used for storing data that is manipulated by the cellular baseband processor 1404 when executing software. The cellular baseband processor 1404 further includes a reception component 1430, a communication manager 1432, and a transmission component 1434. The communication manager 1432 includes the one or more illustrated components. The components within the communication manager 1432 may be stored in the computer-readable medium/memory and/or configured as hardware within the cellular baseband processor 1404. The cellular baseband processor 1404 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 1402 may be a modem chip and include just the baseband processor 1404, and in another configuration, the apparatus 1402 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 1402.
The reception component 1430 is configured, e.g., as described in connection with 1202, 1206, and 1208, to receive a first RF sensing signal over a first range that covers a first plurality of beams; receive, based on the transmitted report, an indication of a beam sweeping pattern from the wireless transmitter; and receive, based on the transmitted report, a second RF sensing signal over a second range that covers a second plurality of beams in the beam sweeping pattern, the second plurality of beams having different repetition cycle lengths. The transmission component 1434 is configured, e.g., as described in connection with 1204, to transmit a report to a wireless transmitter based on one or more beams included in  the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 12. As such, each block in the aforementioned flowchart of FIG. 12 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 1402, and in particular the cellular baseband processor 1404, includes means for receiving and transmitting. The aforementioned means may be one or more of the aforementioned components of the apparatus 1402 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 1402 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
Accordingly, a wireless transmitter may indicate a beam sweeping pattern to a wireless receiver where each of a first plurality of beams may initially have a same repetition length. At least a subset of the first plurality of beams may be transmitted by the wireless transmitter based on the beam sweeping pattern and reflected from a target object to the wireless receiver. The wireless receiver may determine speed information (e.g., Doppler frequencies) associated with each of the reflected beams received by the wireless receiver, such that some areas of the target object may be determined to have different moving speeds than other areas of the target object. The wireless receiver may report, to the wireless transmitter, beam indexes and corresponding speed information for the reflected beams received by the wireless receiver. The wireless transmitter may determine, based on the reported beam-specific speed information, a second beam sweeping pattern having a second plurality of beams where the beams may have different repetition lengths/cycles. After the wireless transmitter indicates the second beam sweeping pattern to the wireless receiver, the wireless transmitter may transmit the second plurality of  beams (e.g., having the different repetition lengths/cycles) based on the second beam sweeping pattern.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes/flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes/flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more  member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
Figure PCTCN2020106826-appb-000002
Figure PCTCN2020106826-appb-000003
Figure PCTCN2020106826-appb-000004
Figure PCTCN2020106826-appb-000005
Figure PCTCN2020106826-appb-000006
Figure PCTCN2020106826-appb-000007
Figure PCTCN2020106826-appb-000008
Figure PCTCN2020106826-appb-000009
Figure PCTCN2020106826-appb-000010
Figure PCTCN2020106826-appb-000011
Figure PCTCN2020106826-appb-000012
Figure PCTCN2020106826-appb-000013

Claims (59)

  1. A method of wireless communication at a wireless transmitter, comprising:
    transmitting a first radio frequency (RF) sensing signal over a first range that covers a first plurality of beams;
    receiving a report from a wireless receiver based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams; and
    transmitting a second RF sensing signal over a second range that covers a second plurality of beams that have different repetition cycle lengths based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams indicated in the report.
  2. The method of claim 1, wherein the wireless transmitter transmits the first RF sensing signal over each of the first plurality of beams in a first beam sweeping pattern, each of the first plurality of beams having a same repetition cycle length.
  3. The method of claim 1, wherein the report includes a speed information indicator for each of the one or more beams, the speed information indicator associated with a beam index.
  4. The method of claim 1, wherein the report includes a speed information indicator for a beam group corresponding to at least a subset of the one or more beams, the speed information indicator associated with a beam group size identifier and one or more beam indexes.
  5. The method of claim 1, further comprising determining, based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams, a second beam sweeping pattern for the second RF sensing signal transmitted over the second plurality of beams.
  6. The method of claim 5, further comprising indicating the second beam sweeping pattern to the wireless receiver prior to transmitting the second RF sensing signal over each of the second plurality of beams in the second beam sweeping pattern.
  7. The method of claim 6, wherein the indication of the second beam sweeping pattern includes individual repetition cycle lengths for each of the second plurality of beams.
  8. The method of claim 6, wherein the indication of the second beam sweeping pattern includes respective repetition cycle lengths for beam sets included in the second plurality of beams.
  9. The method of claim 5, wherein the wireless transmitter transmits the second RF sensing signal over each of the second plurality of beams based on the second beam sweeping pattern.
  10. The method of claim 5, wherein the second beam sweeping pattern includes a repetition cycle length based on the Doppler frequency, and wherein a plurality of indexed beams associated with the Doppler frequency are transmitted over the repetition cycle length.
  11. A method of wireless communication at a wireless receiver, comprising:
    receiving a first radio frequency (RF) sensing signal over a first range that covers a first plurality of beams; and
    transmitting a report to a wireless transmitter based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
  12. The method of claim 11, wherein the wireless receiver receives the first RF sensing signal over each of the first plurality of beams in a first beam sweeping pattern, each of the first plurality of beams having a same repetition cycle length.
  13. The method of claim 11, wherein the report includes a speed information indicator for each of the one or more beams, the speed information indicator associated with a beam index.
  14. The method of claim 11, wherein the report includes a speed information indicator for a beam group corresponding to at least a subset of the one or more beams, the speed information indicator associated with a beam group size identifier and one or more beam indexes.
  15. The method of claim 11, further comprising receiving, based on the transmitted report, a second RF sensing signal over a second range that covers a second plurality of beams in a second beam sweeping pattern, the second plurality of beams having different repetition cycle lengths.
  16. The method of claim 15, further comprising receiving an indication of the second beam sweeping pattern from the wireless transmitter prior to receiving the second RF sensing signal over each of the second plurality of beams in the second beam sweeping pattern.
  17. The method of claim 16, wherein the indication of the second beam sweeping pattern includes individual repetition cycle lengths for each of the second plurality of beams.
  18. The method of claim 16, wherein the indication of the second beam sweeping pattern includes respective repetition cycle lengths for beam sets included in the second plurality of beams.
  19. The method of claim 15, wherein the second beam sweeping pattern includes a repetition cycle length based on the Doppler frequency, and wherein a plurality of indexed beams associated with the Doppler frequency are transmitted over the repetition cycle length.
  20. An apparatus for wireless communication at a wireless transmitter, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    transmit a first radio frequency (RF) sensing signal over a first range that covers a first plurality of beams;
    receive a report from a wireless receiver based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams; and
    transmit a second RF sensing signal over a second range that covers a second plurality of beams that have different repetition cycle lengths based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams indicated in the report.
  21. The apparatus of claim 20, wherein the wireless transmitter transmits the first RF sensing signal over each of the first plurality of beams in a first beam sweeping pattern, each of the first plurality of beams having a same repetition cycle length.
  22. The apparatus of claim 20, wherein the report includes a speed information indicator for each of the one or more beams, the speed information indicator associated with a beam index.
  23. The apparatus of claim 20, wherein the report includes a speed information indicator for a beam group corresponding to at least a subset of the one or more beams, the speed information indicator associated with a beam group size identifier and one or more beam indexes.
  24. The apparatus of claim 20, wherein the at least one processor is further configured to determine, based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams, a second beam sweeping pattern for the second RF sensing signal transmitted over the second plurality of beams.
  25. The apparatus of claim 24, wherein the at least one processor is further configured to indicate the second beam sweeping pattern to the wireless receiver prior to transmitting the second RF sensing signal over each of the second plurality of beams in the second beam sweeping pattern.
  26. The apparatus of claim 25, wherein the indication of the second beam sweeping pattern includes individual repetition cycle lengths for each of the second plurality of beams.
  27. The apparatus of claim 25, wherein the indication of the second beam sweeping pattern includes respective repetition cycle lengths for beam sets included in the second plurality of beams.
  28. The apparatus of claim 24, wherein the wireless transmitter transmits the second RF sensing signal over each of the second plurality of beams based on the second beam sweeping pattern.
  29. The apparatus of claim 24, wherein the second beam sweeping pattern includes a repetition cycle length based on the Doppler frequency, and wherein a plurality of indexed beams associated with the Doppler frequency are transmitted over the repetition cycle length.
  30. An apparatus for wireless communication at a wireless receiver, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    receive a first radio frequency (RF) sensing signal over a first range that covers a first plurality of beams; and
    transmit a report to a wireless transmitter based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
  31. The apparatus of claim 30, wherein the wireless receiver receives the first RF sensing signal over each of the first plurality of beams in a first beam sweeping pattern, each of the first plurality of beams having a same repetition cycle length.
  32. The apparatus of claim 30, wherein the report includes a speed information indicator for each of the one or more beams, the speed information indicator associated with a beam index.
  33. The apparatus of claim 30, wherein the report includes a speed information indicator for a beam group corresponding to at least a subset of the one or more beams,  the speed information indicator associated with a beam group size identifier and one or more beam indexes.
  34. The apparatus of claim 30, wherein the at least one processor is further configured to receive, based on the transmitted report, a second RF sensing signal over a second range that covers a second plurality of beams in a second beam sweeping pattern, the second plurality of beams having different repetition cycle lengths.
  35. The apparatus of claim 34, wherein the at least one processor is further configured to receive an indication of the second beam sweeping pattern from the wireless transmitter prior to receiving the second RF sensing signal over each of the second plurality of beams in the second beam sweeping pattern.
  36. The apparatus of claim 35, wherein the indication of the second beam sweeping pattern includes individual repetition cycle lengths for each of the second plurality of beams.
  37. The apparatus of claim 35, wherein the indication of the second beam sweeping pattern includes respective repetition cycle lengths for beam sets included in the second plurality of beams.
  38. The apparatus of claim 34, wherein the second beam sweeping pattern includes a repetition cycle length based on the Doppler frequency, and wherein a plurality of indexed beams associated with the Doppler frequency are transmitted over the repetition cycle length.
  39. An apparatus for wireless communication at a wireless transmitter, comprising:
    means for transmitting a first radio frequency (RF) sensing signal over a first range that covers a first plurality of beams;
    means for receiving a report from a wireless receiver based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams; and
    means for transmitting a second RF sensing signal over a second range that covers a second plurality of beams that have different repetition cycle lengths based on  the at least one of the Doppler frequency or the repetition cycle of the one or more beams indicated in the report.
  40. The apparatus of claim 39, wherein the wireless transmitter transmits the first RF sensing signal over each of the first plurality of beams in a first beam sweeping pattern, each of the first plurality of beams having a same repetition cycle length.
  41. The apparatus of claim 39, wherein the report includes a speed information indicator for each of the one or more beams, the speed information indicator associated with a beam index.
  42. The apparatus of claim 39, wherein the report includes a speed information indicator for a beam group corresponding to at least a subset of the one or more beams, the speed information indicator associated with a beam group size identifier and one or more beam indexes.
  43. The apparatus of claim 39, further comprising means for determining, based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams, a second beam sweeping pattern for the second RF sensing signal transmitted over the second plurality of beams.
  44. The apparatus of claim 43, further comprising means for indicating the second beam sweeping pattern to the wireless receiver prior to transmitting the second RF sensing signal over each of the second plurality of beams in the second beam sweeping pattern.
  45. The apparatus of claim 44, wherein the indication of the second beam sweeping pattern includes individual repetition cycle lengths for each of the second plurality of beams.
  46. The apparatus of claim 44, wherein the indication of the second beam sweeping pattern includes respective repetition cycle lengths for beam sets included in the second plurality of beams.
  47. The apparatus of claim 43, wherein the wireless transmitter transmits the second RF sensing signal over each of the second plurality of beams based on the second beam sweeping pattern.
  48. The apparatus of claim 43, wherein the second beam sweeping pattern includes a repetition cycle length based on the Doppler frequency, and wherein a plurality of indexed beams associated with the Doppler frequency are transmitted over the repetition cycle length.
  49. An apparatus for wireless communication at a wireless receiver, comprising:
    means for receiving a first radio frequency (RF) sensing signal over a first range that covers a first plurality of beams; and
    means for transmitting a report to a wireless transmitter based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
  50. The apparatus of claim 49, wherein the wireless receiver receives the first RF sensing signal over each of the first plurality of beams in a first beam sweeping pattern, each of the first plurality of beams having a same repetition cycle length.
  51. The apparatus of claim 49, wherein the report includes a speed information indicator for each of the one or more beams, the speed information indicator associated with a beam index.
  52. The apparatus of claim 49, wherein the report includes a speed information indicator for a beam group corresponding to at least a subset of the one or more beams, the speed information indicator associated with a beam group size identifier and one or more beam indexes.
  53. The apparatus of claim 49, further comprising means for receiving, based on the transmitted report, a second RF sensing signal over a second range that covers a second plurality of beams in a second beam sweeping pattern, the second plurality of beams having different repetition cycle lengths.
  54. The apparatus of claim 43, further comprising means for receiving an indication of the second beam sweeping pattern from the wireless transmitter prior to receiving the second RF sensing signal over each of the second plurality of beams in the second beam sweeping pattern.
  55. The apparatus of claim 44, wherein the indication of the second beam sweeping pattern includes individual repetition cycle lengths for each of the second plurality of beams.
  56. The apparatus of claim 44, wherein the indication of the second beam sweeping pattern includes respective repetition cycle lengths for beam sets included in the second plurality of beams.
  57. The apparatus of claim 43, wherein the second beam sweeping pattern includes a repetition cycle length based on the Doppler frequency, and wherein a plurality of indexed beams associated with the Doppler frequency are transmitted over the repetition cycle length.
  58. A computer-readable medium storing computer executable code, the code when executed by at least one processor causes the at least one processor to:
    transmit a first radio frequency (RF) sensing signal over a first range that covers a first plurality of beams;
    receive a report from a wireless receiver based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams; and
    transmit a second RF sensing signal over a second range that covers a second plurality of beams that have different repetition cycle lengths based on the at least one of the Doppler frequency or the repetition cycle of the one or more beams indicated in the report.
  59. A computer-readable medium storing computer executable code, the code when executed by at least one processor causes the at least one processor to:
    receive a first radio frequency (RF) sensing signal over a first range that covers a first plurality of beams; and
    transmit a report to a wireless transmitter based on one or more beams included in the first plurality of beams, the report indicative of at least one of a Doppler frequency or a repetition cycle of the one or more beams.
PCT/CN2020/106826 2020-08-04 2020-08-04 Beam feedback based on object movement in wireless sensing WO2022027235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106826 WO2022027235A1 (en) 2020-08-04 2020-08-04 Beam feedback based on object movement in wireless sensing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106826 WO2022027235A1 (en) 2020-08-04 2020-08-04 Beam feedback based on object movement in wireless sensing

Publications (1)

Publication Number Publication Date
WO2022027235A1 true WO2022027235A1 (en) 2022-02-10

Family

ID=80118691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106826 WO2022027235A1 (en) 2020-08-04 2020-08-04 Beam feedback based on object movement in wireless sensing

Country Status (1)

Country Link
WO (1) WO2022027235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050855A1 (en) * 2022-09-10 2024-03-14 Qualcomm Incorporated Handling of sensing-communication confliction in integrated sensing and communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10028153B2 (en) * 2014-11-03 2018-07-17 Telefonaktiebolaget L M Ericsson (Publ) Efficient beam scanning for high-frequency wireless networks
US20190020425A1 (en) * 2017-07-17 2019-01-17 Peking University Method for determining a doppler frequency shift of a wireless signal directly reflected by a moving object
WO2019056182A1 (en) * 2017-09-19 2019-03-28 Intel Corporation Beam estimation aided beam acquisition
CN111198374A (en) * 2020-01-13 2020-05-26 哈尔滨工程大学 Doppler sensitive signal moving target underwater sound detection method based on space-time-frequency joint interference suppression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10028153B2 (en) * 2014-11-03 2018-07-17 Telefonaktiebolaget L M Ericsson (Publ) Efficient beam scanning for high-frequency wireless networks
US20190020425A1 (en) * 2017-07-17 2019-01-17 Peking University Method for determining a doppler frequency shift of a wireless signal directly reflected by a moving object
WO2019056182A1 (en) * 2017-09-19 2019-03-28 Intel Corporation Beam estimation aided beam acquisition
CN111198374A (en) * 2020-01-13 2020-05-26 哈尔滨工程大学 Doppler sensitive signal moving target underwater sound detection method based on space-time-frequency joint interference suppression

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050855A1 (en) * 2022-09-10 2024-03-14 Qualcomm Incorporated Handling of sensing-communication confliction in integrated sensing and communication system

Similar Documents

Publication Publication Date Title
US11096172B2 (en) Spatial diversity for data transmissions using multiple beams
US10973044B1 (en) Default spatial relation for SRS/PUCCH
US10841952B2 (en) Puncturing PT-RS based on a collision between PT-RS and coreset
US11452089B2 (en) Signaling to activate uplink trigger states
US11558101B2 (en) Methods and apparatus to facilitate symbol extension and windowing for beam switching
US11477683B2 (en) Event triggered uplink beam report
US20230180141A1 (en) Cell identifier for pucch/pusch pathloss reference or beam reference signal
WO2021248404A1 (en) Method and apparatus of multi-cycle wireless radar sensing
US11678223B2 (en) Transmission power control command accumulation for NR-dual connectivity
WO2022021303A1 (en) Methods and apparatus for beam activation based on pci
WO2022027235A1 (en) Beam feedback based on object movement in wireless sensing
WO2022027229A1 (en) Beam feedback based on object shape in wireless sensing
US11522595B1 (en) Gradient-based beam tracking mode transition
US20220338035A1 (en) Determination of ue-specific pdcch monitoring occasions
WO2022051927A1 (en) Methods and apparatus for activation of joint dl/ul tci states for mdci
WO2022021327A1 (en) Associating transmission reception point with control resource set
US11889559B2 (en) Channel sensing with self-interference awareness for unlicensed band
US11844055B2 (en) Power control for beacon and echo procedure for channel state information measurement in sidelink networks
US11930389B2 (en) Target BLER change request
US11757503B2 (en) UE panel specific beam application time
US11632796B2 (en) Uplink cancelation-assisted listen-before-talk for full-duplex base station
WO2022006750A1 (en) Positioning for secondary cell dormancy
WO2023070650A1 (en) Initial access procedure with ris
WO2023077506A1 (en) Power headroom report for multi-pusch repetitions
US20240022369A1 (en) Uplink signal assisted preconfigured uplink resource

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948153

Country of ref document: EP

Kind code of ref document: A1