CN110112060A - 一种利用气固固生长模式控制高性能ⅲ-ⅴ族半导体纳米线生长方向的方法 - Google Patents

一种利用气固固生长模式控制高性能ⅲ-ⅴ族半导体纳米线生长方向的方法 Download PDF

Info

Publication number
CN110112060A
CN110112060A CN201910419168.9A CN201910419168A CN110112060A CN 110112060 A CN110112060 A CN 110112060A CN 201910419168 A CN201910419168 A CN 201910419168A CN 110112060 A CN110112060 A CN 110112060A
Authority
CN
China
Prior art keywords
solid
race
gas
iii
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910419168.9A
Other languages
English (en)
Inventor
杨再兴
郭亚楠
孙嘉敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201910419168.9A priority Critical patent/CN110112060A/zh
Publication of CN110112060A publication Critical patent/CN110112060A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02549Antimonides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments

Abstract

本发明涉及一种利用气固固生长模式控制高性能Ⅲ‑Ⅴ族半导体纳米线生长方向的方法。其步骤包括:通过在Si/SiO2衬底上沉积与现今硅基微电子工艺相兼容的Pd等高熔点金属催化剂薄膜,通过实现气固固生长模式控制Ⅲ‑Ⅴ族半导体纳米线的生长方向。所得的纳米线不仅生长方向可控,其长度长、直径波动范围小、晶体质量高、载流子迁移率达理论极限。

Description

一种利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线 生长方向的方法
技术领域
本发明涉及一种利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的技术,属于一维纳米线的可控生长技术领域。
背景技术
Ⅲ-Ⅴ族半导体纳米线由于其独特的物理化学特性,已经成为了下一代高性能微电子光电器件研究领域的热点。在众多的光电器件研究领域,载流子迁移率是最重要的本征参数之一。半导体纳米线的迁移率与多种因素有关,例如纳米线的生长方向、结晶质量及表面态等。因为相异的极性、载流子有效质量及载流子平均自由时间等,不同生长方向的纳米线其载流子迁移率不同。控制高迁移率的生长方向是Ⅲ-Ⅴ族半导体纳米线研究的难点。
目前,纳米线的生长模式主要有两种,气液固生长模式和气固固生长模式。在气液固生长模式中,生长纳米线的催化剂熔点低于纳米线生长的温度,其一直处于液体状态,无优选的最低能量晶面,随机外延纳米线,从而导致纳米线生长方向不可控。然而在气固固生长模式中,高熔点金属催化剂一直以固态晶体存在,通过调控其最低能量晶面,可方向选择性外延纳米线,控制纳米线的生长方向。可以看出,实现气固固生长模式的关键在于选择合适的金属催化剂。
发明内容
报道的万能催化剂Au一般都是通过气液固的生长模式合成纳米线,其催化合成的Ⅲ-Ⅴ族半导体纳米线生长方向不可控。针对现有技术的不足,本发明通过选择高熔点金属催化剂Pd、Ni、Cu,提供一种利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,该方法可有效控制Ⅲ-Ⅴ族半导体纳米线的生长方向、长度及直径波动范围,并显著提高其载流子迁移率。
本发明的技术方案如下:
一种利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,包括步骤如下:
提供衬底,所述衬底上沉积高熔点金属催化剂薄膜,以及;
在保护气存在下,提供Ⅲ-Ⅴ族半导体源材料,在生长温度条件下,生长纳米线。
根据本发明,优选的,所述的衬底为Si/SiO2衬底。
根据本发明,优选的,所述的高熔点金属催化剂薄膜为Pd、Ni、Cu,金属催化剂薄膜厚度为0.5nm或1nm。
根据本发明,优选的,所用Ⅲ-Ⅴ族半导体源材料包括GaSb或InP,优选粉末状态,纯度为99.999%,粒径小于100目。
根据本发明,优选的,所述的保护气为H2,纯度为99.999%。
根据本发明,优选的,所述纳米线生长机理为气固固生长机理。
根据本发明,优选的,Ⅲ-Ⅴ族源材料蒸发温度范围为690-800℃,衬底纳米线生长温度范围为510-600℃。
根据本发明,优选的,升温速率小于60℃/min。
根据本发明,优选的,Ⅲ-Ⅴ族半导体源材料和衬底之间使用表面活性剂进行辅助生长,优选的表面活性剂为S粉末。
根据本发明,利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,一种优选的实施方案,包括步骤如下:
(1)在Si/SiO2衬底上通过电子束蒸发或热蒸发沉积高熔点金属催化剂薄膜,并将制备好的衬底置于双温区水平管式炉下游区的中间,然后将盛有Ⅲ-Ⅴ族半导体粉末源材料的氮化硼坩埚放置于双温区水平管式炉的上游区,距离衬底15cm处,;盛有表面活性剂S粉末的氮化硼坩埚放置于源材料与衬底中间,距离衬底9cm处;所述金属催化剂薄膜材料为Pd、Ni、Cu,金属催化剂薄膜厚度为0.5nm或1nm;
(2)将石英管抽真空,直至气压达到10-3Torr,再通入保护气H20.5小时;
(3)保持保护气的通入,并将Ⅲ-Ⅴ族半导体源材料与衬底加热至所需温度,实现Ⅲ-Ⅴ族半导体纳米线的生长;所用Ⅲ-Ⅴ族半导体源材料粉末包括GaSb或InP,纯度为99.999%,粒径小于100目;
(4)生长完成后,停止源材料与衬底的加热程序,并在保护气流下冷却至室温。
本发明通过在Si/SiO2衬底上沉积与现今硅基微电子工艺相兼容的Pd等高熔点金属催化剂薄膜,通过实现气固固生长模式控制Ⅲ-Ⅴ族半导体纳米线的生长方向。所得的纳米线不仅生长方向可控,其长度长、直径波动范围小、晶体质量高、载流子迁移率达理论极限。
本发明具有以下优点:
本发明采用的方法简单便捷,易于实现,结果稳定,收益显著,使得生长的Ⅲ-Ⅴ族半导体纳米线有着统一的高迁移率生长方向、较小的纳米线直径波动范围、载流子迁移率达理论极限,有望实现纳米线在高性能光电子器件中的应用。
附图说明
图1是气液固生长模式和气固固生长模式的对比图。
图2是试验例1中采用不同催化剂生长的GaSb纳米线的高分辨率透射电子显微镜(HRTEM)图。
图3是试验例2中GaSb纳米线的扫描电子显微镜(SEM)图、直径分布统计对比图和空穴迁移率峰值分布统计对比图。
图4是试验例3中InP纳米线的SEM图、HRTEM图和电子迁移率峰值分布统计图。
具体实施方案
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。
实施例1、采用Pd金属催化剂生长GaSb纳米线。
在Si/SiO2衬底上通过电子束蒸发或热蒸发沉积1nm厚的Pd催化剂薄膜,并将制备好的衬底置于双温区水平管式炉下游区的中间,然后分别将盛有GaSb粉末和S粉末的氮化硼坩埚放置于距离衬底15cm和9cm处的上游区。然后将石英管抽真空,直至气压达到10- 3Torr并通30分钟H2保护气,气流量为300sccm。保持H2的通入,并将源材料与衬底分别加热至750℃和585℃,实现GaSb纳米线的生长,生长完成后,同时停止源材料与衬底的加热程序,并在H2流下冷却至室温。
气液固生长模式和气固固生长模式的对比图如图1所示。由图1可知,对于气固固生长模式,催化剂Pd在源材料前驱体的注入下会与Ⅲ族原子Ga形成Pd5Ga4催化剂,该催化剂熔点高于纳米线生长的温度,一直以圆柱体的固态晶体存在,有能量最低晶面,因此可方向选择性外延纳米线,控制纳米线的生长方向。
而传统的气液固生长模式,催化剂Au与源材料前驱体形成的催化剂熔点低于纳米线生长的温度,一直处于液体状态,无能量最低晶面,随机外延纳米线,从而导致纳米线生长方向不可控。
实施例2、采用Pd金属催化剂生长InP纳米线。
在Si/SiO2衬底上通过电子束蒸发或热蒸发沉积0.5nm Pd催化剂薄膜,并将制备好的衬底放置于双温区水平管式炉下游区的中间,然后将盛有InP粉末的氮化硼坩埚放置于距离衬底15cm处的上游区,然后将石英管抽真空,直至气压达到10-3Torr并通30分钟H2保护气,气流量为100sccm。保持H2的通入,并将源材料在8min内加热至710℃,衬底在7min内加热至530℃,实现InP纳米线的生长,生长完成后,同时停止源材料与衬底的加热程序,并在H2流下冷却至室温。催化剂Pd在源材料InP前驱体的注入下会与Ⅲ族原子In形成PdIn催化剂,该催化剂熔点高于纳米线生长温度,以规则的固态晶体存在,有能量最低晶面,因此纳米线可选择性沿着高迁移率方向外延生长。
对比例1
如实施例1所述,不同的是:
采用1nm厚的Au催化剂薄膜。
试验例1
对比例1中得到的Au金属催化剂生长的GaSb纳米线、测试实施例1中得到的Pd金属催化剂生长的GaSb纳米线的HRTEM图,如图2所示。可知,使用Au催化剂生长的GaSb纳米线的催化剂尖端为液体,无优选的最低能量晶面,随机外延纳米线,从而导致纳米线生长方向不可控。而使用Pd催化剂生长的GaSb纳米线的催化剂尖端为形貌规则的固态晶体,有最低能量晶面,可方向选择性外延纳米线,控制纳米线的生长方向。
试验例2
对比例1得到的Au金属催化剂生长的GaSb纳米线、测试实施例1中得到的Pd金属催化剂生长的GaSb纳米线的SEM图、实施例1得到的Pd金属催化剂生长的GaSb纳米线和对比例1中Au金属催化剂生长的GaSb纳米线其中100根GaSb纳米线的直径分布统计对比以及实施例1中使用1nm厚度的Pd催化生长和对比例1中1nm厚度的Au催化生长的其中100根GaSb纳米线的空穴迁移率峰值分布统计对比,如图3所示。其中:a、b为SEM图,c为直径分布统计对比图,d为GaSb纳米线的空穴迁移率峰值分布统计对比图。
从图3可知,使用Au催化剂薄膜生长的GaSb纳米线直径为42.1±11.7nm,而使用Pd催化剂薄膜生长的GaSb纳米线直径为26.9±3.5nm,纳米线的直径波动范围明显减小。
在电学性能方面,可知当纳米线直径大于40nm时,Pd催化生长的GaSb纳米线的空穴迁移率峰值与Au催化生长的GaSb纳米线相似,接近空穴浓度为1018cm-3的理论迁移率极限。然而,当纳米线直径低于40nm时,与用Au催化剂生长的具有<110>和<211>混合方向的纳米线相比,Pd催化生长的<111>方向的纳米线有更高的空穴迁移率,峰值可达300cm2.V-.1s-1
试验例3
实施例2中Pd金属催化剂生长的InP纳米线的SEM图、HRTEM图以及20根0.5nmPd催化生长的InP纳米线电子迁移率峰值分布统计。结果如图4所示。其中:a为SEM图,b为HRTEM图,c为InP纳米线电子迁移率峰值分布统计图。
如图4可知,用Pd催化生长的InP纳米线电子迁移率峰值可达2000cm2.V-1.s-1,接近理论迁移率极限值。
以上所述仅为本发明优选实例,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,从而实现控制生长其他研究领域种类急需的纳米线,这些改进和变型也应视为本发明的保护范围。

Claims (10)

1.一种利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,包括步骤如下:
提供衬底,所述衬底上沉积高熔点金属催化剂薄膜,以及;
在保护气存在下,提供Ⅲ-Ⅴ族半导体源材料,在生长温度条件下,生长纳米线。
2.根据权利要求1所述的利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,其特征在于,所述的衬底为Si/SiO2衬底。
3.根据权利要求1所述的利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,其特征在于,所述的高熔点金属催化剂薄膜为Pd、Ni、Cu,优选的金属催化剂薄膜厚度为0.5nm或1nm。
4.根据权利要求1所述的利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,其特征在于,所用Ⅲ-Ⅴ族半导体源材料包括GaSb或InP,优选粉末状态,纯度为99.999%,粒径小于100目。
5.根据权利要求1所述的利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,其特征在于,所述的保护气为H2,纯度为99.999%。
6.根据权利要求1所述的利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,其特征在于,所述纳米线生长机理为气固固生长机理。
7.根据权利要求1所述的利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,其特征在于,Ⅲ-Ⅴ族源材料蒸发温度范围为690-800℃,衬底纳米线生长温度范围为510-600℃。
8.根据权利要求1所述的利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,其特征在于,升温速率小于60℃/min。
9.根据权利要求1所述的利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,其特征在于,Ⅲ-Ⅴ族半导体源材料和衬底之间使用表面活性剂进行辅助生长,优选的表面活性剂为S粉末。
10.根据权利要求1所述的利用气固固生长模式控制高性能Ⅲ-Ⅴ族半导体纳米线生长方向的方法,其特征在于,包括步骤如下:
(1)在Si/SiO2衬底上通过电子束蒸发或热蒸发沉积高熔点金属催化剂薄膜,并将制备好的衬底置于双温区水平管式炉下游区的中间,然后将盛有Ⅲ-Ⅴ族半导体粉末源材料的氮化硼坩埚放置于双温区水平管式炉的上游区,距离衬底15cm处,盛有表面活性剂S粉末的氮化硼坩埚放置于源材料与衬底中间,距离衬底9cm处;所述金属催化剂薄膜材料为Pd、Ni、Cu,金属催化剂薄膜厚度为0.5nm或1nm;
(2)将石英管抽真空,直至气压达10-3 Torr,再通入保护气H2 0.5小时;
(3)保持保护气的通入,并将Ⅲ-Ⅴ族半导体源材料与衬底加热至所需温度,实现Ⅲ-Ⅴ族半导体纳米线的生长;所用Ⅲ-Ⅴ族半导体源材料粉末包括GaSb或InP,纯度为99.999%,粒径小于100目;
(4)生长完成后,停止源材料与衬底的加热程序,并在保护气流下冷却至室温。
CN201910419168.9A 2019-05-20 2019-05-20 一种利用气固固生长模式控制高性能ⅲ-ⅴ族半导体纳米线生长方向的方法 Pending CN110112060A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910419168.9A CN110112060A (zh) 2019-05-20 2019-05-20 一种利用气固固生长模式控制高性能ⅲ-ⅴ族半导体纳米线生长方向的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910419168.9A CN110112060A (zh) 2019-05-20 2019-05-20 一种利用气固固生长模式控制高性能ⅲ-ⅴ族半导体纳米线生长方向的方法

Publications (1)

Publication Number Publication Date
CN110112060A true CN110112060A (zh) 2019-08-09

Family

ID=67491193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910419168.9A Pending CN110112060A (zh) 2019-05-20 2019-05-20 一种利用气固固生长模式控制高性能ⅲ-ⅴ族半导体纳米线生长方向的方法

Country Status (1)

Country Link
CN (1) CN110112060A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504159A (zh) * 2019-08-21 2019-11-26 中国科学院半导体研究所 硅衬底上立式GaSb纳米线及其制备方法
CN112877779A (zh) * 2019-11-29 2021-06-01 山东大学深圳研究院 一种基于Sn催化气相生长高质量GaAs纳米线的方法
CN114314505A (zh) * 2021-12-30 2022-04-12 中山大学 超硬纯同位素10bp半导体微纳米线的制备
CN116463627A (zh) * 2023-04-18 2023-07-21 陕西科技大学 一种磷化铟纳米线及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036774A (en) * 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
CN101553895A (zh) * 2006-09-08 2009-10-07 通用汽车环球科技运作公司 一维金属和金属氧化物纳米结构
US7754183B2 (en) * 2005-05-20 2010-07-13 Clemson University Research Foundation Process for preparing carbon nanostructures with tailored properties and products utilizing same
KR20120023436A (ko) * 2010-09-03 2012-03-13 삼성전자주식회사 갈륨 나이트라이드 나노와이어의 수직 성장 방법
KR101352958B1 (ko) * 2012-11-22 2014-01-21 전북대학교산학협력단 나노와이어의 제조방법 및 이를 이용하여 제조된 나노와이어를 포함하는 다이오드
CN104046359A (zh) * 2013-03-15 2014-09-17 伊利诺斯大学科技管理办公室 多异质结纳米颗粒、其制备方法以及包含该纳米颗粒的制品
CN104313548A (zh) * 2014-10-08 2015-01-28 上海理工大学 一种氮化镓纳米线的制备方法
CN104445378A (zh) * 2014-12-17 2015-03-25 武汉大学 一种二氧化锡亚微米棒的合成方法
CN104508190A (zh) * 2012-05-25 2015-04-08 索尔伏打电流公司 同心流反应器
CN105405745A (zh) * 2015-11-10 2016-03-16 中国科学院半导体研究所 立式iii-v族锑化物半导体单晶薄膜的制备方法
CN105990466A (zh) * 2015-02-03 2016-10-05 香港城市大学深圳研究院 肖特基型垂直纳米线阵列太阳能电池的制作方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036774A (en) * 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
US7754183B2 (en) * 2005-05-20 2010-07-13 Clemson University Research Foundation Process for preparing carbon nanostructures with tailored properties and products utilizing same
CN101553895A (zh) * 2006-09-08 2009-10-07 通用汽车环球科技运作公司 一维金属和金属氧化物纳米结构
KR20120023436A (ko) * 2010-09-03 2012-03-13 삼성전자주식회사 갈륨 나이트라이드 나노와이어의 수직 성장 방법
CN104508190A (zh) * 2012-05-25 2015-04-08 索尔伏打电流公司 同心流反应器
KR101352958B1 (ko) * 2012-11-22 2014-01-21 전북대학교산학협력단 나노와이어의 제조방법 및 이를 이용하여 제조된 나노와이어를 포함하는 다이오드
CN104046359A (zh) * 2013-03-15 2014-09-17 伊利诺斯大学科技管理办公室 多异质结纳米颗粒、其制备方法以及包含该纳米颗粒的制品
CN104313548A (zh) * 2014-10-08 2015-01-28 上海理工大学 一种氮化镓纳米线的制备方法
CN104445378A (zh) * 2014-12-17 2015-03-25 武汉大学 一种二氧化锡亚微米棒的合成方法
CN105990466A (zh) * 2015-02-03 2016-10-05 香港城市大学深圳研究院 肖特基型垂直纳米线阵列太阳能电池的制作方法
CN105405745A (zh) * 2015-11-10 2016-03-16 中国科学院半导体研究所 立式iii-v族锑化物半导体单晶薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALEXANDRA C.FORD等: "《Synthesis, Contact Printing, and Device Characterization of Ni-Catalyzed, Crystalline InAs Nanowires》", 《NANO RESEARCH》 *
NING HAN等: "Controllable III-V nanowire growth via catalyst epitaxy", 《JOURNAL OF MATERIALS CHEMISTRY C》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504159A (zh) * 2019-08-21 2019-11-26 中国科学院半导体研究所 硅衬底上立式GaSb纳米线及其制备方法
CN110504159B (zh) * 2019-08-21 2021-05-11 中国科学院半导体研究所 硅衬底上立式GaSb纳米线及其制备方法
CN112877779A (zh) * 2019-11-29 2021-06-01 山东大学深圳研究院 一种基于Sn催化气相生长高质量GaAs纳米线的方法
CN112877779B (zh) * 2019-11-29 2022-07-19 山东大学深圳研究院 一种基于Sn催化气相生长高质量GaAs纳米线的方法
CN114314505A (zh) * 2021-12-30 2022-04-12 中山大学 超硬纯同位素10bp半导体微纳米线的制备
CN116463627A (zh) * 2023-04-18 2023-07-21 陕西科技大学 一种磷化铟纳米线及其制备方法
CN116463627B (zh) * 2023-04-18 2024-03-15 陕西科技大学 一种磷化铟纳米线及其制备方法

Similar Documents

Publication Publication Date Title
CN110112060A (zh) 一种利用气固固生长模式控制高性能ⅲ-ⅴ族半导体纳米线生长方向的方法
JP5068423B2 (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
Zhang et al. Synthesis of thin Si whiskers (nanowires) using SiCl4
Seryogin et al. Catalytic hydride vapour phase epitaxy growth of GaN nanowires
US20100065810A1 (en) Method Of Synthesizing Semiconductor Nanostructures And Nanostructures Synthesized By The Method
KR20090101617A (ko) 산화아연 나노와이어의 제조방법
CN102358938A (zh) 一种利用催化剂定域技术合成图案化单晶氧化钨纳米线阵列的新方法
Hsu et al. Vertical single-crystal ZnO nanowires grown on ZnO: Ga/glass templates
CN103531447A (zh) 一种降低氮化镓纳米线阵列晶体缺陷密度的方法
CN109056057A (zh) 一种大尺寸单晶氧化镓纳米片的制备方法
Reiser et al. Controlled catalytic growth and characterization of zinc oxide nanopillars on a-plane sapphire
García-Gutiérrez et al. Luminescence and structure of ZnO grown by physical vapor deposition
JP2001233697A (ja) 炭化珪素単結晶
JP4016105B2 (ja) シリコンナノワイヤーの製造法
Wang Synthesis and properties of germanium nanowires
KR100943977B1 (ko) 비스무트 단결정 나노와이어의 제조방법
Fan et al. A low-temperature evaporation route for ZnO nanoneedles and nanosaws
Cai et al. CVD growth of InGaN nanowires
CN102553588B (zh) 一种氧化锌纳米线生长所用的催化剂及其应用
KR101934162B1 (ko) 단결정 SiC 나노와이어 제조방법
CN112877779B (zh) 一种基于Sn催化气相生长高质量GaAs纳米线的方法
Kim et al. Epitaxial germanium nanowires on GaAs grown by chemical vapor deposition
KR100670767B1 (ko) 비정질 실리콘 옥사이드 나노선의 제조방법 및 이로부터제조된 나노선
Hamidinezhad et al. Forest of ultra thin silicon nanowires: realization of temperature and catalyst size
CN115287595B (zh) 钒掺杂单层二硫化钨薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190809

RJ01 Rejection of invention patent application after publication