CN110133574B - 利用多频信号二次虚拟扩展的一维doa估计方法 - Google Patents

利用多频信号二次虚拟扩展的一维doa估计方法 Download PDF

Info

Publication number
CN110133574B
CN110133574B CN201910437105.6A CN201910437105A CN110133574B CN 110133574 B CN110133574 B CN 110133574B CN 201910437105 A CN201910437105 A CN 201910437105A CN 110133574 B CN110133574 B CN 110133574B
Authority
CN
China
Prior art keywords
array
matrix
signal
frequency
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910437105.6A
Other languages
English (en)
Other versions
CN110133574A (zh
Inventor
宁更新
姜伸接
赵雪瑾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910437105.6A priority Critical patent/CN110133574B/zh
Publication of CN110133574A publication Critical patent/CN110133574A/zh
Application granted granted Critical
Publication of CN110133574B publication Critical patent/CN110133574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction

Abstract

本发明公开了一种利用多频信号二次虚拟扩展的一维DOA估计方法,该估计方法基于均匀阵列结构、利用多频率组合信号、通过二次虚拟扩展来提高阵列自由度,该方法的基本原理是通过发射多个特定频率的窄带信号,然后在接收阵元处通过窄带滤波器分离出对应频率的时域信号,经傅里叶变换得到频域接收数据模型,接着利用频率聚焦技术和数据协方差矩阵重构,将均匀物理阵列一次扩展为虚拟非均匀阵列,最后结合现有基于非均匀阵列的DOA估计方法,进行向量化处理。该方法实现了虚拟非均匀阵列的二次虚拟扩展,获得最终的虚拟均匀阵列。本发明通过以上技术手段实现了阵列孔径的二次扩展和DOA估计精度的提高。

Description

利用多频信号二次虚拟扩展的一维DOA估计方法
技术领域
本发明涉及目标定位技术领域,具体涉及一种利用多频率组合信号实现二次虚拟阵元扩展的一维波达方向估计方法。
背景技术
波达方向估计(DOA估计)在众多领域已得到广泛应用,而DOA估计就是指在空间或放置传感器阵列利用阵列信号处理技术来对信源目标进行方向角度估计的方法。随着战争环境日趋复杂化,在目标跟踪、精密制导等各个方面确定目标信号的波达方向角并进行全面的监视和侦察,是在战争中获取主动权的首要前提。因此,研究超分辨高精度的DOA估计技术具有十分重要的意义。
阵列自由度是衡量一个阵列能够同时处理的最大信号数的重要指标,传统的基于均匀阵的子空间类方法如MUSIC算法等只能处理的信源目标数不超过物理阵元数。而为提高阵列处理信号的能力而增加物理阵元将导致硬件和维护成本的急剧增加。因此,如何实现采用物理阵元数少于信号数的阵列进行波达方向估计即欠定DOA估计问题,成为阵列信号处理领域的一个研究热点。经研究发现,阵列的空间结构在欠定条件下决定了在给定阵元数的情况下能够获得多少阵列自由度。随后多种结构的非均匀阵列被提出,基于非均匀阵列的DOA估计方法有效提高了阵列的自由度。非均匀阵列对阵列设计要求较高,不同结构选择很大程度影响了实际自由度。
发明内容
本发明的目的是为了降低硬件成本和进一步提升DOA估计精度,提供一种基于均匀阵列结构、利用多频率组合信号、通过二次虚拟扩展来提高阵列自由度的一维DOA估计方法,该方法的基本原理是通过发射多个特定频率的窄带信号,然后在接收阵元处通过窄带滤波器分离出对应频率的时域信号,经傅里叶变换得到频域接收数据模型,接着利用频率聚焦技术和数据协方差矩阵重构,将均匀物理阵列一次扩展为虚拟非均匀阵列,最后结合现有基于非均匀阵列的DOA估计方法,进行向量化处理。该方法实现了虚拟非均匀阵列的二次虚拟扩展,获得最终的虚拟均匀阵列。本发明通过以上技术手段实现了阵列孔径的二次扩展和DOA估计精度的提高。
本发明的目的可以通过采取如下技术方案达到:
一种利用多频信号二次虚拟扩展的一维DOA估计法,所述的估计方法包括以下步骤:
S1、根据用于一维DOA估计的一维均匀线阵结构特点构造多频率信号时域数据接收模型,同时利用傅里叶变换得到多频率信号频域数据接收模型;
S2、根据频域数据接收模型对不同频点的接收数据构造聚焦矩阵,进行频率聚焦,同时完成频域数据接收模型的重构,实现第一次虚拟阵元扩展;
S3、对重构后的频域数据协方差矩阵RF进行向量化得到向量r,实现基于一次扩展虚拟非均匀阵列的二次虚拟阵元扩展;
S4、对向量r进行冗余和重排处理得到等效阵列信号接收向量r1,实现以B*⊙B为整体作为向量化方向矩阵与虚拟均匀阵列的方向矩阵的一一对应关系,同时便于下一步的空间平滑处理;
S5、对得到的接收向量r1进行虚拟子阵划分和平均处理,得到空间平滑后的协方差矩阵Rs,实现解相干;
S6、基于协方差矩阵Rs采用一维MUSIC算法估计全部K个信源目标的来波方向角度。
进一步地,所述的步骤S1中得到时域数据接收模型和时域数据接收模型的过程如下:
用于一维DOA估计的一维均匀线阵结构如图3所示,假设一维均匀线阵上分布有M个阵元,阵元间距为d,接收信号为由P个不同频率的窄带信号组成的发射信号经K个信源目标反射到接收阵列的信号,窄带信号满足窄带条件,即当信号延迟远小于带宽倒数时,延迟作用相当于使基带信号产生一个相移。当有K个远场信源目标的源信号入射到一维均匀线阵,在接收端通过接收阵元和对应窄带滤波器,经H个时域快拍数采样可以得到时域接收数据矩阵X。数据矩阵X由P,P≥2个频率信号的接收数据矩阵叠加,表示为:
Figure BDA0002070830020000031
其中Xp为第p,p=0,1,…,P-1路频率信号的接收数据表达为:
Xp=[xp(1),xp(2),…,xp(H)] (2)
xp(t)=[x1p(t),x2p(t),…,xMp(t)]T,t=1,2,…,H (3)
接收端第m,m=1,2,…,M阵元的第p路窄带滤波器得到的信号xmp(t)如下:
Figure BDA0002070830020000032
其中spk(t)为第p路频率发射信号经第k个目标在t时刻到达阵列的信号,nmp(t)为第m阵元第p路窄带滤波器的在t时刻的噪声信号。
ampk)可以表达成:
Figure BDA0002070830020000033
其中qm为第m个阵元的位置,
Figure BDA0002070830020000034
d为阵列的阵元间距,θk为第k个信源目标的来波方向角度,fp为第p路频率信号的频率,c为信号传播速度。
那么对于角度θk,阵列存在方向向量apk):
apk)=[apk),a2pk),…,aMpk)]T (6)
对时域接收信号xmp(t)的H个时域快拍数据分成L段。假设H能被L整除,则第l段时域数据有:
Figure BDA0002070830020000041
进行傅里叶变换,得到其频域形式
Figure BDA0002070830020000042
其中xmp,l(f)为一个频域数据,是
Figure BDA0002070830020000043
的傅里叶变换形式。spk,l(f)和nmp,l(f)分别是第l个频域快拍下的源信号和噪声信号,频域快拍数为L。
将所有M个阵元的L个频域接收信号排成一个矩阵,就得到有关频率fp的所有数据的频域数据接收模型,即
Figure BDA0002070830020000044
其中方向矩阵A(fp,θ),信源矩阵S(fp)和噪声矩阵N(fp)可以表示为:
Figure BDA0002070830020000045
Figure BDA0002070830020000046
Figure BDA0002070830020000047
其中sl(fp)表示S(fp)的第l列向量,nl(fp)表示N(fp)的第l列向量。
进一步地,所述的步骤S2中对不同频点的接收数据进行频率聚焦,同时完成频域数据接收模型重构的过程如下:
将各个频点的阵列流型通过“聚焦”变换到参考频率点f0上,最后对参考频率点的数据采用窄带处理方式进行DOA估计。对应每个频率构造一个聚焦变换矩阵T(fp),使得不同频率点上的阵列流型矩阵聚焦到聚焦频点f0上,即:
T(fp)A(fp,θ)=A(f0,θ) (13)
这里可以采用现有的双边相关变换(TCT)法求出聚焦矩阵T(fp)。接下来,使用聚焦矩阵对接收信号进行变换,将变换之后接收信号表示为Y(fp),则有:
Y(fp)=T(fp)X(fp) (14)
从上式可以看出,通过“聚焦”使得不同频率点信号拥有了同样的阵列流型矩阵,即拥有同一个信号子空间。接着求出对应频点聚焦变换之后的信号协方差矩阵,并对P个频率分量聚焦变换后信号协方差矩阵进行平均求和可得到最终的聚焦协方差矩阵RY
Figure BDA0002070830020000051
其中Rs(fp)和Rn(fp)表示为:
Figure BDA0002070830020000052
Figure BDA0002070830020000053
为了更好地利用多个频率数据的信息,接下来进行接收协方差矩阵的扩展重构。重构出的接收协方差矩阵RF表达为:
Figure BDA0002070830020000054
其中,协方差矩阵RF的第i·M+1~(i+1)·M,i=0,1,…,P-1行,j·M+1~(j+1)·M,j=0,1,…,P-1列的部分表达式为:
Figure BDA0002070830020000061
则协方差矩阵RF最终可以重写为:
RF=B·RFS·BH+RFN (20)
其中B=[A(f0,θ),…,A(fP-1,θ)]T∈CMP×K为重构后的方向矩阵,RFS∈CK×K为重构后的源信号矩阵,RFN∈CMP×MP为重构后的噪声矩阵。
重构方向矩阵B同时可以表示为:
B=[b(θ1),b(θ2)…,b(θK)] (21)
其中b(θk)表示重构方向向量,可以表达成:
Figure BDA0002070830020000062
由于频率数P≥2,本发明以P=2为例,构造类似二级嵌套阵列的虚拟非均匀阵列。设定第p路频率fp存在比例关系:
f1=M·f0 (23)
那么方向向量b(θk)可以重写为:
Figure BDA0002070830020000063
其中,zw表示一次扩展后的第w,w=1,2,…,MP虚拟阵元的位置,
Figure BDA0002070830020000064
由上式可见,物理阵列通过重构扩展成一个非均匀的虚拟阵列。
进一步地,所述的步骤S3中对协方差矩阵RF进行向量化得到向量r的过程如下:
RF为MP×MP维的协方差矩阵,第u行v列的元素可以表示为:
Figure BDA0002070830020000065
其中
Figure BDA0002070830020000071
是重构数据的第k个源信号功率,
Figure BDA0002070830020000072
是重构数据的噪声功率,δu,v为Kronecker delta函数。
一次扩展虚拟阵列的协方差矩阵中的元素可以视为是以差协同阵列作为阵元位置的阵列接收的数据,因此可以将一次扩展虚拟阵列的协方差矩阵RF向量化,得到:
Figure BDA0002070830020000073
其中vec为向量化符号,⊙表示Khatri-Rao积,g为源信号功率向量,噪声向量
Figure BDA0002070830020000074
向量化方向矩阵B*⊙B表示为:
Figure BDA0002070830020000075
其中
Figure BDA0002070830020000076
表示Kronecker积。
向量化后的二次虚拟阵列中阵元数远多于物理阵列中的阵元数,通过将一次扩展虚拟阵列接收数据的协方差矩阵向量化的方式,转化为二次扩展虚拟阵列下的等效单快拍接收数据,阵元数再次大大增加,故而达到提高自由度的目的。
进一步地,所述的步骤S4中对步骤S3得到的向量r进行冗余和重排处理得到等效阵列信号接收向量r1的过程如下:
经过协方差矩阵矢量化得到r后,向量化方向矩阵B*⊙B中只有2(M-1)M+1行是互不相同的,即互不相同行数与二次扩展虚拟阵列的阵元数相同。此时的入射信号g是K个源信号的二阶统计值,即功率值,因此新的信号向量g相当于K个相干信号入射。为了使用空间平滑技术解相干,对向量化方向矩阵B*⊙B进行去冗余和重排处理,使处理后的方向矩阵与虚拟均匀线阵的方向矩阵对应。假设经过去冗余和重排处理后的等效阵列信号接收向量为r1,表示为:
Figure BDA0002070830020000077
其中方向矩阵A2∈C(2(M-1)M+1)×K为B*⊙B进行去冗余和重排处理后的方向矩阵,
Figure BDA0002070830020000081
为新的噪声向量。
M阵元的均匀阵列经过接收数据重构一次扩展成一个虚拟非均匀阵列,再通过协方差矩阵矢量化,去冗余和重排处理后将二次扩展成一个虚拟均匀线阵,二次扩展虚拟均匀线阵的阵元位置分布范围为-(M-1)Md~(M-1)Md,即2(M-1)Md+1个间隔为d的虚拟阵元。
进一步地,所述的步骤S5中对步骤S4得到的接收向量r1进行空间平滑处理后,得到协方差矩阵Rs的过程如下:
对接收向量r1进行子阵划分处理。这里将二次扩展虚拟均匀阵列划分为(M-1)M+1个子阵,每个子阵包含(M-1)M+1个阵元,第h子阵的接收数据r1h等于阵列信号接收向量r1的第h~(h+(M-1)M+1)列,其中,h=1,2,…,(M-1)M+1,令
Figure BDA0002070830020000082
计算所有Rh的值并进行平均就可以得到空间平滑后的协方差矩阵Rs
Figure BDA0002070830020000083
协方差矩阵Rs为((M-1)M+1)×((M-1)M+1)维矩阵,当信源目标个数K满足K≤(M-1)M+1时,通过基于空间平滑的估计方法分辨出全部K个信源目标。
进一步地,所述的步骤S6中根据步骤S5得到的Rs采用一维MUSIC算法估计K个信源目标的来波方向角度的过程如下:
将所获得的Rs实现一次特征分解,获得(M-1)M+1个特征值,把特征值依照大小实现顺序排列,提取最小的(M-1)M+1-K个特征向量构建出Un。再构造方向向量as(θ),可表达为:
Figure BDA0002070830020000084
把as(θ)代入得到MUSIC谱函数:
Figure BDA0002070830020000085
根据MUSIC谱函数,使θ从-90到90°变化,通过寻求K个极大值,对应的角度即为信源目标的波达角估计值。
本发明相对于现有技术具有如下的优点及效果:
1、本发明公开的一维DOA估计方法在物理阵元数不变的基础上,基于多组不同频率接收信号进行数据重构实现一次虚拟阵元扩展,再利用虚拟非均匀阵列的数据协方差矩阵进行向量化,实现了二次虚拟阵元扩展,相较基于原物理阵列的普通DOA估计方法,阵列孔径大大增加,估计精度也能大幅提升。
2、本发明公开的一维DOA估计方法相较于基于非均匀物理阵列(以二级嵌套阵列为例)的一维DOA估计方法,虚拟阵元扩展的程度更高。在相同物理阵元数的条件下,本发明所提方法只要增加发射信号频率数P,就能够扩展出更多的虚拟阵元。
3、在增加窄带滤波器组之后,本发明所提方法适用于大部分现有的基于传统均匀阵列的DOA估计方法,工程可实现性比较高。
附图说明
图1是本发明装置的硬件结构模块图;
图2是本发明中阵列的接收阵元与处理器连接示意图;
图3是本发明所用的均匀线阵接收信号与窄带滤波器组模型示意图;
图4是本发明中一维均匀阵元与窄带滤波器组的连接示意图;
图5是本发明公开的领域多频信号二次虚拟扩展的一维DOA估计方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如附图5所示,本实施例中基于多频率发射信号的一维DOA估计方法包括以下步骤:
S1、根据用于一维DOA估计的一维均匀线阵结构特点构造多频率信号时域数据接收模型,同时利用傅里叶变换得到多频率信号频域数据接收模型。
用于一维DOA估计的一维均匀线阵结构如图3所示,线阵上分布有M个阵元,阵元间距为d。设接收信号为由P个不同频率的窄带信号组成的发射信号经K个信源目标反射到接收阵列的信号,窄带信号满足窄带条件,即当信号延迟远小于带宽倒数时,延迟作用相当于使基带信号产生一个相移。当有K个远场信源目标的源信号入射到均匀阵列,在接收端通过接收阵元和对应窄带滤波器,经H个时域快拍数采样可以得到时域接收数据矩阵X。数据矩阵X由P,P≥2个频率信号的接收数据矩阵叠加,表示为:
Figure BDA0002070830020000101
其中Xp为第p,p=0,1,…,P-1路频率信号的接收数据表达为:
Xp=[xp(1),xp(2),…,xp(H)] (2)
xp(t)=[x1p(t),x2p(t),…,xMp(t)]T,t=1,2,…,H (3)
接收端第m,m=1,2,…,M阵元的第p路窄带滤波器得到的信号xmp(t)如下:
Figure BDA0002070830020000102
其中spk(t)为第p路频率发射信号经第k个目标在t时刻到达一维均匀线阵的信号,nmp(t)为第m阵元第p路窄带滤波器的在t时刻的噪声信号。
ampk)可以表达成:
Figure BDA0002070830020000111
其中qm为第m个阵元的位置,
Figure BDA0002070830020000112
d为阵列的阵元间距,θk为第k个信源目标的来波方向角度,fp为第p路频率信号的频率,c为信号传播速度。
那么对于角度θk,阵列存在方向向量apk):
apk)=[apk),a2pk),…,aMpk)]T (6)
对时域接收信号xmp(t)的H个时域快拍数据分成L段。假设H能被L整除,则第l段时域数据有:
Figure BDA0002070830020000113
进行傅里叶变换,得到其频域形式
Figure BDA0002070830020000114
其中xmp,l(f)为一个频域数据,是
Figure BDA0002070830020000115
的傅里叶变换形式。spk,l(f)和nmp,l(f)分别是第l个频域快拍下的源信号和噪声信号,频域快拍数为L。
将所有M个阵元的L个频域接收信号排成一个矩阵,得到有关频率fp的所有数据的阵列频域接收模型,即
Figure BDA0002070830020000116
其中方向矩阵A(fp,θ),信源矩阵S(fp)和噪声矩阵N(fp)可以表示为:
Figure BDA0002070830020000117
Figure BDA0002070830020000118
Figure BDA0002070830020000121
其中sl(fp)表示S(fp)的第l列向量,nl(fp)表示N(fp)的第l列向量。
S2、根据频域数据接收模型对不同频点的接收数据构造聚焦矩阵,进行频率聚焦,同时完成接收模型的重构,实现第一次虚拟阵元扩展。
通过将各个频点的阵列流型通过“聚焦”变换到参考频率点f0上,最后对参考频率点的数据采用窄带处理方式进行DOA估计。对应每个频率构造一个聚焦变换矩阵T(fp),使得不同频率点上的阵列流型矩阵聚焦到聚焦频点f0上,即:
T(fp)A(fp,θ)=A(f0,θ) (13)
这里可以采用现有的双边相关变换(TCT)法求出聚焦矩阵T(fp)。接下来,使用聚焦矩阵对接收信号进行变换,将变换之后接收信号表示为Y(fp),则有:
Y(fp)=T(fp)X(fp) (14)
从上式可以看出,通过“聚焦”使得不同频率点信号拥有了同样的阵列流型矩阵,即拥有同一个信号子空间。接着求出对应频点聚焦变换之后的信号协方差矩阵,并对P个频率分量聚焦变换后信号协方差矩阵进行平均求和可得到最终的聚焦协方差矩阵RY
Figure BDA0002070830020000122
其中,
Figure BDA0002070830020000123
Figure BDA0002070830020000131
为了更好地利用多个频率数据的信息,接下来进行接收协方差矩阵的扩展重构。重构出的接收协方差矩阵RF表达为:
Figure BDA0002070830020000132
其中,协方差矩阵RF的第i·M+1~(i+1)·M行,j·M+1~(j+1)·M列(i,j=0,1,…,P-1)的部分表达式为:
Figure BDA0002070830020000133
则协方差矩阵RF最终可以重写为:
RF=B·RFS·BH+RFN (20)
其中B=[A(f0,θ),…,A(fP-1,θ)]T∈CMP×K为重构后的方向矩阵,RFS∈CK×K为重构后的源信号矩阵,RFN∈CMP×MP为重构后的噪声矩阵。
重构方向矩阵B同时可以表示为:
B=[b(θ1),b(θ2)…,b(θK)] (21)
其中b(θk)表示重构方向向量,可以表达成:
Figure BDA0002070830020000134
由于频率数P≥2,本实施例以P=2为例,构造类似二级嵌套阵列的虚拟非均匀阵列。设定第p路频率fp存在比例关系:
f1=M·f0 (23)
那么方向向量b(θk)可以重写为:
Figure BDA0002070830020000141
其中zw表示一次扩展后的第w,w=1,2,…,MP虚拟阵元的位置,
Figure BDA0002070830020000149
由上式可见,物理阵列通过重构扩展成一个非均匀的虚拟阵列。
S3、重构后的频域数据协方差矩阵RF为MP×MP维的协方差矩阵,第u行v列的元素可以表示为:
Figure BDA0002070830020000142
其中
Figure BDA0002070830020000143
是重构数据的第k个源信号功率,
Figure BDA0002070830020000144
是重构数据的噪声功率,δu,v为Kronecker delta函数。
由式(28)可见,一次扩展虚拟阵列的协方差矩阵中的元素可以视为是以差协同阵列作为阵元位置的阵列接收的数据,因此可以将一次扩展虚拟阵列的协方差矩阵RF向量化,得到:
Figure BDA0002070830020000145
其中vec为向量化符号,⊙表示Khatri-Rao积,g为源信号功率向量,噪声向量
Figure BDA0002070830020000146
向量化方向矩阵B*⊙B表示为:
Figure BDA0002070830020000147
其中
Figure BDA0002070830020000148
表示Kronecker积。
向量化后的二次虚拟阵列中阵元数远多于物理阵列中的阵元数,通过将一次扩展虚拟阵列接收数据的协方差矩阵向量化的方式,转化为二次扩展虚拟阵列下的等效单快拍接收数据,阵元数再次大大增加,故而达到提高自由度的目的。
S4、经过协方差矩阵矢量化得到r后,向量化方向矩阵B*⊙B中只有2(M-1)M+1行是互不相同的,即互不相同行数与二次扩展虚拟阵列的阵元数相同。此时的入射信号g是K个源信号的二阶统计值,即功率值,因此新的信号向量g相当于K个相干信号入射。为了使用空间平滑技术解相干,对B*⊙B进行去冗余和重排处理,使处理后的方向矩阵与虚拟均匀线阵的方向矩阵对应。假设经过去冗余和重排处理后的等效阵列信号接收向量为r1,表示为:
Figure BDA0002070830020000151
其中方向矩阵A2∈C(2(M-1)M+1)×K为B*⊙B进行去冗余和重排处理后的方向矩阵,
Figure BDA0002070830020000152
为新的噪声向量。
M阵元的均匀阵列经过接收数据重构一次扩展成一个虚拟非均匀阵列,再通过协方差矩阵矢量化,去冗余和重排处理后将二次扩展成一个虚拟均匀线阵,二次扩展虚拟均匀线阵的阵元位置分布范围为-(M-1)Md~(M-1)Md,即2(M-1)Md+1个间隔为d的虚拟阵元。
S5、对得到的接收向量r1进行子阵划分处理。这里将二次扩展虚拟均匀阵列划分为(M-1)M+1个子阵,每个子阵包含(M-1)M+1个阵元,第h,h=1,2,…,(M-1)M+1子阵的接收数据r1h等于阵列信号接收向量r1的第h~(h+(M-1)M+1)列。
Figure BDA0002070830020000153
计算所有Rh的值并进行平均就可以得到空间平滑后的协方差矩阵Rs
Figure BDA0002070830020000154
当信源目标个数K满足K≤(M-1)M+1时,基于空间平滑的估计方法仍然能分辨出全部K个信源目标。
S6、基于Rs采用一维MUSIC算法估计全部K个信源目标的来波方向角度。将所获得的Rs实现一次特征分解,获得(M-1)M+1个特征值,把特征值依照大小实现顺序排列,提取最小的(M-1)M+1-K个特征向量构建出Un。再构造方向向量as(θ),可表达为:
Figure BDA0002070830020000161
把as(θ)代入得到MUSIC谱函数:
Figure BDA0002070830020000162
根据MUSIC谱函数,使θ从-90到90°变化,通过寻求K个极大值,对应的角度即为信源目标的波达角估计值。
实施例二
本实例公开了一种基于多频率组合信号的高精度一维波达方向估计装置,用于作为上述实施例中一维DOA估计方法的实施装置,包括数据处理与控制模块、发射模块、接收模块、输出模块和电源模块,如图1和图2所示。
数据处理与控制模块由一对A/D、D/A转换器和一个处理器组成,是整个装置的核心部分,其它所有模块都与它直接相连。它可以控制发射模块,使发射模块发射我们指定的信号;同时能够对接收模块传过来的信号进行处理,通过本发明的算法计算出波达方向角,然后将结果传输至输出模块。
接收模块包括以M个物理阵元均匀间距摆放的超声波探头阵列和P组不同频率的窄带滤波器,其中阵列的各个阵元均匀排布于坐标系x轴上保持固定,每个阵元的输出再作为输入分别经过P个窄带滤波器,得到M·P路输出;
发射模块由一个阻抗匹配电路和一个超声波发射探头组成,通过D/A转换器与处理器相连,能够根据处理器发出的指令发射指定的携带P组不同频率的混合信号。
输出模块由一个USB接口和一个显示器组成,并且与数据处理与控制模块和电源模块相连。它能够提供人机交互,将数据处理与控制模块中处理好的数据通过USB接口输出到外部装置或者在显示器上显示出来。
电源模块由一个电源组成,并且与数据处理与控制模块、发射模块、接收模块和输出模块相连。它能够为这些模块供电。
本装置的主要工作流程如下:在实测过程中根据我们想要发射的信号参数,通过数据处理与控制模块输入对应的参数,使处理器产生相应的数字信号,然后通过D/A转换后传给发射模块,超声波发射探头就能产生我们需要的信号并进行发射。均匀线阵1和均匀线阵2之间的夹角值δ可以通过数据处理与控制模块进行设定,处理器发送特定的脉冲信号到步进电机驱动电路,然后驱动步进电机转动至我们需要的角度。接收模块中的接收阵列收到从目标声源反射回来的信号后将其通过A/D转换成数字信号后发送给处理器,然后处理器根据本发明提供的算法计算出结果。最后数据处理与控制模块将计算结果传给输出模块,输出模块将结果通过USB接口传给外部设备或者通过显示器显示出来。电源模块为所有其它模块供电。
实施例三
本实施例公开了一种基于多频率组合信号的高精度一维波达方向估计装置,所述的估计装置包括数据处理与控制模块、发射模块、接收模块、输出模块和电源模块,如图1和图2所示。
数据处理与控制模块可以用DSP芯片实现(如:TI公司TMS320VC5509A型号的DSP芯片),此DSP芯片可实现A/D转换和D/A转换的功能,并能够实现三维均匀线阵的旋转算子和最终波达方向的计算;
此外接收模块使用1个固定均匀直线阵列和P组中心频率分别为{f1,f2,…,fP}的窄带滤波器,其中每个阵列包括多个超声接收探头,并且数量相同,按图4所示组装;发射模块使用一个超声波发射探头;输出模块使用一个USB接口和一个LCD显示屏。图1即为本实施例估计装置的硬件结构模块图。
本估计装置主要工作步骤具体如下:
步骤T1、按图2连接好具体装置,其中接收模块中的每个均匀线阵中的阵元个数M统一定为5。利用数据处理与控制模块发送指令,控制超声发射探头发射超声信号
Figure BDA0002070830020000181
频率数P=2,频率分别取f0=3kHz,f1=15kHz;声速取c=1500m/s,可以求出最大半波长为25cm。在本发明中,需满足任意两相邻线阵之间的距离必须小于等于最大半波长的条件,所以设置两个均匀线阵的平均间距取25cm,即第一个阵元和最后一个阵元相隔100cm。在水下放置K=2个目标声源,信源目标信号入射的波达方向角分别为(40,°70°)。
步骤T2、对超声接收探头阵接收到的源信号进行采样;阵列接收到的信号为x10(t),x20(t),x30(t),x40(t),x50(t),x11(t),x21(t),x31(t),x41(t),x51(t),共时域采样接收1024次,频域快拍数设置为16,并将接收到的信号传递给数据处理与控制模块进行分析处理。
步骤T3、信号在数据处理与控制模块中的分析处理步骤具体如下:
T31、根据阵列特点,得到多频率信号时域接收数据模型和频域接收数据模型。
T32、根据频域的数据接收模型对不同频点的接收数据构造聚焦矩阵,进行频率聚焦,同时完成接收模型的重构,实现第一次虚拟阵元扩展。物理阵列进行一次扩展得到10阵元的虚拟非均匀阵列。
T33、对重构后的频域接收数据协方差矩阵RF进行向量化得到接收向量r,虚拟非均匀阵列二次扩展得到41个虚拟均匀阵元。
T34、对向量r进行冗余和重排处理得到等效阵列信号接收向量r1,实现向量化方向矩阵B*⊙B与虚拟均匀阵列的方向矩阵的一一对应。
T35、对得到的接收向量r1进行虚拟子阵划分和平均处理,按式(29)得到空间平滑后的协方差矩阵Rs
T36、基于Rs,按照一维MUSIC谱函数即式(31)进行谱峰搜索,得到全部K个信源目标的波达方向角度的估计值。
步骤T4、根据一维DOA估计方法,估计出的二维波达方向角(40.15°,70.23°),对目标估计达到了预期精度,说明估计结果正确,本发明方法及装置可行。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种利用多频信号二次虚拟扩展的一维DOA估计方法,其特征在于,所述的一维DOA估计方法包括以下步骤:
S1、根据用于一维DOA估计的一维均匀线阵结构特点构造多频率信号时域数据接收模型,同时利用傅里叶变换得到多频率信号频域数据接收模型;
S2、根据频域数据接收模型对不同频点的接收数据构造聚焦矩阵,进行频率聚焦,同时完成频域数据接收模型的重构,实现第一次虚拟阵元扩展;
S3、对重构后的频域数据协方差矩阵RF进行向量化得到向量r,实现基于一次扩展虚拟非均匀阵列的二次虚拟阵元扩展;
S4、对向量r进行冗余和重排处理得到等效阵列信号接收向量r1,实现以B*⊙B为整体作为向量化方向矩阵与虚拟均匀阵列的方向矩阵的一一对应关系,同时便于下一步的空间平滑处理,其中,⊙表示Khatri-Rao积;
S5、对得到的接收向量r1进行虚拟子阵划分和平均处理,得到空间平滑后的协方差矩阵Rs,实现解相干;
S6、基于协方差矩阵Rs采用一维MUSIC算法估计全部K个信源目标的来波方向角度;
其中,所述的步骤S1中得到时域数据接收模型和频域数据接收模型的过程如下:
假设一维均匀线阵上分布有M个阵元,阵元间距为d,接收信号为由P个不同频率的窄带信号组成的发射信号经K个信源目标反射到接收阵列的信号,窄带信号满足窄带条件,即当信号延迟远小于带宽倒数时,延迟作用相当于使基带信号产生一个相移;
当有K个远场信源目标的源信号入射到一维均匀线阵,在接收端通过接收阵元和对应窄带滤波器,经H个时域快拍数采样得到时域接收数据矩阵X,该数据矩阵X由P,P≥2个频率信号的接收数据矩阵叠加,表示为:
Figure FDA0003896867030000021
其中Xp为第p,p=0,1,…,P-1路频率信号的接收数据表达为:
Xp=[xp(1),xp(2),…,xp(H)] (2)
xp(t)=[x1p(t),x2p(t),…,xMp(t)]T,t=1,2,…,H (3)
接收端第m,m=1,2,…,M阵元的第p路窄带滤波器得到的信号xmp(t)如下:
Figure FDA0003896867030000022
其中spk(t)为第p路频率发射信号经第k个目标在t时刻到达阵列的信号,nmp(t)为第m阵元第p路窄带滤波器的在t时刻的噪声信号,其中,
ampk)表达式如下:
Figure FDA0003896867030000023
其中qm为第m个阵元的位置,
Figure FDA0003896867030000024
d为一维均匀线阵的阵元间距,θk为第k个信源目标的来波方向角度,fp为第p路频率信号的频率,c为信号传播速度;
对于角度θk,一维均匀线阵存在方向向量apk):
apk)=[a1pk),a2pk),…,aMpk)]T(6)
对时域接收信号xmp(t)的H个时域快拍数据分成L段,假设H能被L整除,则第l段时域数据有:
Figure FDA0003896867030000025
进行傅里叶变换,得到其频域形式
Figure FDA0003896867030000026
其中xmp,l(f)为一个频域数据,是
Figure FDA0003896867030000031
的傅里叶变换形式,spk,l(f)和nmp,l(f)分别是第l个频域快拍下的源信号和噪声信号,频域快拍数为L;
将所有M个阵元的L个频域接收信号排成一个矩阵,得到有关频率fp的所有数据的频域数据接收模型X(fp),即
Figure FDA0003896867030000032
其中方向矩阵A(fp,θ),信源矩阵S(fp)和噪声矩阵N(fp)可以表示为:
Figure FDA0003896867030000033
Figure FDA0003896867030000034
Figure FDA0003896867030000035
其中sl(fp)表示S(fp)的第l列向量,nl(fp)表示N(fp)的第l列向量;
其中,所述的步骤S2中对不同频点的接收数据进行频率聚焦,同时完成频域数据接收模型重构的过程如下:
将各个频点的阵列流型通过“聚焦”变换到参考频率点f0上,对参考频率点的数据采用窄带处理方式进行DOA估计,对应每个频率构造一个聚焦变换矩阵T(fp),使得不同频率点上的阵列流型矩阵聚焦到聚焦频点f0上,即:
T(fp)A(fp,θ)=A(f0,θ)(13)
采用双边相关变换法求出聚焦矩阵T(fp),然后使用聚焦矩阵对接收信号进行变换,将变换之后接收信号表示为Y(fp),则有:
Y(fp)=T(fp)X(fp)(14)
通过“聚焦”使得不同频率点信号拥有同样的阵列流型矩阵,即拥有同一个信号子空间,接着求出对应频点聚焦变换之后的信号协方差矩阵,并对P个频率分量聚焦变换后信号协方差矩阵进行平均求和得到最终的聚焦协方差矩阵RY
Figure FDA0003896867030000041
其中Rs(fp)和Rn(fp)表示为:
Figure FDA0003896867030000042
Figure FDA0003896867030000043
对接收协方差矩阵的扩展重构,重构出的接收协方差矩阵RF表达为:
Figure FDA0003896867030000044
其中,协方差矩阵RF的第i·M+1~(i+1)·M,i=0,1,…,P-1行,j·M+1~(j+1)·M,j=0,1,…,P-1列的部分表达式为:
Figure FDA0003896867030000045
则协方差矩阵RF重写为:
RF=B·RFS·BH+RFN(20)
其中B=[A(f0,θ),…,A(fP-1,θ)]T∈CMP×K为重构后的方向矩阵,RFS∈CK×K为重构后的源信号矩阵,RFN∈CMP×MP为重构后的噪声矩阵;
重构方向矩阵B同时表示为:
B=[b(θ1),b(θ2)…,b(θK)](21)
其中b(θk)表示重构方向向量,表达如下:
Figure FDA0003896867030000046
设定第p路频率fp存在比例关系:
f1=M·f0(23)
那么方向向量b(θk)重写为:
Figure FDA0003896867030000051
其中,zw表示一次扩展后的第w,w=1,2,…,MP虚拟阵元的位置,
Figure FDA0003896867030000052
2.根据权利要求1所述的利用多频信号二次虚拟扩展的一维DOA估计方法,其特征在于,所述的步骤S3中对协方差矩阵RF进行向量化得到向量r的过程如下:
协方差矩阵RF为MP×MP维,第u行v列的元素表示为:
Figure FDA0003896867030000053
其中
Figure FDA0003896867030000054
是重构数据的第k个源信号功率,
Figure FDA0003896867030000055
是重构数据的噪声功率,δu,v为Kroneckerdelta函数;
将一次扩展虚拟阵列的协方差矩阵RF向量化,得到:
Figure FDA0003896867030000056
其中,vec为向量化符号,⊙表示Khatri-Rao积,g为源信号功率向量,噪声向量
Figure FDA0003896867030000057
向量化方向矩阵B*⊙B表示为:
Figure FDA0003896867030000058
其中
Figure FDA0003896867030000059
表示Kronecker积。
3.根据权利要求2所述的利用多频信号二次虚拟扩展的一维DOA估计方法,其特征在于,所述的步骤S4中对向量r进行冗余和重排处理得到等效阵列信号接收向量r1的过程如下:
对向量化方向矩阵B*⊙B进行去冗余和重排处理,使处理后的方向矩阵与虚拟均匀线阵的方向矩阵对应;假设经过去冗余和重排处理后的等效阵列信号接收向量为r1,表示为:
Figure FDA0003896867030000061
其中方向矩阵
Figure FDA0003896867030000062
为B*⊙B进行去冗余和重排处理后的方向矩阵,
Figure FDA0003896867030000063
为新的噪声向量;
M阵元的其中方向矩阵经过接收数据重构一次扩展成一个虚拟非均匀阵列,再通过协方差矩阵矢量化,去冗余和重排处理后将二次扩展成一个虚拟均匀线阵,二次扩展虚拟均匀线阵的阵元位置分布范围为-(M-1)Md~(M-1)Md,即2(M-1)Md+1个间隔为d的虚拟阵元。
4.根据权利要求3所述的利用多频信号二次虚拟扩展的一维DOA估计方法,其特征在于,所述的步骤S5中对接收向量r1进行空间平滑处理后,得到协方差矩阵Rs的过程如下:
对接收向量r1进行子阵划分处理; 这里将二次扩展虚拟均匀阵列划分为(M-1)M+1个子阵,每个子阵包含(M-1)M+1个阵元,第h子阵的接收数据r1h等于阵列信号接收向量r1的第h~(h+(M-1)M+1)列,其中,h=1,2,…,(M-1)M+1,令
Figure FDA0003896867030000064
计算所有Rh的值并进行平均就可以得到空间平滑后的协方差矩阵Rs
Figure FDA0003896867030000065
协方差矩阵Rs为((M-1)M+1)×((M-1)M+1)维矩阵,当信源目标个数K满足K≤(M-1)M+1时,通过基于空间平滑的估计方法分辨出全部K个信源目标。
5.根据权利要求4所述的利用多频信号二次虚拟扩展的一维DOA估计方法,其特征在于,所述的步骤S6中根据协方差矩阵Rs采用一维MUSIC算法估计K个信源目标的来波方向角度的过程如下:
将所获得的协方差矩阵Rs实现一次特征分解,获得(M-1)M+1个特征值,把特征值依照大小实现顺序排列,提取最小的(M-1)M+1-K个特征向量构建出Un,再构造方向向量as(θ),表达为:
Figure FDA0003896867030000071
把as(θ)代入得到MUSIC谱函数:
Figure FDA0003896867030000072
根据MUSIC谱函数,使θ从-90到90°变化,通过寻求K个极大值,对应的角度即为信源目标的波达角估计值。
CN201910437105.6A 2019-07-02 2019-07-02 利用多频信号二次虚拟扩展的一维doa估计方法 Active CN110133574B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910437105.6A CN110133574B (zh) 2019-07-02 2019-07-02 利用多频信号二次虚拟扩展的一维doa估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910437105.6A CN110133574B (zh) 2019-07-02 2019-07-02 利用多频信号二次虚拟扩展的一维doa估计方法

Publications (2)

Publication Number Publication Date
CN110133574A CN110133574A (zh) 2019-08-16
CN110133574B true CN110133574B (zh) 2022-12-16

Family

ID=67572891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910437105.6A Active CN110133574B (zh) 2019-07-02 2019-07-02 利用多频信号二次虚拟扩展的一维doa估计方法

Country Status (1)

Country Link
CN (1) CN110133574B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110888106B (zh) * 2019-11-21 2022-12-23 南京航空航天大学 一种角度与频率联合估计的增广doa矩阵方法
CN111190136B (zh) * 2020-01-08 2023-03-24 华南理工大学 一种基于特定频率组合信号的一维doa估计方法
CN111521968B (zh) * 2020-05-22 2022-05-20 南京理工大学 基于目标空间分集的欠定doa估计方法
CN113030842B (zh) * 2021-03-05 2022-11-01 电子科技大学 一种基于宽带信号的角度超分辨doa估计方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351238B1 (en) * 1999-02-23 2002-02-26 Matsushita Electric Industrial Co., Ltd. Direction of arrival estimation apparatus and variable directional signal receiving and transmitting apparatus using the same
CN103091661A (zh) * 2013-02-01 2013-05-08 西安科技大学 基于迭代谱重构的宽带信号波达方向估计方法
CN106324558A (zh) * 2016-08-30 2017-01-11 东北大学秦皇岛分校 基于互质阵列的宽带信号doa估计方法
CN107255793A (zh) * 2017-06-16 2017-10-17 中国电子科技集团公司第二十九研究所 一种针对宽带ofdm通信信号的阵列测向方法及装置
CN108710102A (zh) * 2018-05-15 2018-10-26 浙江大学 基于互质阵列二阶等价虚拟信号离散傅里叶逆变换的波达方向估计方法
CN108872929A (zh) * 2018-04-12 2018-11-23 浙江大学 基于内插虚拟阵列协方差矩阵子空间旋转不变性的互质阵列波达方向估计方法
CN109031186A (zh) * 2018-08-15 2018-12-18 中国人民解放军空军工程大学 基于多频高阶累积量的2q阶嵌套阵DOA估计方法
CN109655799A (zh) * 2018-12-26 2019-04-19 中国航天科工集团八五研究所 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法
CN109831265A (zh) * 2019-01-24 2019-05-31 西安电子科技大学 一种基于空域滤波的宽带信号频谱感知方法和系统
CN109884580A (zh) * 2019-02-22 2019-06-14 华南理工大学 水下一维doa估计方法和装置
CN109932680A (zh) * 2019-04-04 2019-06-25 哈尔滨工程大学 一种基于平移互质阵列的非圆信号波达方向估计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4392109B2 (ja) * 2000-05-12 2009-12-24 パナソニック株式会社 到来方向推定装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351238B1 (en) * 1999-02-23 2002-02-26 Matsushita Electric Industrial Co., Ltd. Direction of arrival estimation apparatus and variable directional signal receiving and transmitting apparatus using the same
CN103091661A (zh) * 2013-02-01 2013-05-08 西安科技大学 基于迭代谱重构的宽带信号波达方向估计方法
CN106324558A (zh) * 2016-08-30 2017-01-11 东北大学秦皇岛分校 基于互质阵列的宽带信号doa估计方法
CN107255793A (zh) * 2017-06-16 2017-10-17 中国电子科技集团公司第二十九研究所 一种针对宽带ofdm通信信号的阵列测向方法及装置
CN108872929A (zh) * 2018-04-12 2018-11-23 浙江大学 基于内插虚拟阵列协方差矩阵子空间旋转不变性的互质阵列波达方向估计方法
CN108710102A (zh) * 2018-05-15 2018-10-26 浙江大学 基于互质阵列二阶等价虚拟信号离散傅里叶逆变换的波达方向估计方法
CN109031186A (zh) * 2018-08-15 2018-12-18 中国人民解放军空军工程大学 基于多频高阶累积量的2q阶嵌套阵DOA估计方法
CN109655799A (zh) * 2018-12-26 2019-04-19 中国航天科工集团八五研究所 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法
CN109831265A (zh) * 2019-01-24 2019-05-31 西安电子科技大学 一种基于空域滤波的宽带信号频谱感知方法和系统
CN109884580A (zh) * 2019-02-22 2019-06-14 华南理工大学 水下一维doa估计方法和装置
CN109932680A (zh) * 2019-04-04 2019-06-25 哈尔滨工程大学 一种基于平移互质阵列的非圆信号波达方向估计方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A velocity independent MUSIC algorithm for DOA estimation;Gengxin Ning等;《2017 IEEE International Conference on Signal Proceeding,Communication and Computing》;20180101;第1-4页 *
HIGH-RESOLUTION DIRECTION-OF-ARRIVAL ESTIMATION IN SNR AND SNAPSHOT CHALLENGED SCENARIOS USING MULTI-FREQUENCY COPRING ARRAYS;Yang Liu等;《2017 IEEE International Conference on Acoustics,Speech and Signal Proceeding》;20170619;第3434-3438页 *
Multi-Frequency Co-Prime Arrays for High-Resolution Direction-of-Arrival Estimation;Elie BouDaher等;《IEEE TRANSACTIONS ON SIGNAL PROCESSING》;20150715;第63卷(第14期);第3797-3808页 *
采用频率聚焦的声源DOA估计方法研究;刘昕彤等;《无线电通信技术》;20100430;第36卷(第4期);第21-24页 *

Also Published As

Publication number Publication date
CN110133574A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN110133574B (zh) 利用多频信号二次虚拟扩展的一维doa估计方法
CN111190136B (zh) 一种基于特定频率组合信号的一维doa估计方法
Shen et al. Underdetermined DOA estimation under the compressive sensing framework: A review
CN104749553B (zh) 基于快速稀疏贝叶斯学习的波达方向角估计方法
CN108008348B (zh) 基于可调夹角均匀线阵的水下波达方向估计方法及装置
CN108710102B (zh) 基于互质阵列二阶等价虚拟信号离散傅里叶逆变换的波达方向估计方法
Haardt et al. Enhancements of unitary ESPRIT for non-circular sources
Haardt et al. Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems
Lemma et al. Joint angle-frequency estimation using multi-resolution ESPRIT
CN110927661A (zh) 基于music算法的单基地展开互质阵列mimo雷达doa估计方法
Hamid et al. Performance comparison of time-domain and frequency-domain beamforming techniques for sensor array processing
Wang et al. Direction of arrival estimation of wideband sources using sparse linear arrays
CN111929637B (zh) 基于互质阵列差和虚拟扩充的一维波达方向估计方法
CN109581275B (zh) 基于非圆信号和三维正交阵的二维水下doa估计方法和装置
CN109116297B (zh) 一种被动雷达空间谱估计与合成波束的联合测向方法
CN110109053B (zh) 一种未知声速环境下快速doa估计方法
CN107907855A (zh) 一种互素阵列转化为均匀线阵的doa估计方法及装置
CN109521392B (zh) 基于非圆信号和l型线阵的水下一维doa估计方法和装置
Liang et al. Cramér-Rao bound analysis of underdetermined wideband DOA estimation under the subband model via frequency decomposition
CN108614234B (zh) 基于多采样快拍互质阵列接收信号快速傅里叶逆变换的波达方向估计方法
CN108680892B (zh) 基于角度-空间频率域快速傅里叶变换的互质阵列波达方向估计方法
Shen et al. Wideband DOA estimation for uniform linear arrays based on the co-array concept
CN112698169B (zh) 一种电晕放电定位方法、装置、电子设备及存储介质
CN109061564B (zh) 基于高阶累积量的简化近场定位方法
CN113391266A (zh) 基于非圆多嵌套阵降维子空间数据融合的直接定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant