CN110086400A - 一种机电伺服系统非线性变增益控制方法和系统 - Google Patents

一种机电伺服系统非线性变增益控制方法和系统 Download PDF

Info

Publication number
CN110086400A
CN110086400A CN201910369975.4A CN201910369975A CN110086400A CN 110086400 A CN110086400 A CN 110086400A CN 201910369975 A CN201910369975 A CN 201910369975A CN 110086400 A CN110086400 A CN 110086400A
Authority
CN
China
Prior art keywords
control
position ring
control method
ring
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910369975.4A
Other languages
English (en)
Other versions
CN110086400B (zh
Inventor
成兆义
邓涛
陈安平
刘海山
李俊岩
侯鹏飞
郑宣
金迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Beijing Research Institute of Precise Mechatronic Controls
Original Assignee
China Academy of Launch Vehicle Technology CALT
Beijing Research Institute of Precise Mechatronic Controls
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Beijing Research Institute of Precise Mechatronic Controls filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201910369975.4A priority Critical patent/CN110086400B/zh
Publication of CN110086400A publication Critical patent/CN110086400A/zh
Application granted granted Critical
Publication of CN110086400B publication Critical patent/CN110086400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

本申请提供一种机电伺服系统非线性变增益控制系统,该控制系统由控制驱动器和被控对象两部分组成,所述被控对象包括依次顺序连接的伺服电机、作动器以及喷管,伺服电机分别连接电流传感器和旋转变压器,作动器连接旋转变压器。本申请还提供一种控制方法,包括位置环控制方法、速度环控制方法以及电流环控制方法三部分。本发明可以大大提高机电伺服控制的控制精度,提高负载非线性特性的适应度,降低了系统振荡。

Description

一种机电伺服系统非线性变增益控制方法和系统
技术领域
本发明涉及机电伺服系统控制技术领域,尤其涉及一种机电伺服系统非线性变增益控制方法和系统。
背景技术
随着现今电力电子水平不断的提高,机电伺服系统以其高精度、高稳定性以及较好的测试性和维护性,被广泛应用在航天伺服领域中,成为了不可或缺的重要方案之一。然而,目前对机电伺服系统的控制主要是对伺服电机的位置环和速度环进行PID恒定参数调节,这种调节方式虽然可以实现对伺服电机的控制,但是控制精度低,负载适应性低,稳定性差,不能满足较为复杂的航天伺服负载系统的使用。
采用PI线性控制方程,但线性开关线方程并不一定是最佳的,导致被控对象要经过多次反复切换才能收敛于原点,从而产生抖振问题。
由机电伺服系统和负载系统组成综合系统中的摩擦会影响机电伺服系统的控制精度,甚至严重降低机电伺服系统的性能,并且摩擦力的表现形式较为复杂,普通的PID恒定参数控制方法中由于控制增益过高或过低可能导致其存在一定的抖振现象,影响实际应用,这已成了急需解决的技术问题。
发明内容
本发明公开一种机电伺服系统非线性变增益控制方法和系统,通过采用“位置环”、“速度坏”及“电流环”的“三环”控制方式,同时作用以改善系统的精度。在以上“三环”控制的“位置环”中采用了“PID调节器+性能补偿+陷波滤波动态补偿”的控制方法,“速度环”采用了PI调节器,“电流环”采用PI调节器结合反电势补偿及电阻补偿的控制方法。
本申请是通过如下技术方案实现的:
一种机电伺服系统非线性变增益控制系统,该控制系统由控制驱动器和被控对象两部分组成,
所述被控对象包括依次顺序连接的伺服电机、作动器以及喷管,伺服电机分别连接电流传感器和旋转变压器,作动器连接旋转变压器;
所述控制驱动器包括位置环控制单元、速度环控制单元、电流环控制单元以及第一积分器、第二积分器和第三积分器;
位置环控制单元通过第二积分器与速度环控制单元相连,速度环控制单元通过第三积分器与电流环控制单元相连;
所述位置环控制单元包括位置环PID、陷波滤波器、旋变转换系数、性能补偿环节,所述旋变转换系数与所述旋转变压器相连,性能补偿环节的输出与第一积分器的一路输入相连;
依次顺序连接的位置环PID和陷波滤波器与依次顺序连接的旋变转换系数和性能补偿环节共同构成了位置环主闭环。
进一步的,所述旋转变压器的输出端与第二积分器的一路输入相连。
进一步的,所述位置环控制单元经由第一积分器接收来自外部的总线控制指令给定输入,并向外部输出线位移摆角输出和线位移输出。
进一步的,所述电流传感器的输出端与第三积分器的一路输入相连。
进一步的,所述电流环控制单元的输出端连接所述被控对象中的所述伺服电机。
一种机电伺服系统非线性变增益控制方法,应用于如权利要求1至5之一所述的控制系统中,该控制方法包括位置环控制方法、速度环控制方法以及电流环控制方法三部分,
所述位置环控制方法具体包括:所述位置环控制单元采用伺服电机的旋转变压器作为位移反馈测量元件,参与位置环闭环控制,由旋转变压器测量得到电机转角,经减速比、丝杠导程折算后得到线位移值L,并将计算得到的线位移值输入旋变转换系数G5
所述速度环控制方法具体包括:伺服电机转速由旋转变压器解码后的角度值经微分后得到转速ω,并转换单位量纲为rpm后输入速度环PI,用于电机转速闭环控制;
所述电流环控制方法具体包括:Iq和Id电流控制指令与反馈量得到的误差经电流控制器调整后,经Park反变换驱动电机,电机相电流经Clarke-Park变换后得到Iq和Id作为电流反馈量,电流环控制单元采用PI调节器G4,结合反电势补偿及电阻补偿的控制方法,闭环控制周期0.1ms。
进一步的,所述旋转变压器采用14位解码方式,所述线位移值采用如下公式计算:
其中,丝杠导程Ph、减速比nc和旋变测量输入δ为已知量。
进一步的,位置环PID采用PID调节器G1,闭环周期1ms,PID调节器G1的传递函数采用如下公式计算:
其中位置环PID的输入量为总线控制指令θ,量纲为°,位置环PID的输出为速度环控制单元的输入ω,量纲为rpm;
所述转速ω采用如下公式计算:
其中转速ω的量纲为rpm,δt为本采样周期的旋变解码数,δt-1为上一采样周期的旋变解码数,dt为采样时间,量纲为s。
进一步的,速度环控制单元采用PI调节器G3,闭环控制周期1ms,PI调节器G3的传递函数采用如下公式计算:
速度环控制输入量为位置环输出ω,量纲为rpm,速度环控制器输出为电流环的输入I,量纲为A;
速度环比例系数采用非线性变增益控制方式,以位置环误差作为判别条件,速度环比例系数采用如下公式计算:
其中,Ep为位置环误差、K为速度环比例增益系数(基准系数)、Kpvd为速度环比例增益下限、Kpvu为速度换比例增益上限;
第二积分器为带有积分误差开关和饱和限幅的积分器,当速度误差|Ev|<Ev0时积分器开启,积分器达到饱和限幅值后停止积分并保持积分器输出值。
进一步的,所述PI调节器G4的传输函数采用如下公式计算:
电流环控制输入量为速度环控制输出I,量纲为A,电流环控制器输出为电机控制电压U,量纲为v。
与现有技术相比,本发明的优点在于:
1)本发明给出了运载火箭用机电伺服系统速度闭环非线性变增益速度闭环控制方法,并成功应用于某型固体运载火箭上。提高机电伺服控制的控制精度,提高负载非线性特性的适应度,降低了系统振荡;
2)本发明可以大大提高机电伺服控制的控制精度,提高负载非线性特性的适应度,降低了系统振荡。
附图说明
图1为本发明的机电伺服系统非线性变增益控制系统的组成结构框图;
图2为本发明的机电伺服系统非线性变增益控制系统的功能组成框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
下面将结合附图和实例对本发明作进一步的详细说明。
通过采用“位置环”、“速度环”及“电流环”的“三环”控制方式,同时为改善系统的精度,在以上“三环”控制的“位置环”中采用了“PID调节器+性能补偿+陷波滤波动态补偿”的控制方法,“速度环”采用了PI调节器,“电流环”采用PI调节器结合反电势补偿及电阻补偿的控制方法。
在位置环PID后增加陷波滤波器抑制综合谐振峰值,并综合考虑陷波环节对相位的影响,使其既起到抑制谐振的作用,同时在中频段不致引起过大的相位滞后,进而提高开环增益,改善系统的动态特性。通过仿真分析,伺服系统控制特性可满足动态特性需求。速度环采用PI调节器,其中比例控制部分中的比例系数采用非线性变增益控制方式,可以有针对性的对应负载非线性进行调整,实现机电伺服系统全任务周期的稳定和可靠。
图1为本发明的机电伺服系统非线性变增益控制系统的组成结构框图。
该机电伺服系统非线性变增益控制系统由控制驱动器和被控对象两部分组成,
所述控制驱动器包括位置环控制单元、速度环控制单元、电流环控制单元以及第一积分器、第二积分器和第三积分器;
位置环控制单元通过第二积分器与速度环控制单元相连,速度环控制单元通过第三积分器与电流环控制单元相连;
所述被控对象包括依次顺序连接的伺服电机、作动器以及喷管,伺服电机分别连接电流传感器和旋转变压器,作动器连接旋转变压器;
所述位置环控制单元包括位置环PID、陷波滤波器、旋变转换系数、性能补偿环节,所述旋变转换系数与所述旋转变压器相连,性能补偿环节的输出与第一积分器的一路输入相连;
依次顺序连接的位置环PID和陷波滤波器与依次顺序连接的旋变转换系数和性能补偿环节共同构成了位置环主闭环;
所述旋转变压器的输出端与第二积分器的一路输入相连;
所述位置环控制单元经由第一积分器接收来自外部的总线控制指令给定输入,并向外部输出线位移摆角输出和线位移输出;
所述电流传感器的输出端与第三积分器的一路输入相连;
所述电流环控制单元的输出端连接所述被控对象中的所述伺服电机。
图2为本发明的机电伺服系统非线性变增益控制系统的功能组成框图。
机电伺服系统非线性变增益控制系统通过采用“位置环”、“速度环”及“电流环”的“三环”控制方式,同时为改善系统的精度,在以上“三环”控制的“位置环”中采用了“PID调节器+性能补偿+陷波滤波动态补偿”的控制方法,“速度环”采用了PI调节器,“电流环”采用PI调节器结合反电势补偿及电阻补偿的控制方法。
(1)位置环控制
位置环主闭环采用旋变测量换算得到线位移,在经过性能补偿环节调整量纲后,作为闭环反馈量,参与闭环控制,旋转变压器测量值作为寻零和测量使用。
性能补偿环节中的系数G6采用三阶多项式计算,该系数为初始参数,实际使用参数需根据负载特性和使用工况进行参数修订。
采用伺服电机的旋转变压器作为位移反馈测量元件,充当了通常旋转变压器的作用,参与位置环闭环控制,由旋转变压器测量得到电机转角,经减速比、丝杠导程折算后得到线位移值L(单位mm),并将计算得到的线位移值输入旋变转换系数G5
所述旋转变压器采用14位解码方式,所述线位移值采用如下公式(1)计算:
其中,丝杠导程Ph、减速比nc和旋变测量输入δ为已知量。
上述旋转变压器所采用的14位解码方式,即16384(即214)码对应电机转子转一周,即360°转角。
位置环PID采用PID调节器G1,闭环周期1ms。PID调节器G1的传递函数采用如下公式(3):
其中位置环PID的输入量为总线控制指令θ,量纲为°,位置环PID的输出为速度环控制单元的输入ω,并设置限幅值ωm,ωm为位置环输出ω的最大限制值,为一设定值,为公式(3)的约束条件ω≤ωm,量纲为rpm;
(2)速度环控制
伺服电机转速由旋转变压器解码后的角度值经微分后得到转速,并转换单位量纲为rpm后输入速度环PI,用于电机转速闭环控制,转速ω采用如下公式计算:
其中ω为转速,量纲为rpm,δt为本采样周期的旋变解码数,δt-1为上一采样周期的旋变解码数,dt为采样时间,量纲为s。
速度反馈量由旋变反馈转角差分得到。速度环控制单元采用PI调节器G3,闭环控制周期1ms;PI调节器G3的传递函数采用如下公式计算:
速度环控制输入量为位置环输出ω,量纲为rpm,速度环控制器输出为电流环的输入I,量纲为A;
其中,速度环比例系数采用非线性变增益控制方式,以位置环误差作为判别条件,速度环比例系数采用如下公式计算:
其中,Ep为位置环误差、K为速度环比例增益系数(基准系数)、Kpvd为速度环比例增益下限、Kpvu为速度换比例增益上限。
第二积分器为带有积分误差开关和饱和限幅的积分器。当速度误差|Ev|<Ev0,Ev为经伺服电机旋转变压器测量得到速度值与速度环输入速度值之差(简称速度误差),Ev0为预先设定的速度误差的最大值,时积分器开启,积分器达到饱和限幅值后停止积分并保持积分器输出值。
(3)电流环控制:
Iq和Id电流控制指令与电流反馈量得到的误差经电流控制器调整后,经Park反变换驱动电机,所述电流反馈量为电机相电流经Clarke-Park变换后得到Iq和Id作为电流反馈量。
电流环控制单元采用PI调节器G4,结合反电势补偿及电阻补偿的控制方法,闭环控制周期0.1ms;PI调节器G4的传输函数采用如下公式计算:
电流环控制输入量为速度环控制输出I,量纲为A,电流环控制器输出为电机控制电压U,量纲为v。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现,相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。
需要说明的是,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

1.一种机电伺服系统非线性变增益控制系统,该控制系统由控制驱动器和被控对象两部分组成,其特征在于:
所述被控对象包括依次顺序连接的伺服电机、作动器以及喷管,伺服电机分别连接电流传感器和旋转变压器,作动器连接旋转变压器;
所述控制驱动器包括位置环控制单元、速度环控制单元、电流环控制单元以及第一积分器、第二积分器和第三积分器;
位置环控制单元通过第二积分器与速度环控制单元相连,速度环控制单元通过第三积分器与电流环控制单元相连;
所述位置环控制单元包括位置环PID、陷波滤波器、旋变转换系数、性能补偿环节,所述旋变转换系数与所述旋转变压器相连,性能补偿环节的输出与第一积分器的一路输入相连;
依次顺序连接的位置环PID和陷波滤波器与依次顺序连接的旋变转换系数和性能补偿环节共同构成了位置环主闭环。
2.根据权利要求1所述的控制系统,其特征在于,所述旋转变压器的输出端与第二积分器的一路输入相连。
3.根据权利要求1所述的控制系统,其特征在于,所述位置环控制单元经由第一积分器接收来自外部的总线控制指令给定输入,并向外部输出线位移摆角输出和线位移输出。
4.根据权利要求1所述的控制系统,其特征在于,所述电流传感器的输出端与第三积分器的一路输入相连。
5.根据权利要求1所述的控制系统,其特征在于,所述电流环控制单元的输出端连接所述被控对象中的所述伺服电机。
6.一种机电伺服系统非线性变增益控制方法,应用于如权利要求1至5之一所述的控制系统中,该控制方法包括位置环控制方法、速度环控制方法以及电流环控制方法三部分,其特征在于:
所述位置环控制方法具体包括:所述位置环控制单元采用伺服电机的旋转变压器作为位移反馈测量元件,参与位置环闭环控制,由旋转变压器测量得到电机转角,经减速比、丝杠导程折算后得到线位移值L,并将计算得到的线位移值输入旋变转换系数G5
所述速度环控制方法具体包括:伺服电机转速由旋转变压器解码后的角度值经微分后得到转速ω,并转换单位量纲为rpm后输入速度环PI,用于电机转速闭环控制;
所述电流环控制方法具体包括:Iq和Id电流控制指令与反馈量得到的误差经电流控制器调整后,经Park反变换驱动电机,电机相电流经Clarke-Park变换后得到Iq和Id作为电流反馈量,电流环控制单元采用PI调节器G4,结合反电势补偿及电阻补偿的控制方法,闭环控制周期0.1ms。
7.根据权利要求6所述的控制方法,其特征在于,所述旋转变压器采用14位解码方式,所述线位移值采用如下公式计算:
其中,丝杠导程Ph、减速比nc和旋变测量输入δ为已知量。
8.根据权利要求6所述的控制方法,其特征在于:
位置环PID采用PID调节器G1,闭环周期1ms,PID调节器G1的传递函数采用如下公式计算:
其中位置环PID的输入量为总线控制指令θ,量纲为°,位置环PID的输出为速度环控制单元的输入ω,量纲为rpm;
所述转速ω采用如下公式计算:
其中转速ω的量纲为rpm,δt为本采样周期的旋变解码数,δt-1为上一采样周期的旋变解码数,dt为采样时间,量纲为s。
9.根据权利要求6所述的控制方法,其特征在于:
速度环控制单元采用PI调节器G3,闭环控制周期1ms,PI调节器G3的传递函数采用如下公式计算:
速度环控制输入量为位置环输出ω,量纲为rpm,速度环控制器输出为电流环的输入I,量纲为A;
速度环比例系数采用非线性变增益控制方式,以位置环误差作为判别条件,速度环比例系数采用如下公式计算:
其中,Ep为位置环误差、K为速度环比例增益系数(基准系数)、Kpvd为速度环比例增益下限、Kpvu为速度换比例增益上限;
第二积分器为带有积分误差开关和饱和限幅的积分器,当速度误差|Ev|<Ev0时积分器开启,积分器达到饱和限幅值后停止积分并保持积分器输出值。
10.根据权利要求6所述的控制方法,其特征在于:
所述PI调节器G4的传输函数采用如下公式计算:
电流环控制输入量为速度环控制输出I,量纲为A,电流环控制器输出为电机控制电压U,量纲为v。
CN201910369975.4A 2019-05-06 2019-05-06 一种机电伺服系统非线性变增益控制方法和系统 Active CN110086400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910369975.4A CN110086400B (zh) 2019-05-06 2019-05-06 一种机电伺服系统非线性变增益控制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910369975.4A CN110086400B (zh) 2019-05-06 2019-05-06 一种机电伺服系统非线性变增益控制方法和系统

Publications (2)

Publication Number Publication Date
CN110086400A true CN110086400A (zh) 2019-08-02
CN110086400B CN110086400B (zh) 2021-03-23

Family

ID=67418716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910369975.4A Active CN110086400B (zh) 2019-05-06 2019-05-06 一种机电伺服系统非线性变增益控制方法和系统

Country Status (1)

Country Link
CN (1) CN110086400B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103792A (zh) * 2020-01-07 2020-05-05 上海节卡机器人科技有限公司 机器人控制方法、装置、电子设备及可读存储介质
CN111697901A (zh) * 2020-06-24 2020-09-22 浙江大华技术股份有限公司 一种伺服电机的控制方法、控制设备及控制系统
CN111880283A (zh) * 2020-08-24 2020-11-03 长春通视光电技术有限公司 一种变焦距光学系统的控制系统
CN111969895A (zh) * 2020-08-04 2020-11-20 清能德创电气技术(北京)有限公司 一种电机抱闸失效状态下的安全停机方法及系统
CN112671272A (zh) * 2020-11-25 2021-04-16 河北汉光重工有限责任公司 一种直流力矩电机启动过程精确控制方法
CN112994528A (zh) * 2021-03-01 2021-06-18 东莞普莱信智能技术有限公司 一种mini Led倒装巨量转移控制系统与控制方法
CN113206627A (zh) * 2021-06-01 2021-08-03 大连法斯特尔机电有限责任公司 一种高精度和高动态响应的伺服电机主轴准停控制方法
CN113325703A (zh) * 2021-04-25 2021-08-31 北京理工大学 一种抑制谐振的自抗扰控制器及其设计方法
CN114095872A (zh) * 2021-11-24 2022-02-25 南京工程学院 基于机器视觉反馈的快速定位系统和方法
CN114407010A (zh) * 2021-12-31 2022-04-29 航天科工智能机器人有限责任公司 零力控制方法、装置、电子设备及存储介质
CN114476864A (zh) * 2022-01-13 2022-05-13 北京精密机电控制设备研究所 一种机电伺服柔索驱动装置的控制方法
CN117193403A (zh) * 2023-09-07 2023-12-08 上海莘汭驱动技术有限公司 一种双通道旋变发送机控制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202634339U (zh) * 2012-03-09 2012-12-26 中国船舶重工集团公司第七一三研究所 双电机并联驱动装置
JP2013039015A (ja) * 2011-08-08 2013-02-21 Shinji Aranaka 永久磁石同期電動機の駆動制御方法
CN104617845A (zh) * 2015-01-23 2015-05-13 苏州汇川技术有限公司 伺服电机系统增益参数自调整方法及系统
CN104660134A (zh) * 2015-02-27 2015-05-27 北京精密机电控制设备研究所 永磁同步伺服电机电流环控制方法
CN106655956A (zh) * 2016-11-17 2017-05-10 北京特种机械研究所 伺服控制系统机械谐振抑制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039015A (ja) * 2011-08-08 2013-02-21 Shinji Aranaka 永久磁石同期電動機の駆動制御方法
CN202634339U (zh) * 2012-03-09 2012-12-26 中国船舶重工集团公司第七一三研究所 双电机并联驱动装置
CN104617845A (zh) * 2015-01-23 2015-05-13 苏州汇川技术有限公司 伺服电机系统增益参数自调整方法及系统
CN104660134A (zh) * 2015-02-27 2015-05-27 北京精密机电控制设备研究所 永磁同步伺服电机电流环控制方法
CN106655956A (zh) * 2016-11-17 2017-05-10 北京特种机械研究所 伺服控制系统机械谐振抑制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨明等: "永磁交流伺服系统定位末端抖动抑制", 《电机与控制学报》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103792A (zh) * 2020-01-07 2020-05-05 上海节卡机器人科技有限公司 机器人控制方法、装置、电子设备及可读存储介质
CN111697901A (zh) * 2020-06-24 2020-09-22 浙江大华技术股份有限公司 一种伺服电机的控制方法、控制设备及控制系统
CN111697901B (zh) * 2020-06-24 2021-08-27 浙江大华技术股份有限公司 一种伺服电机的控制方法、控制设备及控制系统
CN111969895A (zh) * 2020-08-04 2020-11-20 清能德创电气技术(北京)有限公司 一种电机抱闸失效状态下的安全停机方法及系统
CN111880283A (zh) * 2020-08-24 2020-11-03 长春通视光电技术有限公司 一种变焦距光学系统的控制系统
CN112671272A (zh) * 2020-11-25 2021-04-16 河北汉光重工有限责任公司 一种直流力矩电机启动过程精确控制方法
CN112994528A (zh) * 2021-03-01 2021-06-18 东莞普莱信智能技术有限公司 一种mini Led倒装巨量转移控制系统与控制方法
CN112994528B (zh) * 2021-03-01 2021-10-22 东莞普莱信智能技术有限公司 一种mini Led倒装巨量转移控制系统与控制方法
CN113325703A (zh) * 2021-04-25 2021-08-31 北京理工大学 一种抑制谐振的自抗扰控制器及其设计方法
CN113206627A (zh) * 2021-06-01 2021-08-03 大连法斯特尔机电有限责任公司 一种高精度和高动态响应的伺服电机主轴准停控制方法
CN113206627B (zh) * 2021-06-01 2023-09-15 大连法斯特尔机电有限责任公司 一种高精度和高动态响应的伺服电机主轴准停控制方法
CN114095872A (zh) * 2021-11-24 2022-02-25 南京工程学院 基于机器视觉反馈的快速定位系统和方法
CN114407010A (zh) * 2021-12-31 2022-04-29 航天科工智能机器人有限责任公司 零力控制方法、装置、电子设备及存储介质
CN114407010B (zh) * 2021-12-31 2024-03-19 航天科工智能机器人有限责任公司 零力控制方法、装置、电子设备及存储介质
CN114476864A (zh) * 2022-01-13 2022-05-13 北京精密机电控制设备研究所 一种机电伺服柔索驱动装置的控制方法
CN114476864B (zh) * 2022-01-13 2024-05-10 北京精密机电控制设备研究所 一种机电伺服柔索驱动装置的控制方法
CN117193403A (zh) * 2023-09-07 2023-12-08 上海莘汭驱动技术有限公司 一种双通道旋变发送机控制系统及方法

Also Published As

Publication number Publication date
CN110086400B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
CN110086400A (zh) 一种机电伺服系统非线性变增益控制方法和系统
CN108551287B (zh) 车用内置式永磁同步电机驱动系统转矩闭环控制方法
CN109756166B (zh) 永磁同步电机双闭环矢量控制pi调节器参数整定方法
CN108069021B (zh) 一种舵机及其控制系统
CN110572091B (zh) 一种优化永磁同步电机无传感器控制方法
CN110739893B (zh) 一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法
CN105811840B (zh) 一种永磁同步伺服电机的无差拍电流控制方法
CN101446803A (zh) 伺服跟踪系统控制器
CN106655938A (zh) 基于高阶滑模方法的永磁同步电机控制系统及控制方法
CN106788059B (zh) 高动态电机伺服控制系统的延时补偿方法
CN111817638A (zh) 永磁同步直线电机平台的相位超前线性自抗扰控制器
CN113364377A (zh) 一种永磁同步电机自抗扰位置伺服控制方法
CN104579090A (zh) 一种永磁同步电机功率补偿控制系统及方法
CN110620533A (zh) 一种表贴式永磁同步电机无传感器控制方法
CN110649845A (zh) 基于鲁棒广义预测控制的光电转台位置跟踪控制方法
CN113676088B (zh) 带有谐波抑制的永磁同步电机无速度传感器控制方法
KR100967665B1 (ko) 저속 영역에서의 전동기 속도 제어 시스템 및 속도 제어방법
CN111416562B (zh) 一种电机的控制方法及系统
CN109884881A (zh) 一种基于非线性pid控制技术的稳瞄伺服控制器的设计
CN112859608A (zh) 一种基于rbf神经网络补偿的自适应动态面控制方法
CN116805849A (zh) 一种永磁同步电机的连续集模型预测控制方法
CN109889113A (zh) 一种基于自抗扰控制的永磁电机变数扫描控制系统
CN113067506B (zh) 内模型等价输入干扰的永磁同步电机周期扰动抑制方法
CN111211720B (zh) 永磁同步电机控制器电流环pi参数整定方法
CN108891578B (zh) 一种飞机主动侧杆系统的配平控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant