CN110066184A - 一种用于制备非晶薄带的氮化硼基喷嘴耐火材料及其制备方法 - Google Patents

一种用于制备非晶薄带的氮化硼基喷嘴耐火材料及其制备方法 Download PDF

Info

Publication number
CN110066184A
CN110066184A CN201910520160.1A CN201910520160A CN110066184A CN 110066184 A CN110066184 A CN 110066184A CN 201910520160 A CN201910520160 A CN 201910520160A CN 110066184 A CN110066184 A CN 110066184A
Authority
CN
China
Prior art keywords
powder
refractory material
boron nitride
preparation
amorphous thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910520160.1A
Other languages
English (en)
Inventor
廖宁
李亚伟
桑绍柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201910520160.1A priority Critical patent/CN110066184A/zh
Publication of CN110066184A publication Critical patent/CN110066184A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种用于制备非晶薄带的氮化硼基喷嘴耐火材料及其振荡烧结制备方法,涉及一种耐火材料及其制备方法。目的是解决用于制备非晶薄带的氮化硼基喷嘴耐火材料的力学性能、抗热震性和抗高温变形能力差,以及使用寿命短的问题。喷嘴耐火材料由60~70wt%的六方氮化硼、5~10wt%的碳化硅、10~15wt%的碳酸钙和余量的氧化锆制备而成。首先进行原料的球磨混合得到分散均匀的陶瓷浆料,然后对陶瓷浆料进行喷雾干燥造粒处理,最后进行振荡烧结,即完成。其中喷雾干燥和造粒同时完成。本发明实现了烧结致密化,制备的耐火材料的力学性能、抗热震性、抗高温变形能力和耐合金腐蚀能力显著提高。本发明适用于制备氮化硼基耐火材料。

Description

一种用于制备非晶薄带的氮化硼基喷嘴耐火材料及其制备 方法
技术领域
本发明涉及一种耐火材料及其制备方法。
背景技术
非晶薄带具有高磁导率,高电阻率,低矫顽力等优异的软磁性能,具有广阔的应用前景。非晶态合金软磁材料是新一代绿色软磁合金,其制造流程短,生产过程节能,是近十年来发展最快的金属材料之一。目前非晶态合金薄带主要采用单辊快淬法生产,具体为:熔融状态的合金通过喷嘴的狭缝与快速移动的冷却基质接触后快速冷却、凝固,获得20~40μm厚的非晶合金薄带。非晶合金薄带的宽度取决于喷嘴的嘴缝长度;而非晶合金薄带的厚度主要取决于喷嘴的嘴缝宽度,一般嘴缝宽度在0.3~0.9mm范围可以获得满足要求的非晶合金薄带。熔融状态的合金从喷嘴的狭缝中喷出,被移动的冷却基质以105℃/s速率冷却凝固,从而生产出连续的非晶带材。
喷嘴是实现合金快速凝固装置中的关键部件,苛刻的工作条件要求喷嘴具有优异的抗热震性、抗高速气流冲击、抗高温熔融金属的冲刷、抗熔融合金腐蚀性以及抗氧化性等。截至目前,对非晶薄带喷嘴用耐火材料的针对性研究还较少。公开号为CN102909330A、名称为“喷制非晶合金薄带的金属喷嘴”的专利公开了一种具有强度高和韧性好的金属喷嘴,但是高温下其与合金的相互作用不能忽略,没有得到推广。
由于BN基陶瓷具有较好的抗热震性和可加工性,适合制备非晶薄带喷嘴。但单纯的氮化硼材质抗热应力和机械应力冲击能力都较弱,使用一段时间后,很快就会出现喷口变形、喷道被熔融液体冲击成流沟,造成喷出带材厚度不均匀。专利“氮化硼基陶瓷喷嘴及其制备方法”(公开号为CN103626498A)公开了一种含有BN,SiC,ZrO2,Al2O3,Y2O3和CaZrO3的喷嘴材料,其致密度和抗热冲击能力提高,但是在高温合金浇铸中Al2O3和大量的SiC会向合金中溶解并逐渐析出氧化物夹杂,导致制备的非晶带材质量下降。为了提高BN喷嘴的使用寿命,“提高BN喷嘴寿命的方法”(公开号为CN104591797)、“提高氮化硼喷嘴寿命的方法”(公开号为CN104451533A)、“提高非晶制带用BN喷嘴寿命的方法”(公开号为CN104439131A)等专利技术在BN喷嘴内部喷涂一层0.15~0.20mm的Si3N4、AlN或Si(6-x)AlxOxN(8-x)涂层。但是,上述专利并未考虑涂层的转化效率,而且涂层与BN基体的结合强度较弱还有可能导致涂层脱落,反而不利于提高寿命和非晶带材的浇铸。“一种喷嘴用耐火材料及其制备方法”(公开号为CN104446389A)公开了以氧化铝为主,二氧化硅和膨润土为辅料,配以BN纳米管为增强相的喷嘴材料。该技术虽然可以提高耐磨性,但是抗热震性和耐合金腐蚀能力不能媲美BN基喷嘴材料,而且制备成本较高。
综合来看,虽然喷嘴材料的理想体系为BN基陶瓷,但是国内在非晶薄带制备用氮化硼基喷嘴材料体系的研发投入还较少。目前,BN基喷嘴耐火材料难以烧结致密化,导致材料的力学性能和抗热震性较差。力学性能上,弯曲强度低于200Mpa,抗热震性上,1000℃热震后残余强度保持率低于70%。传统的BN基材料中引入的较多的烧结助剂弱化了耐合金腐蚀的能力,一般的制备喷嘴的耐火材料中烧结助剂的添加量达到30~50vol.%。因此,开发性能优异的BN基非晶薄带喷嘴材料受到本领域技术人员的广泛关注。
发明内容
本发明为了解决现有用于制备非晶薄带的BN基陶瓷材料力学性能、抗热震性和耐合金腐蚀的能力差的问题,提出一种用于制备非晶薄带的氮化硼基喷嘴耐火材料及其制备方法。
本发明用于制备非晶薄带的氮化硼基喷嘴耐火材料由60~70wt%的六方氮化硼、5~10wt%的碳化硅、10~15wt%的碳酸钙和余量的氧化锆制备而成。
上述的用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法按照以下步骤进行:首先进行原料的球磨混合得到分散均匀的陶瓷浆料,然后对陶瓷浆料进行喷雾干燥造粒处理,最后进行振荡烧结,即完成。其中喷雾干燥和造粒同时完成。
进一步的,所述原料由h-BN粉、SiC粉,ZrO2粉和CaCO3粉组成。
进一步的,所述h-BN为粒径0.3~0.6μm的亚微米h-BN粉;SiC为粒径≤40nm的纳米SiC粉;ZrO2为粒径≤40nm的纳米ZrO2粉;CaCO3为粒径≤40nm的纳米CaCO3粉。
进一步的,所述h-BN粉的纯度为98~99.9%,SiC粉的纯度为98~99.9%,ZrO2粉的纯度为98~99.9%,CaCO3粉的纯度为98~99.9%。
进一步的,所述原料中h-BN粉的含量为60~70wt%,SiC粉的含量为5~10wt%,CaCO3粉的含量为10~15wt%,ZrO2粉为余量。
进一步的,所述原料的球磨混合过程中采用的球磨介质为无机球磨介质。
进一步的,所述无机球磨介质为去离子水。
进一步的,所述原料的球磨混合过程中,氧化锆球与原料的质量比为(10~20):1,球磨时间为4~8h。
进一步的,所述对陶瓷浆料进行喷雾干燥造粒处理后,得到的粉体的粒径为5~15μm。
进一步的,所述振荡烧结工艺为:烧结温度为1600~1800℃,烧结压力为30~50MPa,振荡压力为±1~±5MPa,烧结气氛为高纯氮气气氛,烧结时间为0.5~1h。
本发明原理为:
1、本发明力学性能的提高是通过提高烧结致密化实现,振荡烧结可以提供致密化动力以促进致密化行为,同时采用纳米的SiC、ZrO2和CaCO3并结合亚微米BN片层结构在振荡烧结后可以避免BN片生长为房式卡片结构,提高了BN片与各相界面的结合强度,促进烧结致密,因此本发明力学性能得到提高。
2、本发明抗热震性的提高的原因之一是:通过一定程度发育的BN片以及层间镶嵌颗粒相互作用形成“桥联”、“拔出”以及“裂纹偏转”等能量耗散机制来实现的。所述的层间镶嵌颗粒是指SiC颗粒、ZrO2颗粒和CaZrO3颗粒。
本发明抗热震性的提高的原因之二是:通过造粒保证颗粒均匀,并且为随机排序,然后通过控制烧结工艺控制生长后得到的BN片的粒径为不超过2微米,并且烧结后BN片为随机生长(即不出现特定的片层取向排列),从而避免BN片异常长大,保证结构均匀。由于制备的耐火材料具有准各向同性,从而减小由于结构差异导致的热导率和热膨胀系数等参数波动,降低了热应力集中。
本发明抗热震性的提高的原因之三是:本发明选用原料为纳米级别,能够实现更多的界面结合,有助于延长裂纹扩展路径,提高材料抵抗裂纹扩展的能力。并且力学性能的改善也能够实现更多的界面结合。
3、为了满足耐合金腐蚀能力要求,本发明首先以在熔融合金中不润湿和溶解度小的BN作为基体材料;在材料中引入不超过25wt%的纳米ZrO2作为助烧剂,降低了助烧剂的使用量,并且助烧剂与合金接触界面形成致密ZrO2层,阻隔合金和喷嘴材料的进一步发生界面作用;再次,在材料中引入纳米ZrO2和CaCO3可以原位形成均匀分散的CaZrO3,进一步提高耐合金腐蚀能力。
本发明具备以下有益效果:
本发明制备方法使喷嘴耐火材料的力学性能、抗热震性和耐合金腐蚀能力提高,因此使用寿命得到了显著的提高,满足不同合金制带对喷嘴材料的高温服役性能要求。力学性能上,断裂强度可达300~400MPa,断裂韧性达4.5~5.7MPa·m1/2。抗热震性上,经1200℃热震后残余强度仍能保持在300MPa以上,不同测试温度下热震残余强度保持率在90%以上。耐合金腐蚀能力上,1600℃与合金作用1h后腐蚀层厚度小于100μm。
附图说明
图1为实施例1中喷雾干燥造粒处理得到的粉体的显微照片;
图2为实施例1中制备的用于制备非晶薄带的氮化硼基喷嘴耐火材料的断口形貌显微照片。
具体实施方式:
为了使本发明的目的、技术方案及优点更加的清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不限定本发明。
实施例1:本实施例用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法按照以下步骤进行:首先进行原料的球磨混合得到分散均匀的陶瓷浆料,然后对陶瓷浆料进行喷雾干燥造粒处理,最后进行振荡烧结,即完成。其中喷雾干燥和造粒同时完成。
进一步的,所述原料由h-BN粉、SiC粉体,ZrO2粉体和CaCO3粉组成。
进一步的,所述h-BN粉为粒径0.3~0.6μm的亚微米h-BN粉;SiC粉为粒径≤40nm的纳米SiC;ZrO2粉为粒径≤40nm;CaCO3粉为粒径≤40nm。如果选择较粗粒径的h-BN粉、SiC粉,ZrO2粉和CaCO3粉,会导致形成BN房式卡片结构,不利于致密化和性能改善。因此,选择的h-BN粉为粒径0.3~0.6μm的亚微米h-BN粉、选择的SiC粉为粒径≤40nm的纳米SiC,且ZrO2粉的粒径≤40nm,CaCO3粉的粒径≤40nm,经烧结处理后得到的耐火材料的最终颗粒粒径也会相应地变小,避免形成卡片结构,且耐火材料结构更均匀。
进一步的,所述h-BN粉的纯度为99%,SiC的纯度为99%,ZrO2的纯度为99%,CaCO3粉的纯度为99%。
进一步的,所述原料中h-BN粉的含量为60wt%,SiC的含量为5wt%,CaCO3粉的含量为15wt%,ZrO2为余量。h-BN粉的含量为60wt%,在此范围内能够保证耐火材料具有优异的抗热冲击和耐腐蚀能力。SiC的含量为5wt%,能够提供一定的抗氧化性保障,过多的SiC会弱化耐合金腐蚀性。氧化锆和碳酸钙为助烧剂,烧结过程中还能够原位生成锆酸钙,提高抗合金腐蚀能力。综上,h-BN粉的含量、SiC的含量、ZrO2的含量和CaCO3粉的含量的选择能够避免制备的耐火材料的综合性能弱化,继而不能满足使用要求。
进一步的,所述原料的球磨混合过程中采用的球磨介质为去离子水。
进一步的,所述原料的球磨混合过程中,氧化锆球与原料的质量比为20:1,球磨时间为4h。该球磨工艺能够满足混合均匀性要求,还能保证节能和省时。
进一步的,所述对陶瓷浆料进行喷雾干燥造粒处理后,得到的粉体的粒径为5~15μm。选择造粒的粒径为5~15μm,能够保证制备的耐火材料的烧结致密化,粒径过小或过大都会导致堆密度降低,难以实现烧结致密化。
进一步的,所述振荡烧结工艺为:烧结温度为1800℃,烧结压力为30MPa,振荡压力为±5MPa,烧结气氛为高纯氮气气氛,烧结时间为1h。该振荡烧结工艺能够保证制备的耐火材料的烧结致密化,并保证材料的性能要求。
本实施例具备以下有益效果:
本实施例实现了烧结致密化,制备得到的用于制备非晶薄带的氮化硼基喷嘴耐火材料具有优异的力学性能、抗热震性能和耐合金腐蚀能力,因此使用寿命得到了显著的提高。断裂强度可达380MPa,断裂韧性为5.6MPa·m1/2,具有优异的力学性能。1600℃与合金作用1h后腐蚀层厚度小于100μm,具有优异的耐合金腐蚀能力。经1200℃热震后残余强度可达到300MPa以上,不同测试温度下热震残余强度保持率在90%以上,抗热震性显著提高。满足不同合金制带对喷嘴材料的高温服役性能需求。
图1为实施例1中喷雾干燥造粒处理得到的粉体的显微照片;图2为实施例1中制备的用于制备非晶薄带的氮化硼基喷嘴耐火材料的断口形貌显微照片。如图1所示,球体粒径为5~8μm,经喷雾干燥处理后各组分分布均匀,BN与纳米氧化物随机排列。经扫描电镜和透射电镜观察可以发现本实施例制备的氮化硼基非晶薄带喷嘴具有准各向同性的基质结构。
图2可知,纳米氧化物的引入会促进BN片层结构发育,但未出现房式卡片结构。还能观察到BN片层结构的“拔出”和“裂纹偏转”等增韧机制,增韧机制的存在有助于改善材料的抗热震性。本实施例得到的BN片的粒径为不超过2微米,并且烧结后BN片未特定的片层取向排列。
实施例2:本实施例与实施例1不同的是:所述原料中h-BN粉的含量为64wt%,SiC的含量为6wt%,CaCO3粉的含量为13wt%,ZrO2为余量。所述振荡烧结的条件为:烧结温度为1750℃,烧结压力为30MPa,振荡压力为±5MPa,烧结气氛为高纯氮气保护,烧结时间为1h。
本实施例所制得的氮化硼基非晶薄带喷嘴抗弯强度为360MPa,断裂韧性为5.2MPa·m1/2,抗热震和耐腐蚀性能优异,1200℃热震后残余强度保持率为90%以上,1600℃与合金接触1h后腐蚀层厚度<100μm。
实施例3:本实施例与实施例1不同的是:所述原料中h-BN粉的含量为66wt%,SiC的含量为8wt%,CaCO3粉的含量为12wt%,ZrO2为余量。所述振荡烧结的条件为:烧结温度为1750℃,烧结压力为30MPa,振荡压力为±4MPa,烧结气氛为高纯氮气保护,烧结时间为0.8h。
本实施例所制得的氮化硼基非晶薄带喷嘴抗弯强度为350MPa,断裂韧性为5.0MPa·m1/2,抗热震和耐腐蚀性能优异,1200℃热震后残余强度保持率为90%以上,1600℃与合金接触1h后腐蚀层厚度<100μm。
实施例4:本实施例与实施例1不同的是:所述原料中h-BN粉的含量为68wt%,SiC的含量为9wt%,CaCO3粉的含量为11wt%,ZrO2为余量。所述振荡烧结的条件为:烧结温度为1700℃,烧结压力为30MPa,振荡压力为±3MPa,烧结气氛为高纯氮气保护,烧结时间为0.8h。
本实施例所制得的氮化硼基非晶薄带喷嘴抗弯强度为330MPa,断裂韧性为5.0MPa·m1/2,抗热震和耐腐蚀性能优异,1200℃热震后残余强度保持率为90%以上,1600℃与合金接触1h后腐蚀层厚度<100μm。
实施例5:本实施例与实施例1不同的是:所述原料中h-BN粉的含量为68wt%,SiC的含量为9wt%,CaCO3粉的含量为11wt%,ZrO2为余量。所述振荡烧结的条件为:烧结温度为1650℃,烧结压力为30MPa,振荡压力为±3MPa,烧结气氛为高纯氮气保护,烧结时间为0.5h。
本实施例所制得的氮化硼基非晶薄带喷嘴抗弯强度为300MPa,断裂韧性为4.5MPa·m1/2,抗热震和耐腐蚀性能优异,1200℃热震后残余强度保持率为90%以上,1600℃与合金接触1h后腐蚀层厚度<100μm。

Claims (10)

1.一种用于制备非晶薄带的氮化硼基喷嘴耐火材料,其特征在于:该喷嘴耐火材料由60~70wt%的六方氮化硼、5~10wt%的碳化硅、10~15wt%的碳酸钙和余量的氧化锆制备而成。
2.如权利要求1所述的用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法,其特征在于:该方法按照以下步骤进行:首先进行原料的球磨混合得到分散均匀的陶瓷浆料,然后对陶瓷浆料进行喷雾干燥造粒处理,最后进行振荡烧结,即完成。
3.根据权利要求2所述的用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法,其特征在于:所述原料由h-BN粉、SiC粉,ZrO2粉和CaCO3粉组成。
4.根据权利要求2或3所述的用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法,其特征在于:所述h-BN为粒径0.3~0.6μm的亚微米h-BN粉;SiC为粒径≤40nm的纳米SiC粉;ZrO2为粒径≤40nm的纳米ZrO2粉;CaCO3为粒径≤40nm的纳米CaCO3粉。
5.根据权利要求4所述的用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法,其特征在于:所述h-BN粉的纯度为98~99.9%,SiC粉的纯度为98~99.9%,ZrO2粉的纯度为98~99.9%,CaCO3粉的纯度为98~99.9%。
6.根据权利要求2、3或5所述的用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法,其特征在于:所述原料中h-BN粉的含量为60~70wt%,SiC粉的含量为5~10wt%,CaCO3粉的含量为10~15wt%,ZrO2粉为余量。
7.根据权利要求6所述的用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法,其特征在于:所述原料的球磨混合过程中采用的球磨介质为无机球磨介质。
8.根据权利要求7所述的用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法,其特征在于:所述无机球磨介质为去离子水。
9.根据权利要求8所述的用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法,其特征在于:所述原料的球磨混合过程中,氧化锆球与原料的质量比为(10~20):1,球磨时间为4~8h。
10.根据权利要求9所述的用于制备非晶薄带的氮化硼基喷嘴耐火材料的制备方法,其特征在于:所述振荡烧结工艺为:烧结温度为1600~1800℃,烧结压力为30~50MPa,振荡压力为±1~±5MPa,烧结气氛为高纯氮气气氛,烧结时间为0.5~1h。
CN201910520160.1A 2019-06-14 2019-06-14 一种用于制备非晶薄带的氮化硼基喷嘴耐火材料及其制备方法 Pending CN110066184A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910520160.1A CN110066184A (zh) 2019-06-14 2019-06-14 一种用于制备非晶薄带的氮化硼基喷嘴耐火材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910520160.1A CN110066184A (zh) 2019-06-14 2019-06-14 一种用于制备非晶薄带的氮化硼基喷嘴耐火材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110066184A true CN110066184A (zh) 2019-07-30

Family

ID=67372841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910520160.1A Pending CN110066184A (zh) 2019-06-14 2019-06-14 一种用于制备非晶薄带的氮化硼基喷嘴耐火材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110066184A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995415A (zh) * 2020-08-18 2020-11-27 潍坊卓宇新材料科技有限公司 一种复合氮化硼陶瓷高温喷嘴及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885264A (en) * 1988-07-21 1989-12-05 Elektroschmelzwerk Kempten Gmbh Pressure-sintered polycpystalline mixed materials with a base of hexagonal boron nitride, oxides and carbides
CN1091116A (zh) * 1993-06-15 1994-08-24 北京科技大学 一种锆刚玉莫来石氮化硼复合耐火材料
EP1332194A2 (en) * 2000-10-06 2003-08-06 3M Innovative Properties Company Ceramic aggregate particles
CN103626498A (zh) * 2013-12-13 2014-03-12 山东鹏程特种陶瓷有限公司 氮化硼基陶瓷喷嘴及其制备方法
CN104446513A (zh) * 2013-09-24 2015-03-25 宝山钢铁股份有限公司 一种BN-ZrO2-SiC复合材料的复合烧结助剂
CN104446512A (zh) * 2013-09-24 2015-03-25 宝山钢铁股份有限公司 一种BN-ZrO2-SiC复合材料的复合烧结助剂
CN106316401A (zh) * 2016-08-30 2017-01-11 宁波东联密封件有限公司 一种高致密度的碳化硅复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885264A (en) * 1988-07-21 1989-12-05 Elektroschmelzwerk Kempten Gmbh Pressure-sintered polycpystalline mixed materials with a base of hexagonal boron nitride, oxides and carbides
CN1091116A (zh) * 1993-06-15 1994-08-24 北京科技大学 一种锆刚玉莫来石氮化硼复合耐火材料
EP1332194A2 (en) * 2000-10-06 2003-08-06 3M Innovative Properties Company Ceramic aggregate particles
CN104446513A (zh) * 2013-09-24 2015-03-25 宝山钢铁股份有限公司 一种BN-ZrO2-SiC复合材料的复合烧结助剂
CN104446512A (zh) * 2013-09-24 2015-03-25 宝山钢铁股份有限公司 一种BN-ZrO2-SiC复合材料的复合烧结助剂
CN103626498A (zh) * 2013-12-13 2014-03-12 山东鹏程特种陶瓷有限公司 氮化硼基陶瓷喷嘴及其制备方法
CN106316401A (zh) * 2016-08-30 2017-01-11 宁波东联密封件有限公司 一种高致密度的碳化硅复合材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEI CHEN ET AL.: "Influence of ZrO2 Content on the Performances of BN‐ZrO2‐SiC Composites for Application in the Steel Industry", 《INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY》 *
张朝晖: "《放电等离子烧结技术及其在钛基复合材料制备中的应用》", 31 March 2018, 国防工业出版社 *
朱永平: "《陶瓷砖生产技术》", 28 February 2009, 天津大学出版社 *
翟凤瑞: "六方氮化硼陶瓷的放电等离子烧结及性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995415A (zh) * 2020-08-18 2020-11-27 潍坊卓宇新材料科技有限公司 一种复合氮化硼陶瓷高温喷嘴及其制备方法

Similar Documents

Publication Publication Date Title
CN103626498B (zh) 氮化硼基陶瓷喷嘴及其制备方法
CN103011868B (zh) 一种Al2O3-SiC-C质铁沟浇注料及其制备方法
CN104944989B (zh) 一种硅溶胶结合刚玉‑碳化硅质湿式喷射料
CN103045914A (zh) 一种纳米碳化硅增强铝基复合材料的制备方法
CN106435446A (zh) 等离子热喷涂法制备的cysz热障涂层及制备方法
CN113105254B (zh) 一种新型陶瓷砂及其制备方法
CN112176213B (zh) 原位自生纳米Al2O3增强铝基复合材料的激光增材制造方法
CN112662982A (zh) 一种适合等离子喷涂的纳米结构Yb2Si2O7球形喂料的制备方法
Feng et al. Effects of Cu on properties of vitrified bond and vitrified CBN composites
CN112960967A (zh) 利用废弃陶粒砂制备的3d打印用陶粒砂及其制备方法
WO2024027858A1 (zh) 一种高熵陶瓷热障涂层及其制备方法
CN108424155B (zh) 一种利用滑板磨削泥废料制成的下水口砖及其制备方法
CN102660725B (zh) 一种纳米陶瓷涂层及其制备方法
Miao et al. Modified gel casting technique to fabricate honeycomb structured vitrified-bonded ultrafine diamond grinding wheels
CN106699141B (zh) 原位生成cm2a8复相增强钢包浇注料及其制备方法
CN113968724B (zh) 一种金属改性镁砂、低碳转炉镁质滑板及它们的制备方法
CN109970459B (zh) 一种柱状莫来石高耐磨砖及其制备方法
CN110066184A (zh) 一种用于制备非晶薄带的氮化硼基喷嘴耐火材料及其制备方法
WO2018223544A1 (zh) 一种发光陶瓷及其制备方法
CN104909773B (zh) 含复合添加剂的铝酸钙水泥结合铝镁质浇注料及其制备方法
CN108822590B (zh) 一种用于钢铁热轧工艺的高温防护涂料及其制备方法
CN1176236A (zh) 一种浸入式水口耐火材料的制造方法
CN109680188B (zh) 一种纳米碳化铝颗粒增强铝基复合材料及其制备方法
CN115340369B (zh) 三元复相耐磨陶瓷球及其制备方法
CN112279657B (zh) 一种轻量矾土基耐火砖及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190730

RJ01 Rejection of invention patent application after publication