CN110129759B - 一种用于Low-E玻璃的硅铝锆靶材及其制备方法 - Google Patents

一种用于Low-E玻璃的硅铝锆靶材及其制备方法 Download PDF

Info

Publication number
CN110129759B
CN110129759B CN201910567804.2A CN201910567804A CN110129759B CN 110129759 B CN110129759 B CN 110129759B CN 201910567804 A CN201910567804 A CN 201910567804A CN 110129759 B CN110129759 B CN 110129759B
Authority
CN
China
Prior art keywords
zirconium
silicon
parts
aluminum
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910567804.2A
Other languages
English (en)
Other versions
CN110129759A (zh
Inventor
常金永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangyin Entret Coating Technology Co ltd
Original Assignee
Jiangyin Entret Coating Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangyin Entret Coating Technology Co ltd filed Critical Jiangyin Entret Coating Technology Co ltd
Priority to CN201910567804.2A priority Critical patent/CN110129759B/zh
Publication of CN110129759A publication Critical patent/CN110129759A/zh
Application granted granted Critical
Publication of CN110129759B publication Critical patent/CN110129759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种用于Low‑E玻璃的硅铝锆靶材,其特征在于:各组分按重量份数计包括:硅61‑85份,锆6.7‑27份,铝3.8‑9.1份,Al3Ni 0.5‑2.6份,锡0.08‑0.2份,硼0.15‑0.5份,铌0.01‑0.05份,钇0.002‑0.008份。本发明制备方法简单,步骤易于操作,硅铝锆靶材中含有适量的锆,能增强薄膜的硬度和耐腐蚀性;铝元素能降低靶材的电阻,并减少薄膜的应力;硼能提高铝合金粉的熔点,降低其与硅锆合金粉的熔点差,使其在等离子喷涂过程中不易产生积瘤;其余元素的加入能够增强膜层的稳定性,提高使用寿命,用作Low‑E玻璃的介质层,光学性能好,致密性高,耐腐蚀性强。

Description

一种用于Low-E玻璃的硅铝锆靶材及其制备方法
技术领域
本发明涉及一种用于Low-E玻璃的硅铝锆靶材及其制备方法,属于材料制备技术领域。
背景技术
Low-E玻璃,具有优异的隔热效果和良好的透光性。用其制造建筑物门窗,可大幅降低因辐射而造成的室内热能向室外的传递,从而达到良好的节能效果。因此,获得了日益广泛的应用,其制造技术和水平也得到了飞速的发展,性能不断提高。 Low-E玻璃,是在玻璃表面镀上多层金属或其他化合物组成的膜系产品,其核心功能层是银层,具有反射红外线的作用。典型的单银玻璃膜层结构如下:玻璃-介质层-阻挡层-银层-阻挡层-介质层。由于银与玻璃的结合力太差,直接镀在玻璃上会脱落,因此,需要在玻璃表面先用硅铝靶真空磁控溅射一层介质层,再镀一层阻挡层,来增强结合力。而银层又很容易被空气氧化或腐蚀,所以最外面要介质层来保护,两者之间的阻挡层,起到增强结合力的作用。银层越多,节能效果越好,目前,已经发展到三银玻璃,其膜层结构如下:玻璃-介质层-阻挡层-银层-阻挡层-介质层-阻挡层-银层-阻挡层-介质层-阻挡层-银层-阻挡层-介质层,膜层总数达到了13层,为了保证光的透过率,对膜层的光学性能提出了更高的要求,因此,三银玻璃比单银玻璃需要性能更好的靶材。
发明内容
本发明的目的是为了解决上述问题,提供了一种用于Low-E玻璃的硅铝锆靶材及其制备方法,采用真空磁控溅射方法制成的薄膜,用于制作三银玻璃的介质层,光学透过率高,耐腐蚀性强,可显著提高Low-E玻璃的性能和使用寿命。
本发明采用如下技术方案:一种用于Low-E玻璃的硅铝锆靶材,各组分按重量份数计包括:硅61-85份,锆6.7-27.3份,铝3.8-10.6份,Al3Ni0.5-3份,锡 0.076-0.2份,硼0.13-0.5份,铌0.01-0.05份,钇0.002-0.008份。
进一步的,所述各组分按重量份数计为:硅73份,锆17.6份,铝7.1份,Al3Ni1.8份,锡 0.16份,硼0.32份,铌0.02份,钇0.005份。
用于Low-E玻璃的硅铝锆靶材的制备方法,包括如下步骤:其中各组分按重量份数计
(1)锆钇母合金的制备:向真空熔炼炉中放入锆99份,将锆熔化,在温度为1880-1920℃保温后加入钇1份,经过熔炼和精炼后控制温度为1870-1890℃;将上述熔液浇铸入模具铸成铸锭;
(2)硅锆合金粉的制备:向真空熔炼炉中放入硅61-85份熔化,然后向熔液中加入锆5.9-27.1份,然后向所得熔液中加入锆钇母合金0.2-0.8份并熔化;将上述熔液浇铸入模具冷却成铸锭;再将铸锭破碎,球磨,得到粒度150-200目的硅锆合金粉;
(3)铝合金粉末的制备:向真空雾化制粉设备的熔炼炉中放入铝3.8-10.6份并熔化;然后向熔液中加入锡0.076-0.2份,以21-28kW的功率将其熔化;之后向所得熔液中加入Al3Ni0.5-3份,之后向所得熔液中加入硼0.13-0.5份并熔化;之后向所得熔液中加入铌0.01-0.05份,;之后将上述熔液雾化成粒度120-150目的铝合金粉;
(4)硅锆合金粉的退火:将步骤(2)所得硅锆合金粉放入托盘中,粉堆放的厚度2-3cm;将装有粉的托盘装入箱式电阻炉中进行加热,打开炉门空冷;
(5)硅铝锆靶材的制备:将步骤(3)和步骤(4)所得粉末按质量比1:1混合均匀,用低压等离子喷涂工艺制成靶材。
进一步的,所述步骤(1)中锆在53-75kw的功率下熔炼,保温时间为5min,钇在35-58kW的功率熔炼5min;在31-49 kW的功率下精炼10min。
进一步的,所述步骤(2)中用60-86kw的功率将硅熔化得到熔液,保温温度控制为1460-1550℃;锆在39-65kW的功率将其熔化,锆钇母合金以36-45kW的功率将其熔化,控制温度为1450-1520℃。
进一步的,所述步骤(3)中铝在33-55kw的功率将铝熔化得到熔液,保温温度控制为700-730℃;锡以36-51kW的功率将其熔化,控制温度为750-780℃,硼在52-69kW的功率将其熔化,控制温度为990-1250℃,所述铌以35-39kW的功率将其熔化,控制温度为1020-1270℃,精炼10分钟。
进一步的,所述步骤(4)中箱式电阻炉加热40min后从室温升到150℃,保温60min,然后80min升到630℃,保温120min,最后用20min升到710℃。
本发明制备方法简单,步骤易于操作,硅铝锆靶材中含有适量的锆,能增强薄膜的硬度和耐腐蚀性;铝元素能降低靶材的电阻,并减少薄膜的应力;硼能提高铝合金粉的熔点,降低其与硅锆合金粉的熔点差,使其在等离子喷涂过程中不易产生积瘤;其余元素的加入能够增强膜层的稳定性,提高使用寿命,用作Low-E玻璃的介质层,光学性能好,致密性高,耐腐蚀性强。
具体实施方式
下面将结合具体实施例对本发明作进一步的说明。
实施例1:
一种用于Low-E玻璃的硅铝锆靶材,各组分按重量份数计为:硅61份,锆27份,铝9.1份,Al3Ni 2.6份,锡 0.1份,硼0.15份,铌0.05份,钇0.008份。
一种用于Low-E玻璃的硅锆钛靶材的制备方法,步骤为:其中各组分按重量份数计
(1)锆钇母合金的制备:向真空熔炼炉中放入锆99份,用53kw的功率将锆熔化得到熔液,保温温度控制为1880℃,保温时间为5min;之后向熔液中加入钇1份,以35kW的功率熔炼5min;之后以31 kW的功率精炼10min,控制温度为1870℃;之后将上述熔液浇铸入模具铸成铸锭;
(2)硅锆合金粉的制备:向真空熔炼炉中放入硅61份,用60kw的功率将硅熔化得到熔液,保温温度控制为1460℃;之后向熔液中加入锆26.2份,以50kW的功率将其熔化;之后向所得熔液中加入锆钇母合金0.8份,以36kW的功率将其熔化,控制温度为1450℃;之后将上述熔液浇铸入模具冷却成铸锭;再将铸锭破碎,球磨,得到粒度150目的硅锆合金粉;
(3)铝合金粉末的制备:向真空雾化制粉设备的熔炼炉中放入铝9.1份,用45kw的功率将铝熔化得到熔液,保温温度控制为700℃;之后向熔液中加入锡0.1份,以21kW的功率将其熔化;之后向所得熔液中加入Al3Ni2.6份,以40kW的功率将其熔化,控制温度为750℃;之后向所得熔液中加入硼0.15份,以52kW的功率将其熔化,控制温度为990℃;之后向所得熔液中加入铌0.05份,以35kW的功率将其熔化,控制温度为1020℃,精炼10分钟;之后将上述熔液雾化成粒度120目的铝合金粉;
(4)硅锆合金粉的退火:将步骤(2)所得硅锆合金粉放入托盘中,粉末的厚度2厘米;将装有粉末的托盘装入箱式电阻炉中,40分钟从室温升到150℃,保温60分钟,之后80分钟升到630℃,保温120分钟,之后用20分钟升到710℃,打开炉门空冷;
(5)硅铝锆靶材的制备:将步骤(3)和步骤(4)所得粉末按1:1的比例混合均匀,用低压等离子喷涂工艺制成靶材。
所述硅铝锆靶材的密度为3.28g/cm3,镀膜后可见光透过率为83%。
实施例2:
一种用于Low-E玻璃的硅铝锆靶材,各组分按重量份数计为:硅66份,锆23份,铝8.5份,Al3Ni 2.1份,锡 0.1份,硼0.3份,铌0.04份,钇0.006份。
一种用于Low-E玻璃的硅锆钛靶材的制备方法,步骤为:其中各组分按重量份数计
(1)锆钇母合金的制备:向真空熔炼炉中放入锆99份,用55kw的功率将锆熔化得到熔液,保温温度控制为1900℃,保温时间为5min;之后向熔液中加入钇1份,以50kW的功率熔炼5min;之后以35 kW的功率精炼10min,控制温度为1880℃;之后将上述熔液浇铸入模具铸成铸锭;
(2)硅锆合金粉的制备:向真空熔炼炉中放入硅66份,用65kw的功率将硅熔化得到熔液,保温温度控制为1500℃;之后向熔液中加入锆22.4份,以46-60kW的功率将其熔化;之后向所得熔液中加入锆钇母合金0.6份,以40kW的功率将其熔化,控制温度为1480℃;之后将上述熔液浇铸入模具冷却成铸锭;再将铸锭破碎,球磨,得到粒度150目的硅锆合金粉末;
(3)铝合金粉末的制备:向真空雾化制粉设备的熔炼炉中放入铝8.5份,用48kw的功率将铝熔化得到熔液,保温温度控制为710℃;之后向熔液中加入锡0.1份,以25kW的功率将其熔化;之后向所得熔液中加入Al3Ni 2.1份,以45kW的功率将其熔化,控制温度为760℃;之后向所得熔液中加入硼0.3份,以55kW的功率将其熔化,控制温度为1000℃;之后向所得熔液中加入铌0.04份,以36kW的功率将其熔化,控制温度为1150℃,精炼10分钟;之后将上述熔液雾化成粒度140目的铝合金粉;
(4)硅锆合金粉的退火:将步骤(2)所得硅锆合金粉放入托盘中,粉末的厚度2-3厘米;将装有粉末的托盘装入箱式电阻炉中,40分钟从室温升到150℃,保温60分钟,之后80分钟升到630℃,保温120分钟,之后用20分钟升到710℃,打开炉门空冷;
(5)硅铝锆靶材的制备:将步骤(3)和步骤(4)所得粉末按1:1的比例混合均匀,用低压等离子喷涂工艺制成靶材。
所述硅铝锆靶材的密度为3.12g/cm3,镀膜后可见光透过率为87%。
实施例3:
硅73份,锆17.6份,铝7.1份,Al3Ni 1.8份,锡 0.16份,硼0.32份,铌0.02份,钇0.005份。
一种用于Low-E玻璃的硅锆钛靶材的制备方法,步骤为:其中各组分按重量份数计
(1)锆钇母合金的制备:向真空熔炼炉中放入锆99份,用60kw的功率将锆熔化得到熔液,保温温度控制为1900℃,保温时间为5min;之后向熔液中加入钇1份,以55kW的功率熔炼5min;之后以35 kW的功率精炼10min,控制温度为1880℃;之后将上述熔液浇铸入模具铸成铸锭;
(2)硅锆合金粉的制备:向真空熔炼炉中放入硅73份,用75kw的功率将硅熔化得到熔液,保温温度控制为1500℃,;之后向熔液中加入锆17.1份,以45kW的功率将其熔化;之后向所得熔液中加入锆钇母合金0.5份,以45kW的功率将其熔化,控制温度为1480℃;之后将上述熔液浇铸入模具冷却成铸锭;再将铸锭破碎,球磨,得到粒度160目的硅锆合金粉;
(3)铝合金粉末的制备:向真空雾化制粉设备的熔炼炉中放入铝7.1份,用45kw的功率将铝熔化得到熔液,保温温度控制为720℃;之后向熔液中加入锡0.16份,以25kW的功率将其熔化;之后向所得熔液中加入Al3Ni1.8份,以45kW的功率将其熔化,控制温度为760℃;之后向所得熔液中加入硼0.32份,以55kW的功率将其熔化,控制温度为1150℃;之后向所得熔液中加入铌0.02份,以38kW的功率将其熔化,控制温度为1250℃,精炼10分钟;之后将上述熔液雾化成粒度140目的铝合金粉;
(4)硅锆合金粉的退火:将步骤(2)所得硅锆合金粉放入托盘中,粉末的厚度2-3厘米;将装有粉末的托盘装入箱式电阻炉中,40分钟从室温升到150℃,保温60分钟,之后80分钟升到630℃,保温120分钟,之后用20分钟升到710℃,打开炉门空冷;
(5)硅铝锆靶材的制备:将步骤(3)和步骤(4)所得粉末按1:1的比例混合均匀,用低压等离子喷涂工艺制成靶材。
所述硅铝锆靶材的密度为2.97g/cm3,镀膜后可见光透过率为90%。
实施例4:
一种用于Low-E玻璃的硅铝锆靶材,各组分按重量份数计为:硅79份,锆16.4份,铝3.8份,Al3Ni 0.5份,锡 0.08份,硼0.2份,铌0.01份,钇0.005份。
一种用于Low-E玻璃的硅锆钛靶材的制备方法,步骤为:其中各组分按重量份数计
(1)锆钇母合金的制备:向真空熔炼炉中放入锆99份,用68kw的功率将锆熔化得到熔液,保温温度控制为1880-1920℃,保温时间为5min;之后向熔液中加入钇1份,以55kW的功率熔炼5min;之后以45 kW的功率精炼10min,控制温度为1880℃;之后将上述熔液浇铸入模具铸成铸锭;
(2)硅锆合金粉的制备:向真空熔炼炉中放入硅79份,用85kw的功率将硅熔化得到熔液,保温温度控制为11550℃;之后向熔液中加入锆15.9份,以52kW的功率将其熔化;之后向所得熔液中加入锆钇母合金0.5份,以45kW的功率将其熔化,控制温度为1500℃;之后将上述熔液浇铸入模具冷却成铸锭;再将铸锭破碎,球磨,得到粒度200目的硅锆合金粉末;
(3)铝合金粉末的制备:向真空雾化制粉设备的熔炼炉中放入铝3.8份,用45kw的功率将铝熔化得到熔液,保温温度控制为730℃;之后向熔液中加入锡0.08份,以28kW的功率将其熔化;之后向所得熔液中加入Al3Ni 0.5份,以40kW的功率将其熔化,控制温度为780℃;之后向所得熔液中加入硼0.2份,以65kW的功率将其熔化,控制温度为1250℃;之后向所得熔液中加入铌0.01份,以39kW的功率将其熔化,控制温度为1270℃,精炼10分钟;之后将上述熔液雾化成粒度150目的铝合金粉;
(4)硅锆合金粉的退火:将步骤(2)所得硅锆合金粉放入托盘中,粉末的厚度2-3厘米;将装有粉末的托盘装入箱式电阻炉中,40分钟从室温升到150℃,保温60分钟,之后80分钟升到630℃,保温120分钟,之后用20分钟升到710℃,打开炉门空冷;
(5)硅铝锆靶材的制备:将步骤(3)和步骤(4)所得粉末按1:1的比例混合均匀,用低压等离子喷涂工艺制成靶材。
所述硅铝锆靶材的-密度为2.93g/cm3,镀膜后可见光透过率为90%。
实施例5:
一种用于Low-E玻璃的硅铝锆靶材,各组分按重量份数计为:硅85份,锆6.7份,铝5.9份,Al3Ni 1.9份,锡 0.16份,硼0.3份,铌0.05份,钇0.002份。
一种用于Low-E玻璃的硅锆钛靶材的制备方法,步骤为:其中各组分按重量份数计
(1)锆钇母合金的制备:向真空熔炼炉中放入锆99份,用75kw的功率将锆熔化得到熔液,保温温度控制为1920℃,保温时间为5min;之后向熔液中加入钇1份,以58kW的功率熔炼5min;之后以49 kW的功率精炼10min,控制温度为1890℃;之后将上述熔液浇铸入模具铸成铸锭;
(2)硅锆合金粉的制备:向真空熔炼炉中放入硅85份,用86kw的功率将硅熔化得到熔液,保温温度控制为1550℃;之后向熔液中加入锆6.5份,以49kW的功率将其熔化;之后向所得熔液中加入锆钇母合金0.2份,以45kW的功率将其熔化,控制温度为1520℃;之后将上述熔液浇铸入模具冷却成铸锭;再将铸锭破碎,球磨,得到粒度200目的硅锆合金粉;
(3)铝合金粉末的制备:向真空雾化制粉设备的熔炼炉中放入铝5.9份,用45kw的功率将铝熔化得到熔液,保温温度控制为730℃;之后向熔液中加入锡0.16份,以28kW的功率将其熔化;之后向所得熔液中加入Al3Ni1.9份,以49kW的功率将其熔化,控制温度为780℃;之后向所得熔液中加入硼0.3份,以69kW的功率将其熔化,控制温度为1250℃;之后向所得熔液中加入铌0.05份,以39kW的功率将其熔化,控制温度为1270℃,精炼10分钟;之后将上述熔液雾化成粒度150目的铝合金粉;
(4)硅锆合金粉的退火:将步骤(2)所得硅锆合金粉放入托盘中,粉末的厚度2-3厘米;将装有粉末的托盘装入箱式电阻炉中,40分钟从室温升到150℃,保温60分钟,之后80分钟升到630℃,保温120分钟,之后用20分钟升到710℃,打开炉门空冷;
(5)硅铝锆靶材的制备:将步骤(3)和步骤(4)所得粉末按1:1的比例混合均匀,用低压等离子喷涂工艺制成靶材。
所述硅铝锆靶材的密度为3.73g/cm3,镀膜后可见光透过率为92%。

Claims (7)

1.一种用于Low-E玻璃的硅铝锆靶材,其特征在于:各组分按重量份数计包括:硅61-85份,锆6.7-27份,铝3.8-9.1份,Al3Ni 0.5-2.6份,锡 0.08-0.2份,硼0.15-0.5份,铌0.01-0.05份,钇0.002-0.008份。
2.如权利要求1所述的用于Low-E玻璃的硅铝锆靶材,其特征在于:所述各组分按重量份数计为:硅73份,锆17.6份,铝7.1份,Al3Ni 1.8份,锡 0.16份,硼0.32份,铌0.02份,钇0.005份。
3.权利要求1所述的用于Low-E玻璃的硅铝锆靶材的制备方法,其特征在于:包括如下步骤:其中各组分按重量份数计
(1)锆钇母合金的制备:向真空熔炼炉中放入锆99份,将锆熔化,在温度为1880-1920℃保温后加入钇1份,经过熔炼和精炼后控制温度为1870-1890℃;将上述熔液浇铸入模具铸成铸锭;
(2)硅锆合金粉的制备:向真空熔炼炉中放入硅61-85份熔化,然后向熔液中加入锆5.9-27.1份,然后向所得熔液中加入锆钇母合金0.2-0.8份并熔化;将上述熔液浇铸入模具冷却成铸锭;再将铸锭破碎,球磨,得到粒度150-200目的硅锆合金粉;
(3)铝合金粉末的制备:向真空雾化制粉设备的熔炼炉中放入铝3.8-9.1份并熔化;然后向熔液中加入锡0.08-0.2份,以21-28kW的功率将其熔化;之后向所得熔液中加入Al3Ni0.5-2.6份,之后向所得熔液中加入硼0.15-0.5份并熔化;之后向所得熔液中加入铌0.01-0.05份;之后将上述熔液雾化成粒度120-150目的铝合金粉;
(4)硅锆合金粉的退火:将步骤(2)所得硅锆合金粉放入托盘中,粉堆放的厚度2-3cm;将装有粉的托盘装入箱式电阻炉中进行加热,打开炉门空冷;
(5)硅铝锆靶材的制备:将步骤(3)和步骤(4)所得粉末按质量比1:1混合均匀,用低压等离子喷涂工艺制成靶材。
4.如权利要求3所述的用于Low-E玻璃的硅铝锆靶材的制备方法,其特征在于:所述步骤(1)中锆在53-75kw的功率下熔炼,保温时间为5min,钇在35-58kW的功率熔炼5min,然后在31-49 kW的功率下精炼10min。
5.如权利要求3所述的用于Low-E玻璃的硅铝锆靶材的制备方法,其特征在于:所述步骤(2)中硅在60-86kw的功率下熔化得到熔液,保温温度控制为1460-1550℃;锆在39-65kW的功率将其熔化,锆钇母合金以36-45kW的功率将其熔化,控制温度为1450-1520℃。
6.如权利要求3所述的用于Low-E玻璃的硅铝锆靶材的制备方法,其特征在于:所述步骤(3)中铝在33-55kw的功率将铝熔化得到熔液,保温温度控制为700-730℃;锡以36-51kW的功率将其熔化,控制温度为750-780℃,硼在52-69kW的功率将其熔化,控制温度为990-1250℃,所述铌以35-39kW的功率将其熔化,控制温度为1020-1270℃,精炼10min。
7.如权利要求3所述的用于Low-E玻璃的硅铝锆靶材的制备方法,其特征在于:所述步骤(4)中箱式电阻炉加热40min后从室温升到150℃,保温60min,然后80min升到630℃,保温120min,最后用20min升到710℃。
CN201910567804.2A 2019-06-27 2019-06-27 一种用于Low-E玻璃的硅铝锆靶材及其制备方法 Active CN110129759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910567804.2A CN110129759B (zh) 2019-06-27 2019-06-27 一种用于Low-E玻璃的硅铝锆靶材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910567804.2A CN110129759B (zh) 2019-06-27 2019-06-27 一种用于Low-E玻璃的硅铝锆靶材及其制备方法

Publications (2)

Publication Number Publication Date
CN110129759A CN110129759A (zh) 2019-08-16
CN110129759B true CN110129759B (zh) 2020-12-25

Family

ID=67566741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910567804.2A Active CN110129759B (zh) 2019-06-27 2019-06-27 一种用于Low-E玻璃的硅铝锆靶材及其制备方法

Country Status (1)

Country Link
CN (1) CN110129759B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559875B (zh) * 2020-06-19 2024-05-14 广东旗滨节能玻璃有限公司 一种镀膜玻璃及其制备方法
CN114262874B (zh) * 2021-11-15 2023-09-29 广州市尤特新材料有限公司 一种建筑玻璃用靶材及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060423B4 (de) * 2004-12-14 2016-10-27 Heraeus Deutschland GmbH & Co. KG Rohrtarget und dessen Verwendung
US20080057350A1 (en) * 2006-09-01 2008-03-06 Heraeus, Inc. Magnetic media and sputter targets with compositions of high anisotropy alloys and oxide compounds
CN101628492B (zh) * 2008-07-15 2012-09-26 比亚迪股份有限公司 一种镀膜材料及其制备方法
CN101597751B (zh) * 2009-04-22 2011-04-06 江苏科技大学 Zr-Al-Si-N硬质复合涂层及其制备方法
JP5377142B2 (ja) * 2009-07-28 2013-12-25 ソニー株式会社 ターゲットの製造方法、メモリの製造方法
CN102312192B (zh) * 2010-06-30 2013-07-17 中国科学院上海硅酸盐研究所 籽晶层辅助的表面织构化氧化锌透明导电薄膜及制备方法

Also Published As

Publication number Publication date
CN110129759A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN110129759B (zh) 一种用于Low-E玻璃的硅铝锆靶材及其制备方法
US11401600B1 (en) Variable-temperature and fast-sintering process of aluminum-doped zinc oxide target material
CN102534321A (zh) 一种喷射沉积Si-Al合金电子封装材料的制备工艺
WO2023035704A1 (zh) 荧光硅酸锂玻璃陶瓷的制备方法
CN111020322A (zh) 一种高强高韧航天用铝锂合金板材及制造方法
CN111809152B (zh) 一种铟锡合金靶材及其制备方法
CN102286724A (zh) 光伏吸收层溅射镀膜的铜镓合金旋转靶材及制备方法
CN101928909B (zh) 一种利用爆炸喷涂制备铌钛铝合金涂层的方法
CN110344011B (zh) 一种掺杂氧化锡的银靶材及其制备方法和应用
CN101629276B (zh) 锆钇合金靶件的制备方法
CN105058923A (zh) 增强镀膜玻璃耐磨和耐腐蚀性能的溅射靶材及制造方法
CN103626397A (zh) 一种导电玻璃及其制造方法
CN103663985A (zh) 一种导电平板玻璃的制造方法
CN114559048B (zh) 铜基复合非晶粉末的制备方法
CN116716516A (zh) 一种核用中强高塑Zr-4M锆合金的制备方法
CN108623194B (zh) 一种内置气凝胶复合玻璃及其制备方法
CN106893990B (zh) 银溅射靶材组件的生产工艺
CN101805132B (zh) 一种用于提高可钢化低辐射镀膜玻璃耐高温的方法
CN112281017B (zh) 一种Au-20Sn箔材的制备方法
CN109706345B (zh) 一种旋转靶材合金及其加工方法
KR20070089202A (ko) 플라즈마 디스플레이 패널의 전면 기판 제작용 유리 세트
CN107142518A (zh) 一种多晶硅铸锭的化料工艺
CN108625737B (zh) 一种内置气凝胶复合玻璃及其制备方法
CN105970030B (zh) 一种用于喷涂硅铝靶材打底层的合金及其制备方法
CN108715995B (zh) 一种用于低辐射玻璃的钛钯材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant