CN110078502B - 一种提高8ysz硬度的方法 - Google Patents

一种提高8ysz硬度的方法 Download PDF

Info

Publication number
CN110078502B
CN110078502B CN201910408957.2A CN201910408957A CN110078502B CN 110078502 B CN110078502 B CN 110078502B CN 201910408957 A CN201910408957 A CN 201910408957A CN 110078502 B CN110078502 B CN 110078502B
Authority
CN
China
Prior art keywords
8ysz
powder
ceramic
hardness
ceramic wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910408957.2A
Other languages
English (en)
Other versions
CN110078502A (zh
Inventor
林枞
周世勇
黄雨铭
吴啸
李含影
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910408957.2A priority Critical patent/CN110078502B/zh
Publication of CN110078502A publication Critical patent/CN110078502A/zh
Application granted granted Critical
Publication of CN110078502B publication Critical patent/CN110078502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种提高8YSZ陶瓷硬度的方法,该方法主要是通过初期加入液相介质来调节溶液的pH值,从而改变8YSZ粉体在溶液中的溶解度,为了增加溶解量的情况下,促进8YSZ初期烧结的溶解‑沉淀过程,从而增加8YSZ陶瓷的致密度和硬度,既简化了8YSZ制备中的烧结过程,相对于去离子水烧结的陶瓷,明显的进一步提高密度及硬度。而且,在电化学性能没有明显降低的情况下了完成了简化工艺、节约能源的目的。

Description

一种提高8YSZ硬度的方法
技术领域
本发明属于8YSZ陶瓷材料及冷烧技术的应用领域,具体涉及一种提高8YSZ陶瓷硬度的方法。
背景技术
ZrO2具有优良的耐热隔热性能、光学性能、电性能、机械性能以及化学稳定性,可用于热障涂层、绝缘层、耐磨、耐蚀涂层以及光电器件等,因而广泛用于航空航天、钢铁冶金、机械制造、光学、电学等领域。在常温、常压下,纯氧化锆共有三种晶态:单斜氧化锆(m-ZrO2)、四方氧化锆(t- ZrO2)和立方氧化锆(c-ZrO2),这三种晶型在不同的温度范围能稳定存在,但若条件变化则其也会发生相互转化。8YSZ是一种立方相的氧化锆,在较高温度下有很好的离子导电性,其应用及研究一直是近年来的研究热点。8YSZ的烧结温度较高,达1400℃才能使8YSZ达到所需的致密度,在电池中起到传输氧离子、阻隔阴极和阳极的作用。提高8YSZ的密度和硬度,有利于提高其在使用过程中的使用寿命,同时也有助于提高制备过程中的成品率。通常需要提高烧结温度或者添加其他物质才能实现密度和硬度的提高。
本发明通过对8YSZ陶瓷工艺制备进行改进,利用酸性物质溶液作为初期烧结介质,从而促进对8YSZ粉体的溶解,得到密度更高,硬度更大的8YSZ陶瓷。酸性溶液的掺杂可以降低8YSZ的烧结温度,使其在较低温度下就能达到所需的致密度,并且增大晶粒尺寸,从而提高其硬度和电导率。
发明内容
由于YSZ陶瓷制备的成本比较高,在制备过程中,需要较高的烧结温度。所以,本发明的目的主要是在于提供一种新的8YSZ陶瓷成型方式,在减少烧结助剂使用的情况下,也简化了传统的造粒过程。并且保证8YSZ的致密度大幅度提升,同时YSZ陶瓷硬度也明显增加。该方法主要是通过初期加入液相来与粉体相互混合,从而利用水中的氢及氢氧根与锆氧键相互作用,并且使得粉体表面变得相对湿润。为了增加粉体与液体的相互作用,我们改变了液体的酸碱度,从而增加YSZ陶瓷的致密度和硬度,既简化了YSZ制备中的烧结过程,相对于传统烧结的陶瓷,明显的进一步提高密度及硬度。而且,在电化学性能没有明显降低的情况下了完成了简化工艺、节约能源的目的。
为了实现上述的技术目的,本发明的技术方案为:
一种提高8YSZ硬度的方法,包括以下步骤:
1)称取适量的酸性物质,滴入去离子水后,通过pH试纸调控,获得pH值为1-6的偏酸性溶液;
2)称取一定量的8YSZ粉末,加入酒精进行球磨后,在80℃下干燥,获得粒径均匀(150-200nm)的8YSZ粉体;
3)称取适量的8YSZ粉体,倒入研钵中,再滴入8YSZ粉体质量5%-20%的步骤1)中所制得的偏酸性溶液,混合研磨至均匀;
4)将步骤3)混合后的8YSZ粉体放入磨具中,置于液压机中,其中温度和压力分别设定为120-300℃和200-500MPa,进行压制成型,保压10-60min后得到8YSZ陶瓷生坯;
5)取出模具中的8YSZ陶瓷生坯,置于马弗炉中烧结2-10h,烧结温度设定为1100-1400℃,得到8YSZ陶瓷片;
6)将所得的8YSZ陶瓷片再次放入马弗炉中,让其在600-800℃下进行退火4小时,退火后即为陶瓷片成品。
步骤1)中的酸性物质为乙酸、甲酸、柠檬酸或硝酸。
本发明采用该技术方案后,可以使8YSZ在更低的温度下完成烧结,并且烧结后获得非常理想的机械强度。通过添加酸性物质,可以进一步提高机械强度。拓展8YSZ的应用范围。研究发现,8YSZ在加入酸性溶液后,经过初步加热加压,所获得的坯体密度会有大幅度的提升。溶液可以有效填补陶瓷中的孔隙,从而更加快速的完成烧结过程。陶瓷烧结温度大幅度降低,密度也明显提高,在不降低导电性的情况下,明显提高了8YSZ的强度。与现有的技术相比,该发明的有益效果为:
(1)通过该发明方法获得8YSZ生坯相对密度达到了65%以上,在1000℃~1200℃烧结下的致密度与传统的1400℃下的致密度还要高出很多,烧结后的相对密度可以达到95%以上。
(2)该方法制得的8YSZ有更好的机械强度和电导率,并且明显降低了烧结温度,使得8YSZ在SOFC的应用中有望实现三级共烧及提高SOFC的界面贴合性和电学性能。
附图说明
图1是实施例1-3以及对比例制得的YSZ陶瓷硬度对比图;
图2是实施例1-3及对比例制得的YSZ陶瓷的扫描电镜图。
具体实施方式
一种提高YSZ硬度的方法,包括以下步骤:
1)称取适量的酸性物质,滴入去离子水后,通过pH试纸调控,获得pH值为1-6的偏酸性溶液;
2)称取一定量的8YSZ粉末,加入酒精进行球磨后,在80℃下干燥,获得粒径均匀(150-200nm)的8YSZ粉体;
3)称取适量的8YSZ粉体,倒入研钵中,再滴入8YSZ粉体质量5%-20%的步骤1)中所制得的偏酸性溶液,混合研磨至均匀;
4)将湿润的8YSZ粉体放入磨具中,置于液压机中,其中温度和压力分别设定为120-300℃和200-500MPa,进行压制成型,保压10-60min后得到8YSZ陶瓷生坯;
5)取出模具中的8YSZ陶瓷生坯,置于马弗炉中烧结2-10h,烧结温度设定为1100-1400℃,得到8YSZ陶瓷片;
6)将所得的8YSZ陶瓷片再次放入马弗炉中,让其在600-800℃下进行退火4小时,退火后即为陶瓷片成品。
步骤1)中的酸性物质为乙酸、甲酸、柠檬酸或硝酸。
下面结合附图和具体实施方式对本发明做进一步的阐述:
实施例1
一种提高YSZ硬度的方法,包括以下步骤:
1)用量筒称取适量的乙酸,滴入去离子水后,通过pH试纸调控,获得pH值为3的乙酸溶液;
2)称取5g的8YSZ粉末,加入酒精进行球磨后,在80℃下干燥,获得粒径较为均匀(150-200nm)的8YSZ粉体;
3)称取0.3g的8YSZ粉体,倒入研钵中,再滴入8YSZ粉体质量20%的步骤1)中所制得的乙酸溶液,混合研磨至均匀;
4)将湿润的8YSZ粉体放入磨具中,置于液压机中,其中温度和压力分别设定为120℃和350MPa,进行压制成型,保压30min后得到8YSZ陶瓷生坯;
5)取出模具中的8YSZ陶瓷生坯,置于马弗炉中烧结4h,烧结温度设定为1200℃,得到8YSZ陶瓷片;
6)将所得的8YSZ陶瓷片再次放入马弗炉中,让其在600℃下进行退火4小时,退火后即为陶瓷片成品通过维氏硬度仪测得其硬度为11.5GPa,相对密度达到97.8%。
实施例2
一种提高YSZ硬度的方法,包括以下步骤:
1)用量筒称取适量的柠檬酸,滴入去离子水后,通过pH试纸调控,获得pH值为3的柠檬酸溶液;
2)称取5g的8YSZ粉末,加入酒精进行球磨后,在80℃下干燥,获得粒径较为均匀(150-200nm)的8YSZ粉体;
3)称取0.3g的8YSZ粉体,倒入研钵中,再滴入8YSZ粉体质量20%的步骤1)中所制得的柠檬酸溶液,混合研磨至均匀;
4)将湿润的8YSZ粉体放入磨具中,置于液压机中,其中温度和压力分别设定为150℃和350MPa,进行压制成型,保压20min后得到8YSZ陶瓷生坯;
5)取出模具中的8YSZ陶瓷生坯,置于马弗炉中烧结4h,烧结温度设定为1200℃,得到8YSZ陶瓷片;
6)将所得的8YSZ陶瓷片再次放入马弗炉中,让其在700℃下进行退火4小时,退火后即为陶瓷片成品通过维氏硬度仪测得其硬度为10.1GPa,相对密度达到95.8%。
实施例3
一种提高YSZ陶瓷硬度的方法,包括以下步骤:
1)用量筒称取适量的乙酸,滴入去离子水后,通过pH试纸调控,获得pH值为5的乙酸溶液;
2)称取5g的8YSZ粉末,加入酒精进行球磨后,在80℃下干燥,获得粒径较为均匀(150-200nm)的8YSZ粉体;
3)称取0.3g的8YSZ粉体,倒入研钵中,再滴入8YSZ粉体质量10%的步骤1)中所制得的乙酸溶液,混合研磨至均匀;
4)将湿润的8YSZ粉体放入磨具中,置于液压机中,其中温度和压力分别设定为120℃和350MPa,进行压制成型,保压30min后得到8YSZ陶瓷生坯;
5)取出模具中的8YSZ陶瓷生坯,置于马弗炉中烧结4h,烧结温度设定为1100℃,最终得到8YSZ陶瓷片;
6)将所得的8YSZ陶瓷片再次放入马弗炉中,让其在800℃下进行退火4小时,退火后即为陶瓷片成品通过维氏硬度仪测得其硬度为9.5GPa,相对密度达到93.9%。
对比例
一种提高YSZ硬度的方法,包括以下步骤:
1)用量筒称取适量的去离子水;
2)称取5g的8YSZ粉末,加入酒精进行球磨后,在80℃下干燥,获得粒径较为均匀(150-200nm)的8YSZ粉体;
3)称取0.3g的8YSZ粉体,倒入研钵中,再滴入8YSZ粉体质量20%的步骤1)中的去离子水,混合研磨至均匀;
4)将湿润的8YSZ粉体放入磨具中,置于液压机中,其中温度和压力分别设定为150℃和350MPa,进行压制成型,保压20min后得到8YSZ陶瓷生坯;
5)取出模具中的8YSZ陶瓷生坯,置于马弗炉中烧结4h,烧结温度设定为1200℃,得到8YSZ陶瓷片;
6)将所得的8YSZ陶瓷片再次放入马弗炉中,让其在700℃下进行退火4小时,退火后即为陶瓷片成品通过维氏硬度仪测得其硬度为8.1GPa,相对密度为82.5%.
图1反应了实例1-3及对比例中的硬度大小,说明了加入酸性物质有利于提高8YSZ陶瓷的硬度。
图2反应了实例1-3及对比例中陶瓷的致密度情况,可以看出8YSZ在加入酸性物质的情况下,密度有明显的提高。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.一种提高8YSZ硬度的方法,其特征在于:其包括以下步骤:
1)称取适量的酸性物质,滴入去离子水后,通过pH试纸调控,获得pH值为1-6的偏酸性溶液;
2)称取一定量的8YSZ粉末,加入酒精进行球磨后,在80℃下干燥,获得粒径为150-200nm的8YSZ粉体;
3)称取适量的8YSZ粉体,倒入研钵中,再滴入8YSZ粉体质量5%-20%的步骤1)中所制得的偏酸性溶液,混合研磨至均匀;
4)将湿润的8YSZ粉体放入磨具中,置于液压机中,其中温度和压力分别设定为120-300℃和200-500MPa,进行压制成型,保压10-60min后得到8YSZ陶瓷生坯;
5)取出模具中的8YSZ陶瓷生坯,置于马弗炉中烧结2-10h,烧结温度设定为1100-1400℃,得到8YSZ陶瓷片;
6)将所得的8YSZ陶瓷片再次放入马弗炉中,让其在600-800℃下进行退火4小时,退火后即为陶瓷片成品;
步骤1)中的酸性物质为乙酸、甲酸、柠檬酸或硝酸。
CN201910408957.2A 2019-05-17 2019-05-17 一种提高8ysz硬度的方法 Active CN110078502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910408957.2A CN110078502B (zh) 2019-05-17 2019-05-17 一种提高8ysz硬度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910408957.2A CN110078502B (zh) 2019-05-17 2019-05-17 一种提高8ysz硬度的方法

Publications (2)

Publication Number Publication Date
CN110078502A CN110078502A (zh) 2019-08-02
CN110078502B true CN110078502B (zh) 2021-07-13

Family

ID=67420479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910408957.2A Active CN110078502B (zh) 2019-05-17 2019-05-17 一种提高8ysz硬度的方法

Country Status (1)

Country Link
CN (1) CN110078502B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362913A (ja) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd 固体酸化物形燃料電池用電解質及びその製造方法
CN101811874A (zh) * 2010-04-14 2010-08-25 邓旭亮 一种纳米氧化锆复合陶瓷的合成方法
CN102167586A (zh) * 2011-01-20 2011-08-31 中南大学 一种低温活化烧结8ysz基陶瓷及制备方法
CN102219534A (zh) * 2011-04-27 2011-10-19 中国地质大学(武汉) 一种制备纳米氧化物浆体的方法
CN103319182A (zh) * 2013-07-04 2013-09-25 清华大学 一种高性能固体氧化物电解池支撑体
CN104402456A (zh) * 2014-10-31 2015-03-11 中航复合材料有限责任公司 一种自发泡注模凝胶成型多孔陶瓷的方法
CN104803678A (zh) * 2015-04-14 2015-07-29 上海大学 一种用作固体透氧膜的注浆法制备氧化钇稳定氧化锆管的方法
CN104918577A (zh) * 2012-08-03 2015-09-16 3M创新有限公司 用于氧化锆陶瓷的半透明度增强溶液
CN107673757A (zh) * 2017-09-22 2018-02-09 广东百工新材料科技有限公司 一种陶瓷手机后盖及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101204140B1 (ko) * 2010-07-26 2012-11-22 삼성전기주식회사 고체 산화물 연료 전지 및 그 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362913A (ja) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd 固体酸化物形燃料電池用電解質及びその製造方法
CN101811874A (zh) * 2010-04-14 2010-08-25 邓旭亮 一种纳米氧化锆复合陶瓷的合成方法
CN102167586A (zh) * 2011-01-20 2011-08-31 中南大学 一种低温活化烧结8ysz基陶瓷及制备方法
CN102219534A (zh) * 2011-04-27 2011-10-19 中国地质大学(武汉) 一种制备纳米氧化物浆体的方法
CN104918577A (zh) * 2012-08-03 2015-09-16 3M创新有限公司 用于氧化锆陶瓷的半透明度增强溶液
CN103319182A (zh) * 2013-07-04 2013-09-25 清华大学 一种高性能固体氧化物电解池支撑体
CN104402456A (zh) * 2014-10-31 2015-03-11 中航复合材料有限责任公司 一种自发泡注模凝胶成型多孔陶瓷的方法
CN104803678A (zh) * 2015-04-14 2015-07-29 上海大学 一种用作固体透氧膜的注浆法制备氧化钇稳定氧化锆管的方法
CN107673757A (zh) * 2017-09-22 2018-02-09 广东百工新材料科技有限公司 一种陶瓷手机后盖及其制备方法

Also Published As

Publication number Publication date
CN110078502A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
JP5405591B2 (ja) 固体酸化物型燃料電池スタック用の共ドープysz電解質
JP5311913B2 (ja) 高イオン導電性固体電解質材料の製造方法
KR101892909B1 (ko) 프로톤 전도성 산화물 연료전지의 제조방법
CN1700494A (zh) 浸渍成型管式固体氧化物燃料电池的方法
CN104393318B (zh) 一种燃料电池陶瓷质子交换膜及其制备方法
KR20120121570A (ko) 고속혼합에 의한 니켈/지르코니아 코어쉘 형성방법 및 이를 이용 고온열처리에 의해 균일 배열 나노구조 연료극막 제조방법
KR20060005570A (ko) 상호침투형 복합구조를 가지는 고체산화물 연료전지의연료극 및 이의 제조방법
CN111933980A (zh) 固体氧化物燃料电池的制备方法
CN108808047A (zh) LSCF/Na2CO3纳米复合材料为燃料电池离子传输层的制备方法
CN110078502B (zh) 一种提高8ysz硬度的方法
CN110817954B (zh) 一种固体电解质、其制备方法及固体氧化物燃料电池
CN107117969A (zh) 一种氧化钇透明陶瓷的制备方法
CN101510612B (zh) 以纸纤维作造孔剂制备多孔阳极支撑体的方法
KR100660218B1 (ko) 고체산화물 연료전지용 음극재의 제조방법
CN104347886A (zh) 一种燃料电池陶瓷质子交换膜材料及其应用
CN112537958B (zh) 一种锆酸镧锂固态电解质及其制备方法
CN108808040B (zh) 一种氧分压控制装置及其制备方法
CN108682884A (zh) 一种中温固体氧化物燃料电池氧离子型复合电解质及制备方法
Li et al. High-pressure sintered yttria stabilized zirconia ceramics
JP2007311060A (ja) 固体酸化物形燃料電池用の酸化ニッケル粉末の組成物、その製造方法及びそれを用いた燃料極材料
CN110078503B (zh) 一种低温烧结8ysz电解质的方法
JP2012119327A (ja) 高イオン導電性固体電解質材料及び焼結体、並びに、固体電解質型燃料電池
JP4184039B2 (ja) 酸素イオン伝導性固体電解質並びにこれを用いた電気化学デバイス及び固体電解質型燃料電池
CN104628376A (zh) 一种制备透明陶瓷激光棒的离心成型方法
WO2010135416A1 (en) Ion conducting composite electrolyte for solid state electrochemical devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant