CN110148535A - 一种双层间距水滑石超级电容器电极材料的制备方法 - Google Patents

一种双层间距水滑石超级电容器电极材料的制备方法 Download PDF

Info

Publication number
CN110148535A
CN110148535A CN201910497955.5A CN201910497955A CN110148535A CN 110148535 A CN110148535 A CN 110148535A CN 201910497955 A CN201910497955 A CN 201910497955A CN 110148535 A CN110148535 A CN 110148535A
Authority
CN
China
Prior art keywords
preparation
hydrotalcite
electrode material
super capacitor
spacing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910497955.5A
Other languages
English (en)
Other versions
CN110148535B (zh
Inventor
王晓亮
闫慧妍
王学雷
张佳齐
杨绍斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Original Assignee
Liaoning Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University filed Critical Liaoning Technical University
Priority to CN201910497955.5A priority Critical patent/CN110148535B/zh
Publication of CN110148535A publication Critical patent/CN110148535A/zh
Application granted granted Critical
Publication of CN110148535B publication Critical patent/CN110148535B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明公开了一种双层间距水滑石超级电容器电极材料的制备方法,该双层间距水滑石电极材料的水滑石由两种阴离子插入层间得到具有双层间距结构的水滑石类化合物,是兼具结构稳定和高比容量双重优点的超级电容器电极材料。其制备方法是通过调控提供硝酸根的硝酸盐、阴离子插层剂十二烷基磺酸钠、沉淀剂乌洛托品的用量在合适浓度范围内,保证插层优先级高的十二烷基磺酸根处于较低浓度范围,插层优先级低的硝酸根处于较高浓度范围,采用一步水热法合成十二烷基磺酸根和硝酸根共同插层的大小两种双层间距水滑石。该制备方法不需要保护气氛,合成步骤简单,能耗低,时间短,效率高,结构调整准确等优点,具有广阔的应用前景。

Description

一种双层间距水滑石超级电容器电极材料的制备方法
技术领域
本发明属于超级电容器电极材料的技术领域,尤其涉及一种双层间距水滑石超级电容器电极材料的制备方法。
背景技术
水滑石,也称为层状双氢氧化物(LDHs),由于具有层状晶体结构、制备合成容易、成分结构可调、绿色环保等优势,在磁性材料、发光材料、催化剂、催化剂载体、聚合物稳定剂、吸附剂、阴离子交换剂、药物缓释剂和储能电极材料等领域被广泛研究和应用,具有推广应用的前景。根据报道,过渡金属的氢氧化物作为超级电容储能材料的储能主要基于材料表面的快速可逆氧化还原法拉第反应。近几年的文献报道显示其比电容已达到1000F/g以上量级,但是普通的水滑石的层间为CO3 2-、NO3 -、Cl-等离子半径较小的阴离子,层间距较小,层间电化学活性位不能充分发挥作用,电容性能不高。通过插层获得大层间距结构可以充分发挥层间电化学活性位参与电化学反应,但层间作用力较弱,结构不稳定,容易产生片层剥离并由于氢键作用产生二次堆叠形成低比表面积的小层间距结构。经过剥离处理的单片层水滑石同样容易产生片层的二次堆叠,电容性能并不理想。因此,扩大层间距,增加层间活性位点的利用率,同时保证较稳定的层结构是充分挖掘利用过渡金属水滑石电极材料电容性能的关键问题,对水滑石电极材料的推广应用有重要意义。
发明内容
基于以上现有技术的不足,本发明所解决的技术问题在于提供一种双层间距水滑石超级电容器电极材料的制备方法,不需要保护气氛,合成步骤简单,能耗低,时间短,效率高,结构调整准确,具有广阔的应用前景。
为了解决上述技术问题,本发明通过以下技术方案来实现:
本发明提供一种双层间距水滑石超级电容器电极材料的制备方法,以金属硝酸盐提供硝酸根,通过调控金属硝酸盐、阴离子插层剂的十二烷基磺酸钠、乌洛托品的用量在合适浓度范围内,保证插层优先级高的阴离子十二烷基磺酸根处于较低浓度范围,插层优先级低的阴离子硝酸根处于较高浓度范围,采用一步水热法合成双层间距水滑石,在合成时小尺寸阴离子硝酸根和大尺寸阴离子十二烷基磺酸根同时插入层间得到双层间距结构水滑石,其包括如下制备步骤:
S1、制备浓度范围为0.1mol/L~0.5mol/L的硝酸镍溶液,浓度范围为0.02mol/L~0.5mol/L的硝酸锰溶液,将二者混合;硝酸镍与硝酸锰的摩尔比范围为1:1~5:1;
S2、在步骤S1制备的溶液中添加阴离子插层剂的十二烷基磺酸钠,所述阴离子插层剂与金属离子摩尔比为1:3~1:12;
S3、在步骤S2后形成的溶液中添加浓度范围为0.06mol/L~3mol/L的沉淀剂;
S4、将步骤S3之后形成混合溶液以装填量50%~80%置入水热反应容器内,在预设温度范围为90℃~190℃,保温2小时到16小时后,停止反应;
S5、将步骤S4反应沉淀物从反应后的悬浊液中过滤出来,随后清洗、烘干。
优选的,步骤S1中的金属硝酸盐与步骤S3中的沉淀剂的摩尔比范围为1:0.5~1:3。
进一步的,步骤S4中的水热反应容器的容积为100ml~200ml。
优选的,步骤S3中的沉淀剂为乌洛托品。
由上,本发明提供一种双层间距水滑石电极材料的制备方法,并在此方法指导下制备出双层间距的水滑石电极材料。在一步水热法合成过程中,通过控制具有插层优先级高的阴离子十二烷基磺酸根处于较低浓度状态,插层优先级低的阴离子硝酸根处于合适的高浓度状态,两种阴离子同时插入层间形成两种不同尺寸层间距结构。双层间距水滑石具有较高比表面积,其中大层间距能促进层间电化学活性位发挥储能作用,小层间距具有较强的层间作用力,能保证层结构的稳定,相比于传统单一小层间距水滑石,具有更高的电容性能;相比于传统单一大层间距水滑石和单片层水滑石具有更为稳定的结构,是兼具结构稳定和高比容量双重优点的超级电容器电极材料。本发明的双层间距水滑石电极材料的制备方法采用一步水热法完成合成和层结构调控,相比传统层间距调控的离子交换、煅烧再水化等方法,不需要保护气氛,合成步骤简单,能耗低,时间短,效率高,结构调整准确等优点,具有广阔的应用前景。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下结合优选实施例,并配合附图,详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1为单层间距和双层间距水滑石的XRD图谱;
图2为单层间距、双层间距水滑石和十二烷基磺酸钠的红外光谱图;
图3为单层间距、双层间距水滑石电容性能图;
图4为本发明的双层间距水滑石超级电容器电极材料的制备方法的流程图。
具体实施方式
下面结合附图详细说明本发明的具体实施方式,其作为本说明书的一部分,通过实施例来说明本发明的原理,本发明的其他方面、特征及其优点通过该详细说明将会变得一目了然。在所参照的附图中,不同的图中相同或相似的部件使用相同的附图标号来表示。
实施例1
步骤1:制备浓度为0.1mol/L的Ni(NO3)2和0.02mol/L的Mn(NO3)3混合溶液。
步骤2:在步骤1获得的混合溶液中添加0.01mol的固体十二烷基磺酸钠形成混合溶液。
步骤3:在步骤2获得的混合溶液中添加0.06mol/L作为沉淀剂的乌洛托品形成混合溶液。
步骤4:将步骤3获得混合溶液以50%装填量装入200ml水热反应釜中,在190℃温度下反应2小时。
步骤5:将步骤4反应之后得到沉淀物过滤,随后清洗、烘干,得到所需材料。
如图1所示,XRD测得层间距分别为图2显示样品中含有1384cm-1处NO3 2-,在2956cm-1存在CH的振动吸收峰2921cm-1和2852cm-1处出现-CH2弯曲振动,在1210cm-1存在S=O伸缩振动吸收峰,说明层间同时存在硝酸根和十二烷基磺酸根。图3显示电流密度1A/g时比电容为1688.2F/g,电流密度20A/g时比电容为904.7F/g,保持率为53.6%。
实施例2
步骤1:制备浓度为0.5mol/L的Ni(NO3)2和0.5mol/L的Mn(NO3)3混合溶液。
步骤2:在步骤1获得的混合溶液中添加0.33mol的固体十二烷基磺酸钠形成混合溶液。
步骤3:在步骤2获得的混合溶液中添加3mol/L作为沉淀剂的乌洛托品形成混合溶液。
步骤4:将步骤3获得混合溶液以80%装填量装入100ml水热反应釜中,在90℃温度下反应16小时。
步骤5:将步骤4反应之后得到沉淀物过滤,随后清洗、烘干,得到所需材料。
如图1所示,XRD测得层间距分别为图2显示样品中含有1384cm-1处NO3 2-,在2956cm-1存在CH的振动吸收峰2921cm-1和2852cm-1处出现-CH2弯曲振动,在1210cm-1存在S=O伸缩振动吸收峰,说明层间同时存在硝酸根和十二烷基磺酸根。图3显示电流密度1A/g时比电容为1889.8F/g,电流密度20A/g时比电容为1205.4F/g,保持率为63.8%。
本发明的水滑石由两种阴离子插入层间得到具有双层间距结构的水滑石类化合物,是兼具结构稳定和高比容量双重优点的超级电容器电极材料。本发明的制备方法在于通过调控提供硝酸根的硝酸盐、阴离子插层剂的十二烷基磺酸钠、沉淀剂乌洛托品的用量在合适浓度范围内,保证插层优先级高的十二烷基磺酸根处于较低浓度范围,插层优先级低的硝酸根处于较高浓度范围,采用一步水热法合成十二烷基磺酸根和硝酸根共同插层的大小两种层间距水滑石。本发明的制备方法相比传统水滑石间距调控的离子交换、煅烧再水化等方法,不需要保护气氛,合成步骤简单,能耗低,时间短,效率高,结构调整准确等优点,具有广阔的应用前景。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (4)

1.一种双层间距水滑石超级电容器电极材料的制备方法,其特征在于,包括以下步骤:
S1、制备浓度范围为0.1mol/L~0.5mol/L的硝酸镍溶液,浓度范围为0.02mol/L~0.5mol/L的硝酸锰溶液,将二者混合;硝酸镍与硝酸锰的摩尔比范围为1:1~5:1;
S2、在步骤S1制备的溶液中添加阴离子插层剂十二烷基磺酸钠,所述阴离子插层剂与金属离子摩尔比为1:3~1:12;
S3、在步骤S2后形成的溶液中添加浓度范围为0.06mol/L~3mol/L的沉淀剂;
S4、将步骤S3之后形成混合溶液以装填量50%~80%置入水热反应容器内,在预设温度范围为90℃~190℃,保温2小时到16小时后,停止反应;
S5、将步骤S4反应沉淀物从反应后的悬浊液中过滤出来,随后清洗、烘干。
2.如权利要求1所述的双层间距水滑石超级电容器电极材料的制备方法,其特征在于,步骤S1中的金属硝酸盐与步骤S3中的沉淀剂的摩尔比范围为1:0.5~1:3。
3.如权利要求1所述的双层间距水滑石超级电容器电极材料的制备方法,其特征在于,步骤S4中的水热反应容器的容积为100ml~200ml。
4.如权利要求1所述的双层间距水滑石超级电容器电极材料的制备方法,其特征在于,步骤S3中的沉淀剂为乌洛托品。
CN201910497955.5A 2019-06-10 2019-06-10 一种双层间距水滑石超级电容器电极材料的制备方法 Active CN110148535B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910497955.5A CN110148535B (zh) 2019-06-10 2019-06-10 一种双层间距水滑石超级电容器电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910497955.5A CN110148535B (zh) 2019-06-10 2019-06-10 一种双层间距水滑石超级电容器电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN110148535A true CN110148535A (zh) 2019-08-20
CN110148535B CN110148535B (zh) 2021-09-17

Family

ID=67590687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910497955.5A Active CN110148535B (zh) 2019-06-10 2019-06-10 一种双层间距水滑石超级电容器电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN110148535B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120209023A1 (en) * 2011-02-14 2012-08-16 Kulamani Parida Modified layered double hydroxide (ldh) and a process for preparation thereof for c-c bond forming reactions
CN105399145A (zh) * 2014-08-18 2016-03-16 中国科学院理化技术研究所 一种三价镍掺杂的镍基水滑石纳米片及其制备方法和在超级电容器中的应用
CN107275105A (zh) * 2017-08-04 2017-10-20 南京理工大学 超级电容器电极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120209023A1 (en) * 2011-02-14 2012-08-16 Kulamani Parida Modified layered double hydroxide (ldh) and a process for preparation thereof for c-c bond forming reactions
CN105399145A (zh) * 2014-08-18 2016-03-16 中国科学院理化技术研究所 一种三价镍掺杂的镍基水滑石纳米片及其制备方法和在超级电容器中的应用
CN107275105A (zh) * 2017-08-04 2017-10-20 南京理工大学 超级电容器电极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOLIANG WANG: "Interlayer space regulating of NiMn layered double hydroxides for supercapacitors by controlling hydrothermal reaction time", 《 ELECTROCHIMICA ACTA》 *
YUANHUA XIAO: "Layered double hydroxides with larger interlayer distance for enhanced pseudocapacitance", 《SCIENCE CHINA MATERIALS》 *

Also Published As

Publication number Publication date
CN110148535B (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
Tian et al. Topotactic conversion route to mesoporous quasi‐single‐crystalline Co3O4 nanobelts with optimizable electrochemical performance
CN106564967B (zh) 富锂锰基正极材料前驱体、正极材料及其制备方法
Koziej et al. Interplay between size and crystal structure of molybdenum dioxide nanoparticles—synthesis, growth mechanism, and electrochemical performance
Cheng et al. Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes
Liu et al. Cobalt hydroxide nanosheets and their thermal decomposition to cobalt oxide nanorings
CN101565210B (zh) 纳米结构组装高振实密度四氧化三钴粉末的制备方法
Li et al. Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene
CN106410149B (zh) 一种硫掺杂碳包覆高含量过渡金属硫化物的制备方法及储锂应用
CN107017405A (zh) 一种锂离子电池正极材料及其制备方法
CN103240073B (zh) 一种Zn2+掺杂BiVO4可见光催化剂及其制备方法
CN101311376A (zh) 一种一维结构钛酸锶纳米粉体的制备方法
CN106783201B (zh) 一种硫化钼/三氧化二铁复合材料及其制备方法和应用
CN107240508A (zh) 一种石墨烯/铁氧体纳米复合电极材料的制备方法
CN107611359A (zh) 锂离子电池Ni‑NiO/石墨烯复合负极材料的制备方法
Tseng et al. Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors
CN105244495A (zh) 一种复合氢氧化物纳米片的制备方法
Yan et al. Effect of defects on decay of voltage and capacity for Li [Li0. 15Ni0. 2Mn0. 6] O2 cathode material
CN106012018A (zh) 一种钒酸铋介孔单晶的制备方法
Yin et al. Flower‐like NiO with a Hierarchical and Mesoporous Structure for Supercapacitors
CN114715955B (zh) 一种无钴正极材料及其制备方法与锂离子电池
CN101807685B (zh) 钒酸银/氧化钒一维复合纳米电极材料的制备方法及应用
Cui et al. Preparation of a peony-liked 3-D hydrotalcite and its electrochemical performance as a zinc negative electrode
CN102504249A (zh) 有序介孔二氧化锰/导电聚苯胺复合材料的制备方法
CN105217679A (zh) 一种介孔TiO2-B纳米线及其制备方法
CN112723425B (zh) 一种超薄纳米花结构水滑石超级电容器电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant