WO2024027858A1 - 一种高熵陶瓷热障涂层及其制备方法 - Google Patents

一种高熵陶瓷热障涂层及其制备方法 Download PDF

Info

Publication number
WO2024027858A1
WO2024027858A1 PCT/CN2023/127499 CN2023127499W WO2024027858A1 WO 2024027858 A1 WO2024027858 A1 WO 2024027858A1 CN 2023127499 W CN2023127499 W CN 2023127499W WO 2024027858 A1 WO2024027858 A1 WO 2024027858A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal barrier
barrier coating
ceramic thermal
entropy ceramic
entropy
Prior art date
Application number
PCT/CN2023/127499
Other languages
English (en)
French (fr)
Inventor
吕伯文
毛熙烨
王超
谭僖
张小锋
毛杰
邓春明
邓畅光
刘敏
Original Assignee
广东省科学院新材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院新材料研究所 filed Critical 广东省科学院新材料研究所
Publication of WO2024027858A1 publication Critical patent/WO2024027858A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to the technical field of thermal barrier coating materials and preparation. Specifically, it relates to a high-entropy ceramic thermal barrier coating and a preparation method thereof.
  • Thermal barrier coating achieves thermal protection by preparing high-temperature resistant ceramic materials on the surface of the substrate. Preparing a thermal barrier coating on the blade surface with high bonding strength, excellent thermal insulation performance, and stable high-temperature service performance is one of the key technologies to improve the performance of engine blades.
  • Yttria-stabilized zirconia YSZ
  • YSZ Yttria-stabilized zirconia
  • RE 2 Zr 2 O 7 single-component rare earth zirconate
  • RE 2 Zr 2 O 7 single-component rare earth zirconate
  • Zhao Xiaofeng's team used atmospheric plasma spraying (APS) and electron beam physical vapor deposition (EB-PVD) technology to prepare it.
  • APS atmospheric plasma spraying
  • EB-PVD electron beam physical vapor deposition
  • a multi-component high-entropy oxide Zr 1-4x Y x Ta x Nb x Yb x O 2 ultra-high temperature thermal barrier coating can maintain the tetragonal phase at a high temperature of 1600°C.
  • the purpose of the present invention is to provide a high-entropy ceramic thermal barrier coating and a preparation method thereof to improve the existing material system's thermal barrier coating prepared by traditional thermal spraying technology, which has insufficient high-temperature phase stability and low strain tolerance. and poor mechanical properties.
  • the invention is implemented as follows:
  • the present invention provides a high-entropy ceramic thermal barrier coating, the chemical formula of which is (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 , in which the number of moles of each rare earth element is equal to that of all rare earth elements. The percentages of total moles are 18% to 22% respectively.
  • the high-entropy ceramic thermal barrier coating has a thickness of 350-400 ⁇ m.
  • the above-mentioned high-entropy ceramic thermal barrier coating has a fluorite phase structure, and its cross-sectional morphology is a feather-shaped columnar high strain tolerance structure: the bottom coating is composed of columnar main crystals and dendrites, with a large porosity; the top layer is composed of columnar main crystals and dendrites. The crystals are loosely organized and many have not grown yet.
  • the secondary dendrites constitute the "cauliflower head" area.
  • the present invention provides a method for preparing the above-mentioned high-entropy ceramic thermal barrier coating, which includes: weighing the raw materials, mixing and drying them by wet ball milling, and the obtained mixed powder is pulverized and secondary-sintered after pre-sintering.
  • the raw materials include ZrO 2 and rare earth oxide powders, including Y 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 and Yb 2 O 3 .
  • the particle size of ZrO2 is 0.2-1 ⁇ m, and the mass purity is ⁇ 99.99%.
  • the rare earth oxide has a particle size of 5-10 ⁇ m and a mass purity of ⁇ 99.99%.
  • the ball milling medium of wet ball milling is ethanol
  • the ball milling beads are made of ZrO 2
  • the rotation speed is 300-400 rpm
  • the ball milling mixing time is 8-24 hours.
  • the drying temperature is 105-120°C and the drying time is 10-12h.
  • the pre-sintering temperature is 1500-1600°C, and the pre-sintering time is 2-10 hours.
  • the spray drying parameters during the secondary granulation process are: solid content 40-65%, dispersant 6-10% PAA, binder 8-10% PVP, inlet temperature 240-260°C, outlet temperature The temperature is 110-130°C, the feeding speed is 30-50rpm, the spray speed is 5-6m 3 /h, and the air pressure is 2-3bar.
  • the spraying parameters are: spraying distance 800-1000mm, spray gun moving speed 300-500mm/ s, temperature 900-1000°C, powder feeding rate 5-10g/min, carrier gas flow 5-20SLPM, argon flow 25-40SLPM, helium flow 40-60SLPM, oxygen flow 0- 5SLPM, current 2400-2700A, cabin pressure 4-6 ⁇ 10 -5 MPa.
  • the present invention also provides the application of the above-mentioned high-entropy ceramic thermal barrier coating in aerospace engines and gas turbines.
  • the present invention utilizes the cocktail effect among the four core effects of high-entropy ceramics, selects rare earth metal elements with good plasticity and ductility to carry out high-entropy transformation of the GZO system, and obtains (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 high entropy ceramic thermal barrier coating.
  • Each element in the high-entropy ceramic thermal barrier coating is evenly distributed on the coating, without element segregation, and has a fluorite phase structure.
  • the cross-sectional morphology is a feather-shaped columnar high strain tolerance structure: the bottom coating is composed of columnar main crystals It is composed of dendrites and dendrites, with a large porosity; the top is composed of loose columnar crystals, and many ungrown secondary dendrites constitute the "cauliflower head” area.
  • This high-entropy ceramic thermal barrier coating has both excellent high-temperature phase stability and good mechanical properties.
  • the non-line-of-sight deposition process used is conducive to coating preparation on the special-shaped surface and shielding areas of hot-end components, and is suitable for advanced structures.
  • the development of ultra-high temperature thermal barrier coating technology and its application in aerospace engines and gas turbines are of great significance.
  • Figure 1 is a comparison chart of XRD patterns of (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 pre-sintered powder prepared in Example 1 and Example 2;
  • Figure 2 is an SEM image of the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 pre-sintered powder prepared in Example 1 after being crushed;
  • Figure 3 is an SEM image of the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 pre-sintered powder prepared in Example 2 after being crushed;
  • Figure 4 is an SEM image of the surface of the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 high-entropy ceramic thermal barrier coating prepared in Example 2;
  • Figure 5 is a SEM and EDS comparison diagram of the cross section of the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 high-entropy ceramic thermal barrier coating prepared in Example 2;
  • Figure 6 is an XRD comparison chart of the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 pre-sintered powder prepared in Example 2 before and after high-temperature heat treatment at 1600°C for 10 hours;
  • Figure 7 shows the XRD comparison chart of commercially available YSZ powder before and after high temperature heat treatment at 1600°C for 10 hours.
  • the inventor of the present invention designed a composition of (Y 0.2 Sm 0.2 Eu based on the gadolinium zirconate (Gd 2 Zr 2 O 7 , GZO) system through a high-entropy method.
  • the invention provides a high-entropy ceramic thermal barrier coating.
  • the chemical formula of the coating is (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 , in which the number of moles of each rare earth element is equal to the total mole of all rare earth elements. The percentages of the numbers are 18% to 22% respectively.
  • High entropy of the present invention Ceramic thermal barrier coating is a multi-component single-phase solid solution formed by solid solution of Y 2 O 3 , ZrO 2 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 and Yb 2 O 3 .
  • the thickness of the high-entropy ceramic thermal barrier coating prepared by PS-PVD technology is 350-400 ⁇ m.
  • the thickness of the above-mentioned high-entropy ceramic thermal barrier coating can be 350 ⁇ m, 360 ⁇ m, 370 ⁇ m, 380 ⁇ m, 390 ⁇ m or 400 ⁇ m, or any other value in the range of 350-400 ⁇ m.
  • the high-entropy ceramic thermal barrier coating of the present invention has a fluorite phase structure, and the cross-sectional morphology of the coating is a feather-shaped columnar high strain tolerance structure: the bottom coating is composed of columnar main crystals and dendrites, and the pores The rate is relatively large; the top is composed of loosely ordered columnar crystals, and numerous ungrown secondary dendrites constitute the "cauliflower head" area. Each element is evenly distributed on the coating, and there is no element segregation.
  • the coating has good mechanical properties (lower elastic modulus and hardness). At the same time, this high-entropy ceramic material has excellent high-temperature phase stability at 1600°C.
  • the inventor of the present invention used PS-PVD technology for the first time to prepare the high-entropy ceramic thermal barrier coating, which includes the following steps:
  • the particle size of ZrO 2 powder in the above raw materials is 0.2-1 ⁇ m, and the mass purity is ⁇ 99.99%; the rare earth oxides Y 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 and Yb 2
  • the powder particle size of O3 is 5-10 ⁇ m, and the mass purity is ⁇ 99.99%.
  • the particle size of ZrO2 powder can be 0.2 ⁇ m, 0.3 ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m or 1 ⁇ m, or any other value in the range of 0.2-1 ⁇ m.
  • the particle size of the rare earth oxide powder can be 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m or 10 ⁇ m, or any other value in the range of 5-10 ⁇ m.
  • the above particle size range it is possible to ensure full melting under plasma spray physical vapor deposition conditions and obtain good coating quality; in addition, the above particle size range can also avoid the problem of gun clogging caused by too small particle sizes.
  • the ball milling medium is ethanol; the ball milling beads are made of ZrO 2 .
  • the rotation speed of the above-mentioned wet ball mill is 300-400 rpm, and the ball mill mixing time is 8-24 hours.
  • the rotation speed of the wet ball mill can be 300rpm, 320rpm, 350rpm, 380rpm or 400rpm, or any other value in the range of 300-400rpm.
  • the ball mill mixing time can be 8h, 10h, 12h, 15h, 18h or 24h, or any other value in the range of 8-24h.
  • the drying temperature is 105-120°C and the drying time is 10-12 hours.
  • the drying temperature can be 105°C, 110°C, 115°C or 120°C, or any other value within the range of 105-120°C.
  • the drying time can be 10h, 11h or 12h, or any other value within the range of 10-12h until drying.
  • the pre-sintering temperature can be 1500°C, 1520°C, 1550°C, 1580°C or 1600°C, or any other value within the range of 1500-1600°C.
  • the pre-sintering time can be 2h, 3h, 4h, 5h, 6h, 7h, 8h, 9h or 10h, or any other value in the range of 2-10h.
  • the pre-sintered powder is subjected to a series of pulverization processes and secondary granulation through a spray dryer to obtain (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 agglomerated powder.
  • the spray drying parameters are: solid content 40-65%, dispersant PAA 6-10%, binder PVP 8-10%, inlet temperature 240-260°C, outlet temperature 110-130°C, feeding speed 30-50rpm, spray speed 5-6m 3 /h, air pressure 2-3bar.
  • the solid content can be 40%, 45%, 50%, 55%, 60% or 65%, or any other value within the range of 40-65%.
  • the content of the dispersant PAA can be 6%, 7%, 8%, 9% or 10%, or any other value within the range of 6-10%.
  • the content of the binder PVP can be 8%, 8.5%, 9%, 9.5% or 10%, or any other value within the range of 8-10%.
  • the inlet temperature can be 240°C, 245°C, 250°C, 255°C or 260°C, or any other value in the range of 240-260°C.
  • the outlet temperature can be 110°C, 115°C, 120°C, 1250°C or 130°C, or any other value in the range of 110-130°C.
  • the feeding speed can be 30rpm, 35rpm, 40rpm, 45rpm or 50rpm, or any other value in the range of 30-50rpm.
  • the spray speed can be 5m 3 /h, 5.2m 3 /h, 5.5m 3 /h, 5.8m 3 /h or 6m 3 /h, or any other value in the range of 5-6m 3 /h .
  • the air pressure can be 2bar, 2.2bar, 2.5bar, 2.8bar or 3bar, or any other value within the range of 2-3bar.
  • the agglomerated powder obtained by secondary granulation has the characteristics of high sphericity and good fluidity.
  • the spraying parameters are: spraying distance 800-1000mm, spray gun moving speed 300-500mm/s , temperature 900-1000°C, powder feeding rate 5-10g/min, carrier gas flow 5-20SLPM, argon flow 25-40SLPM, helium flow 40-60SLPM, oxygen flow 0-5SLPM, current 2400-2700A, cabin pressure 4-6 ⁇ 10 -5 MPa.
  • the spraying distance can be 800mm, 850mm, 900mm, 950mm or 1000mm, etc., or any other value within the range of 800-1000mm.
  • the moving speed of the spray gun can be 300mm/s, 350mm/s, 400mm/s, 450mm/s, or 500mm/s, or can be any other value within the range of 300-500mm/s.
  • the spraying temperature can be 900°C, 920°C, 950°C, 980°C or 1000°C, or any other value within the range of 900-1000°C.
  • the powder feeding rate can be 5g/min, 6g/min, 7g/min, 8g/min, 9g/min, or 10g/min, or any other value in the range of 5-10g/min.
  • the carrier gas flow rate may be 5SLPM, 8SLPM, 10SLPM, 12SLPM, 15SLPM or 20SLPM, or any other value within the range of 5-20SLPM.
  • the argon gas flow rate can be 25SLPM, 30SLPM, 32SLPM, 35SLPM, 38SLPM or 40SLPM, or any other value within the range of 25-40SLPM.
  • the helium flow rate can be 40SLPM, 45SLPM, 50SLPM, 55SLPM or 60SLPM, or any other value in the range of 40-60SLPM.
  • the oxygen flow rate can be 0SLPM, 1SLPM, 2SLPM, 3SLPM, 4SLPM or 5SLPM, or any other value within the range of 0-5SLPM.
  • the current can be 2400A, 2500A, 2600A or 2700A, or any other value in the range 2400-2700A.
  • the cabin pressure can be 4 ⁇ 10 -5 MPa, 4.5 ⁇ 10 -5 MPa, 5 ⁇ 10 -5 MPa, 5.5 ⁇ 10 -5 MPa or 6 ⁇ 10 -5 MPa, or 4-6 ⁇ 10 -5 MPa Any other value within the range.
  • the present invention prepares a high-entropy ceramic coating.
  • the inventor used PS-PVD technology to prepare (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 high-entropy ceramic thermal barrier for the first time. Coating, this technology combines the advantages of APS and EB-PVD technology, and by controlling spraying parameters, it can prepare high-entropy ceramic thermal barrier coatings with good thermal and mechanical properties. In addition, this technology has non-line-of-sight deposition characteristics.
  • thermal barrier coatings Compared with traditional APS and EB-PVD technologies, it is more conducive to the preparation of thermal barrier coatings on the special-shaped surface and shielding areas of hot-end components. For high-entropy ceramic thermal barrier coatings in aviation Applications in engines and gas turbines are of great significance.
  • This embodiment provides a method for preparing a high-entropy ceramic thermal barrier coating. The specific steps are as follows:
  • the mixed powder into an alumina crucible, then place it in a muffle furnace and keep it at 1600-1650°C for 2 hours to obtain pre-sintered powder; grind, crush and ball-mill the pre-sintered powder for 2-4 hours.
  • the suspension is prepared according to the powder with 40% solid content, 6% PAA solution and 10% PVP solution, and is subjected to secondary granulation through a spray dryer to obtain agglomerated powder with high sphericity and good fluidity;
  • the spraying parameters of (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 coating are: spraying distance 800-1000mm, preheating gun speed 300-400mm/s, spraying gun speed 400-500mm /s, temperature 900-1000°C, powder feeding rate 5-10g/min, carrier gas flow 5-20SLPM, argon flow 25-40SLPM, helium flow 40-60SLPM, oxygen flow 0-5SLPM, current 2400-2700A, cabin Pressure 5-10 ⁇ 10 -5 MPa.
  • the thickness of the prepared (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 coating is 346 ⁇ m.
  • Figure 2 is an SEM image of the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 pre-sintered powder prepared in this example after being crushed. It can be seen from the figure that after grinding, crushing, and ball milling for 2-4 hours, the particle size of the pre-sintered powder has reached the micron level, and the particle size distribution is relatively uniform, but there are still a small number of large particles with particle sizes above 10 ⁇ m. Particles may affect the particle size and sphericity of the agglomerated powder after granulation.
  • This embodiment provides a method for preparing a high-entropy ceramic thermal barrier coating. The specific steps are as follows:
  • the spraying parameters of (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 coating are: spraying distance 800-1000mm, preheating gun speed 300-400mm/s, spraying gun speed 400-500mm /s, temperature 900-1000°C, powder feeding rate 5-10g/min, carrier gas flow 5-20SLPM, argon flow 25-40SLPM, helium flow 40-60SLPM, oxygen flow 0-5SLPM, current 2400-2700A, cabin Pressure 5-10 ⁇ 10 -5 MPa.
  • the thickness of the prepared (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 coating is 360 ⁇ m.
  • Figure 1 is a comparison chart of XRD patterns of (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 pre-sintered powder prepared in Example 1 and Example 2. It can be seen that the pre-sintered powder prepared in the two examples exhibits a single-phase defective fluorite structure without the generation of impurities or second phases.
  • Figure 3 is an SEM image of the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 pre-sintered powder prepared in Example 2 after being crushed. It can be seen from this that after grinding, crushing, and ball milling for 2-4 hours, the large-sized particles in the pre-sintered powder have disappeared. Compared with Example 1, the particles of the pre-sintered powder after being crushed in Example 2 The size is smaller and the particle size distribution is more uniform.
  • Figure 4 is an SEM image of the surface of the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 high-entropy ceramic thermal barrier coating prepared in Example 2. It can be seen that the surface morphology of the coating is a "cauliflower head” structure, and the size and distribution of the "cauliflower heads” are relatively uniform, indicating that the growth of the coating structure is relatively good.
  • Figure 5 is a comparison between SEM and EDS of the cross section of the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 high-entropy ceramic thermal barrier coating prepared in Example 2. It can be seen that the cross-sectional morphology of the coating is a feather-shaped columnar high strain tolerance structure: the bottom coating is composed of columnar main crystals and dendrites, with large porosity; the top coating is composed of columnar crystals loosely sequenced, with numerous The immature secondary dendrites constitute the "cauliflower head" area.
  • each element on the coating cross section is relatively uniform, and there is no obvious element segregation, which proves that the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 high-entropy ceramic thermal barrier coating has been successfully synthesized.
  • Figure 6 is an XRD comparison chart of the (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 pre-sintered powder prepared in Example 2 before and after high-temperature heat treatment at 1600°C for 10 hours. It can be seen that after high-temperature heat treatment, the peak intensity of the diffraction peak of (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 pre-sintered powder increases, and the peak position shifts to a low angle and is accompanied by a diffraction peak Broadening phenomenon, the phase composition does not change.
  • Figure 7 shows the XRD comparison chart of commercially available YSZ powder before and after high temperature heat treatment at 1600°C for 10 hours. It can be seen from this that before high-temperature heat treatment, the YSZ powder is mainly t phase, with a small amount of m phase. During the heat treatment process, t phase to m phase and c phase occur Phase transformation: after heat treatment, YSZ powder is mainly c phase, with a certain amount of m phase and a small amount of t phase. Since the phase change of YSZ is often accompanied by volume shrinkage or expansion, especially during thermal cycles, this volume change will continue to accumulate and generate thermal stress. When the stress accumulates to a certain extent, the coating will peel off and fail.
  • (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 does not undergo phase change after high-temperature heat treatment. Therefore, (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 has excellent high-temperature phase stability at 1600°C.
  • the chemical formula of the coating is Gd 2 Zr 2 O 7 , and the preparation method is the same as in Example 2.
  • the present invention successfully prepared (Y 0.2 Sm 0.2 Eu 0.2 Gd 0.2 Yb 0.2 ) 2 Zr 2 O 7 high-entropy ceramic thermal barrier coating through PS-PVD technology for the first time, proving that its fracture toughness is high.
  • the high-entropy ceramic thermal barrier coating of the present invention not only has excellent high-temperature phase stability, but also has good mechanical properties.
  • the high-entropy ceramic thermal barrier coating and its preparation method of the present invention provide an idea for the preparation of high-entropy ceramic coatings of other systems, and have very broad application prospects in the field of aeroengine and gas turbine thermal barrier coating materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

一种高熵陶瓷热障涂层及其制备方法。该高熵陶瓷热障涂层的化学式为(Y 0.2Sm 0.2Eu 0.2Gd 0.2Yb 0.2) 2Zr 2O 7,其中各稀土元素的摩尔数与所有稀土元素总摩尔数的百分比分别为18%~22%。该高熵陶瓷热障涂层中各元素在涂层上分布均匀,没有出现元素偏析,并且具有萤石相结构,截面形貌为羽毛型柱状高应变容限结构:底部涂层由柱状主晶和枝晶序构而成,孔隙率较大;顶部由柱状晶疏松序构而成,众多未长成的次级枝晶构成了"菜花头"区域。该涂层材料兼具优异的高温相稳定性和良好的力学性能,对先进结构超高温热障涂层技术的发展和应用具有重要意义。

Description

一种高熵陶瓷热障涂层及其制备方法 技术领域:
本发明涉及热障涂层材料及制备技术领域,具体而言,涉及一种高熵陶瓷热障涂层及其制备方法。
背景技术:
热障涂层通过在基底表面制备耐高温陶瓷材料实现热防护,在叶片表面制备结合强度高、隔热性能优异、高温服役性能稳定的热障涂层是提高发动机叶片性能的关键技术之一。氧化钇稳定氧化锆(YSZ)具有高热膨胀系数、高断裂韧性、高抗热震性等优点,但在1200℃以上相稳定性不足、抗烧结性能不足;单组分稀土锆酸盐(RE2Zr2O7)相比于YSZ具有更低的热导率、更高的相稳定性和高温耐腐蚀性能,但是韧性和热膨胀系数较差。随着航空发动机与燃气轮机技术的迅猛发展,燃气进口温度不断提高,为了适应燃气涡轮发动机叶片对更高服役温度的需求,亟需开发新型高相稳定性超高温热障涂层陶瓷层材料。
2015年,Rost等以MgO、CoO、NiO、CuO和ZnO为原料合成了一种五组分熵稳定氧化物(MgCoNiCuZn)O,表现出稳定的单相岩盐结构以及良好的应用前景,从此,“高熵”的概念被逐渐应用到陶瓷领域。通过将5种或5种以上的陶瓷主元按等摩尔比或近等摩尔比固溶形成具有某种结构的高熵陶瓷,这种多主元的固溶体具有较高的构型熵,在四个核心效应(高熵效应、迟滞扩散效应、晶格畸变效应、鸡尾酒效应)的作用下,通常表现出良好的高温相稳定性、高热膨胀系数、低热导率以及良好的抗热震性能、抗CMAS性能等优异性能。将现有材料体系高熵化的方法,为设计高性能热障涂层材料提供了一种新途径。张国军团队利用大气等离子体喷涂技术(APS)制备了(La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7高熵稀土锆酸盐热障涂层, 热循环寿命优于La2Zr2O7,热循环前后均为萤石相结构;赵晓峰团队基于ZYTO体系,分别利用大气等离子体喷涂(APS)和电子束物理气相沉积(EB-PVD)技术制备了多组分高熵氧化物Zr1-4xYxTaxNbxYbxO2超高温热障涂层,能够在1600℃高温下保持四方相。目前高熵陶瓷热障涂层的研究主要集中在块体材料上,涂层的制备与表征较少;等离子喷涂物理气相沉积技术(PS-PVD)作为一种新型制备技术,结合了APS与EB-PVD技术的优点,可制备出具有羽毛型柱状高应变容限结构的热障涂层,兼具低热导率与高抗热震性能,有望通过先进结构制备技术克服传统陶瓷涂层断裂韧性较低的材料本征缺陷。然而,涉及PS-PVD技术制备的高熵陶瓷热障涂层目前尚无报道。
鉴于此,特提出本发明。
发明内容:
本发明的目的在于提供一种高熵陶瓷热障涂层及其制备方法,以改善现有材料体系采用传统热喷涂工艺制备的热障涂层存在的高温相稳定性不足、应变容限较低以及力学性能不佳等问题。
本发明是这样实现的:
第一方面,本发明提供了一种高熵陶瓷热障涂层,其化学式为(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7,其中各稀土元素的摩尔数与所有稀土元素总摩尔数的百分比分别为18%~22%。
在一些实施例中,高熵陶瓷热障涂层的厚度为350-400μm。
上述高熵陶瓷热障涂层具有萤石相结构,其截面形貌为羽毛型柱状高应变容限结构:底部涂层由柱状主晶和枝晶序构而成,孔隙率较大;顶部由柱状晶疏松序构而成,众多未长成 的次级枝晶构成了“菜花头”区域。
第二方面,本发明提供了上述高熵陶瓷热障涂层的制备方法,包括:称取原料并将其进行湿法球磨混合、干燥,得到的混合粉体在预烧结后进行粉碎、二次造粒,获得(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7团聚粉体,然后通过具有非视线沉积特性的等离子喷涂物理气相沉积技术将(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7团聚粉体沉积在基体表面,形成(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层。
在一些实施例中,原料包括ZrO2和稀土氧化物粉末,稀土氧化物包括Y2O3、Sm2O3、Eu2O3、Gd2O3和Yb2O3
在一些实施例中,ZrO2的粒径为0.2-1μm,质量纯度≥99.99%。
在一些实施例中,稀土氧化物的粒径为5-10μm,质量纯度≥99.99%。
在一些实施例中,湿法球磨的球磨介质为乙醇,球磨珠材质为ZrO2,转速为300-400rpm,球磨混合时间为8-24h。
在一些实施例中,干燥温度为105-120℃,干燥时间为10-12h。
在一些实施例中,预烧结的温度为1500-1600℃,预烧结的时间为2-10h。
在一些实施例中,二次造粒过程中的喷雾干燥参数为:固含量40-65%,分散剂6-10%PAA,粘结剂8-10%PVP,进口温度240-260℃,出口温度110-130℃,进料转速30-50rpm,喷雾转速5-6m3/h,气压2-3bar。
在一些实施例中,将(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7团聚粉体沉积在基体表面时,喷涂参数为:喷涂距离800-1000mm,喷枪移动速度300-500mm/s,温度900-1000℃,送粉速率5-10g/min,载气流量5-20SLPM,氩气流量25-40SLPM氦气流量40-60SLPM,氧气流量0- 5SLPM,电流2400-2700A,舱压4-6×10-5MPa。
第三方面,本发明还提供了上述高熵陶瓷热障涂层在航空发动机与燃气轮机中的应用。
本发明具有以下有益效果:
本发明利用高熵陶瓷四个核心效应中的鸡尾酒效应,选取可塑性、延展性好的稀土金属元素对GZO体系进行高熵化改造,得到的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层。该高熵陶瓷热障涂层中各元素在涂层上分布均匀,没有出现元素偏析,并且具有萤石相结构,截面形貌为羽毛型柱状高应变容限结构:底部涂层由柱状主晶和枝晶序构而成,孔隙率较大;顶部由柱状晶疏松序构而成,众多未长成的次级枝晶构成了“菜花头”区域。该高熵陶瓷热障涂层兼具优异的高温相稳定性和良好的力学性能,所采用的非视线特性沉积工艺有利于在热端部件异型结构表面及遮挡区域进行涂层制备,对先进结构超高温热障涂层技术的发展和在航空发动机与燃气轮机中的应用具有重要意义。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1和实施例2制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7预烧结粉体的XRD图谱对比图;
图2为实施例1制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7预烧结粉体粉碎后的SEM图;
图3为实施例2制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7预烧结粉体粉碎后的SEM图;
图4为实施例2制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层表面的SEM图;
图5为实施例2制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层断面的SEM与EDS对比图;
图6为实施例2制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7预烧结粉体1600℃10h高温热处理前后的XRD对比图;
图7为市售YSZ粉体1600℃10h高温热处理前后的XRD对比图。
具体实施方式:
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
目前大多数高熵陶瓷粉体都是通过固相反应法合成的,通常得到的粉体由于球形度差、粒度分布不均匀等问题无法满足喷涂设备的送粉需求;同时,高熵陶瓷断裂韧性较低,制备的涂层在冷却过程中极其容易发生剥落,最终导致失效。因此,绝大多数关于高熵陶瓷的制备与表征主要都是通过块体材料实现的,不能代表高熵陶瓷涂层的性能。为了提供一种高熵陶瓷热障涂层,本发明的发明人基于锆酸钆(Gd2Zr2O7,GZO)体系,通过高熵化方法设计出一种成分为(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7的高熵陶瓷稀土锆酸盐,并利用PS-PVD技术实现了涂层的制备。
下面对本发明提供的高熵陶瓷热障涂层及其制备方法进行具体说明。
本发明提供了一种高熵陶瓷热障涂层,该涂层化学式为(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7,其中各稀土元素的摩尔数与所有稀土元素总摩尔数的百分比分别为18%~22%。本发明的高熵 陶瓷热障涂层是由Y2O3、ZrO2、Sm2O3、Eu2O3、Gd2O3、Yb2O3固溶形成的多组元单相固溶体。
在本发明中,通过PS-PVD技术制备的高熵陶瓷热障涂层的厚度为350-400μm。
具体地,上述高熵陶瓷热障涂层的厚度可以为350μm、360μm、370μm、380μm、390μm或400μm,也可以为350-400μm范围内的其他任意数值。
通过检测发现,本发明的高熵陶瓷热障涂层具有萤石相结构,涂层截面形貌为羽毛型柱状高应变容限结构:底部涂层由柱状主晶和枝晶序构而成,孔隙率较大;顶部由柱状晶疏松序构而成,众多未长成的次级枝晶构成了“菜花头”区域,各元素在涂层上分布均匀,没有出现元素偏析。涂层具有良好的力学性能(较低的弹性模量及硬度)。同时,该高熵陶瓷材料在1600℃下具有优异的高温相稳定性。
为了制备出上述高熵陶瓷热障涂层,本发明的发明人首次利用PS-PVD技术进行高熵陶瓷热障涂层的制备,其包括如下步骤:
(1)按照(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7所示的配比(即摩尔比为1:1:1:1:1:5)分别称取ZrO2和稀土氧化物Y2O3、Sm2O3、Eu2O3、Gd2O3和Yb2O3作为原料。
在本发明中,上述原料中ZrO2粉末的粒径为0.2-1μm,质量纯度≥99.99%;稀土氧化物Y2O3、Sm2O3、Eu2O3、Gd2O3和Yb2O3的粉末粒径为5-10μm,质量纯度≥99.99%。
具体地,ZrO2粉末的粒径可以为0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm或1μm,也可以为0.2-1μm范围内的其他任意数值。
具体地,稀土氧化物粉末的粒径可以为5μm、6μm、7μm、8μm、9μm或10μm,也可以为5-10μm范围内的其他任意数值。
在上述粒径范围下,能够确保在等离子喷涂物理气相沉积条件下充分熔化,获得良好的涂层质量;此外,上述粒径范围还可避免粒径过小导致的容易堵枪的问题。
(2)将原料、球磨介质和球磨珠装入聚氨酯球磨罐,进行湿法球磨混合,所得混合料浆放入鼓风干燥箱,干燥后得到混合粉体。
在本发明中,球磨介质为乙醇;球磨珠的材质为ZrO2
在本发明中,上述湿法球磨的转速为300-400rpm,球磨混合时间为8-24h。
具体地,湿法球磨的转速可以为300rpm、320rpm、350rpm、380rpm或400rpm,也可以为300-400rpm范围内的其他任意数值。球磨混合时间可以为8h、10h、12h、15h、18h或24h,也可以为8-24h范围内的其他任意数值。
在本发明中,干燥的温度为105-120℃,时间为10-12h。
具体地,干燥的温度可以为105℃、110℃、115℃或120℃,也可以为105-120℃范围内的其他任意数值。干燥时间可以为10h、11h或12h,也可以为10-12h范围内的其他任意数值,直至烘干为止。
(3)将混合粉体在1500-1600℃下预烧结2-10h,得到预烧结粉体。
具体地,预烧结的温度可以为1500℃、1520℃、1550℃、1580℃或1600℃,也可以为1500-1600℃范围内的其他任意数值。预烧结时间可以为2h、3h、4h、5h、6h、7h、8h、9h或10h,也可以为2-10h范围内的其他任意数值。
(4)将预烧结粉体进行一系列粉碎工艺,通过喷雾干燥机进行二次造粒,得到的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7团聚粉体。
在本发明中,喷雾干燥的参数为:固含量40-65%,分散剂PAA 6-10%,粘结剂 PVP 8-10%,进口温度240-260℃,出口温度110-130℃,进料转速30-50rpm,喷雾转速5-6m3/h,气压2-3bar。
具体地,固含量可以为40%、45%、50%、55%、60%或65%,也可以为40-65%范围内的其他任意数值。
具体地,分散剂PAA的含量可以为6%、7%、8%、9%或10%,,也可以为6-10%范围内的其他任意数值。粘结剂PVP的含量可以为8%、8.5%、9%、9.5%或10%,也可以为8-10%范围内的其他任意数值。
具体地,进口温度可以为240℃、245℃、250℃、255℃或260℃,也可以为240-260℃范围内的其他任意数值。出口温度可以为110℃、115℃、120℃、1250℃或130℃,也可以为110-130℃范围内的其他任意数值。
具体地,进料转速可以为30rpm、35rpm、40rpm、45rpm或50rpm,也可以为30-50rpm范围内的其他任意数值。
具体地,喷雾转速可以为5m3/h、5.2m3/h、5.5m3/h、5.8m3/h或6m3/h,也可以为5-6m3/h范围内的其他任意数值。
具体地,气压可以为2bar、2.2bar、2.5bar、2.8bar或3bar,也可以为2-3bar范围内的其他任意数值。
在上述喷雾干燥的参数条件下,进行二次造粒得到的团聚粉体具有球形度高、流动性好的特点。
(5)将高温合金圆棒切割成φ25.4mm×6mm圆片状试样或航空发动机与燃气轮机热端部件作为基体,分别使用煤油、丙酮和乙醇进行超声清洗,采用280号刚玉白砂进行表面喷 砂处理,经压缩空气吹除残留砂砾后,再刷一遍乙醇进行清洗,利用PS-PVD技术将团聚粉体沉积在基体表面,形成(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层。
在本发明中,将(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7团聚粉体沉积在基体表面时,喷涂参数为:喷涂距离800-1000mm,喷枪移动速度300-500mm/s,温度900-1000℃,送粉速率5-10g/min,载气流量5-20SLPM,氩气流量25-40SLPM,氦气流量40-60SLPM,氧气流量0-5SLPM,电流2400-2700A,舱压4-6×10-5MPa。
具体地,喷涂距离可以为800mm、850mm、900mm、950mm或1000mm等,也可以为800-1000mm范围内的其它任意值。
具体地,喷枪移动速度可以为300mm/s、350mm/s、400mm/s、450mm/s、或500mm/s,也可以为300-500mm/s围内的其它任意值。
具体地,喷涂温度可以为900℃、920℃、950℃、980℃或1000℃,也可以为900-1000℃范围内的其他任意数值。
具体地,送粉速率可以为5g/min、6g/min、7g/min、8g/min、9g/min、或10g/min,也可以为5-10g/min范围内的其他任意数值。
具体地,载气流量可以为5SLPM、8SLPM、10SLPM、12SLPM、15SLPM或20SLPM,也可以为5-20SLPM范围内的其他任意数值。
具体地,氩气流量可以为25SLPM、30SLPM、32SLPM、35SLPM、38SLPM或40SLPM,也可以为25-40SLPM范围内的其他任意数值。
氦气流量可以为40SLPM、45SLPM、50SLPM、55SLPM或60SLPM,也可以为40-60SLPM范围内的其他任意数值。
氧气流量可以为0SLPM、1SLPM、2SLPM、3SLPM、4SLPM或5SLPM,也可以为0-5SLPM范围内的其他任意数值。
电流可以为2400A、2500A、2600A或2700A,也可以为2400-2700A范围内的其他任意数值。
舱压可以为4×10-5MPa、4.5×10-5MPa、5×10-5MPa、5.5×10-5MPa或6×10-5MPa,也可以为4-6×10-5MPa范围内的其他任意数值。
目前由于高熵陶瓷断裂韧性较低,制备的涂层在冷却过程中极其容易发生剥落,最终导致失效,因此不能制备出高熵陶瓷涂层。本发明为了克服这一问题,制备出一种高熵陶瓷涂层,发明人首次利用PS-PVD技术制备得到(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层,该技术结合了APS与EB-PVD技术的优点,并通过控制喷涂参数,能够制备出具有良好热学性能和力学性能的高熵陶瓷热障涂层。此外,该技术具有非视线沉积特性,相较于传统APS与EB-PVD技术更有利于在热端部件异型结构表面及遮挡区域进行热障涂层制备,对于高熵陶瓷热障涂层在航空发动机与燃气轮机中的应用具有重要意义。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供了一种高熵陶瓷热障涂层的制备方法,具体步骤如下:
S1.将Y2O3、Sm2O3、Eu2O3、Gd2O3、Yb2O3的原始粉末(粒径5-10μm,纯度99.99wt.%)和ZrO2粉末(粒径0.2-1μm,纯度99.99wt.%)按摩尔比1:1:1:1:1:5(稀土元素的摩尔比为0.2:0.2:0.2:0.2:0.2:1)进行称料;
S2.以乙醇为介质、ZrO2球为球磨珠,在行星球磨机上以300rpm的转速球磨混合10h得 到混合料浆,将料浆放入鼓风干燥箱中110℃干燥12h直至完全烘干,得到混合粉体;
S3.将混合粉体装入氧化铝坩埚,然后置于马弗炉内,在1600-1650℃下保温2h,得到预烧结粉体;将预烧结粉体进行研磨、破碎、球磨2-4h的粉碎工艺,按照40%固含量的粉体、6%的PAA溶液和10%的PVP溶液配制悬浮液,通过喷雾干燥机进行二次造粒,得到球形度高、流动性好的团聚粉体;
S4.将高温合金圆棒切割成φ25.4mm×6mm的圆片状试样或航空发动机与燃气轮机热端部件作为基体,首先将基体置于煤油中超声清洗10min,接下来分别在丙酮和乙醇中超声清洗10min,采用280号刚玉白砂进行表面喷砂处理,经压缩空气吹除残留砂砾后,再刷一遍乙醇进行清洗,利用PS-PVD技术将团聚粉体沉积在基体表面,形成(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层。
其中,(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7涂层的喷涂参数为:喷涂距离800-1000mm,预热走枪速度300-400mm/s,喷涂走枪速度400-500mm/s,温度900-1000℃,送粉速率5-10g/min,载气流量5-20SLPM,氩气流量25-40SLPM氦气流量40-60SLPM,氧气流量0-5SLPM,电流2400-2700A,舱压5-10×10-5MPa。
制得的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7涂层的厚度为346μm。
图2为本实施例制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7预烧结粉体粉碎后的SEM图。从图中可以看出,经过研磨、破碎、球磨2-4h的粉碎工艺后,预烧结粉体的颗粒尺寸已经达到微米级,粒度分布较为均匀,但是仍存在少部分粒度在10μm以上的大尺寸颗粒,可能对造粒后团聚粉体的粒度和球形度造成影响。
实施例2
本实施例提供了一种高熵陶瓷热障涂层的制备方法,具体步骤如下:
S1.将Y2O3、Sm2O3、Eu2O3、Gd2O3、Yb2O3的原始粉末(粒径5-10μm,纯度99.99wt.%)和ZrO2粉末(粒径0.2-1μm,纯度99.99wt.%)按摩尔比1:1:1:1:1:5(稀土元素的摩尔比为0.2:0.2:0.2:0.2:0.2:1)进行称料;
S2.以乙醇为介质、ZrO2球为球磨珠,在行星球磨机上以300rpm的转速球磨混合10h得到混合料浆,将料浆放入鼓风干燥箱中110℃干燥12h直至完全烘干,得到混合粉体;
S3.将混合粉体装入氧化铝坩埚,然后置于马弗炉内,在1550℃下保温6h,得到预烧结粉体;将预烧结粉体进行研磨、破碎、球磨10h的粉碎工艺,按照40%固含量的粉体、6%的PAA溶液和10%的PVP溶液配制悬浮液,通过喷雾干燥机进行二次造粒,得到球形度高、流动性好的团聚粉体;
S4.将高温合金圆棒切割成φ25.4mm×6mm的圆片状试样或航空发动机与燃气轮机热端部件作为基体,首先将基体置于煤油中超声清洗10min,接下来分别在丙酮和乙醇中超声清洗10min,采用280号刚玉白砂进行表面喷砂处理,经压缩空气吹除残留砂砾后,再刷一遍乙醇进行清洗,利用PS-PVD技术将团聚粉体沉积在基体表面,形成(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层。
其中,(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7涂层的喷涂参数为:喷涂距离800-1000mm,预热走枪速度300-400mm/s,喷涂走枪速度400-500mm/s,温度900-1000℃,送粉速率5-10g/min,载气流量5-20SLPM,氩气流量25-40SLPM氦气流量40-60SLPM,氧气流量0-5SLPM,电流2400-2700A,舱压5-10×10-5MPa。
制得的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7涂层的厚度为360μm。
图1为实施例1和实施例2制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7预烧结粉体的XRD图谱对比图。从中可以看出,两个实施例制备的预烧结粉体均呈现为单相的缺陷萤石结构,没有杂质或第二相的生成。
图3为实施例2制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7预烧结粉体粉碎后的SEM图。从中可以看出,经过研磨、破碎、球磨2-4h的粉碎工艺后,预烧结粉体中的大尺寸颗粒已经消失,相比于实施例1,实施例2中粉碎后预烧结粉体的颗粒尺寸更小,粒度分布也更加均匀。
图4为实施例2制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层表面的SEM图。从中可以看出,涂层表面形貌为“菜花头”结构,“菜花头”的大小和分布都较为均匀,说明涂层结构的生长情况较为良好。
图5为实施例2制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层断面的SEM与EDS对比图。从中可以看出,涂层截面形貌为羽毛型柱状高应变容限结构:底部涂层由柱状主晶和枝晶序构而成,孔隙率较大;顶部由柱状晶疏松序构而成,众多未长成的次级枝晶构成了“菜花头”区域。涂层截面上各元素分布较为均匀,没有出现明显的元素偏析现象,证明已经成功合成了(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层。
图6为实施例2制备的(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7预烧结粉体1600℃10h高温热处理前后的XRD对比图。从中可以看出,高温热处理后(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7预烧结粉体衍射峰的峰强增大,峰位向低角度发生偏移并伴随有衍射峰宽化现象,物相组成没有变化。
对比例1
图7为市售YSZ粉体1600℃10h高温热处理前后的XRD对比图。从中可以看出,高温热处理前YSZ粉体以t相为主,还有少量的m相。在热处理过程中发生了t相到m相以及c 相的转变,热处理后YSZ粉体以c相为主,还有一定量的m相和少量的t相。由于YSZ的相变往往伴随着体积收缩或膨胀,尤其在热循环过程中这种体积变化会不断累积,并产生热应力,当应力积累一定程度后,就会使涂层产生剥落而失效。而(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高温热处理后没有发生相变。因此,(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7在1600℃具有优异的高温相稳定性。
对比例2
涂层化学式为Gd2Zr2O7,制备方法同实施例2。
将实施例2与对比例2所得涂层通过纳米压痕测试涂层力学性能,测试结果如下:
表1实施例2与对比例2涂层的力学性能测试结果
上述结果表明,(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层的弹性模量(104.83GPa)远低于Gd2Zr2O7涂层(134.84GPa),硬度也低于Gd2Zr2O7涂层。较低的弹性模量可以提高陶瓷层的应力应变容限,避免应力集中引起的涂层失效。因此,(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层具有良好的力学性能。
综上所述,本发明首次通过PS-PVD技术成功制备得到了(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层,证明其断裂韧性较高。相比于现有技术,本发明的高熵陶瓷热障涂层不仅具有优异的高温相稳定性,还具有良好的力学性能。本发明的高熵陶瓷热障涂层及其制备方法为其他体系高熵陶瓷涂层的制备提供了一种思路,在航空发动机与燃气轮机热障涂层材料领域具有十分广阔的应用前景。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种高熵陶瓷热障涂层,其特征在于,所述高熵陶瓷热障涂层的化学式为(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7,其中各稀土元素的摩尔数与所有稀土元素总摩尔数的百分比分别为18%~22%。
  2. 根据权利要求1所述的高熵陶瓷热障涂层,其特征在于,所述高熵陶瓷热障涂层的厚度为350-400μm;
    优选地,所述高熵陶瓷热障涂层具有萤石相结构,其截面形貌为羽毛型柱状高应变容限结构。
  3. 如权利要求1或2所述的高熵陶瓷热障涂层的制备方法,其特征在于,包括:称取原料并将其进行湿法球磨混合、干燥,得到的混合粉体在预烧结后进行粉碎、二次造粒,获得(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7团聚粉体,然后通过等离子喷涂物理气相沉积技术将所述(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7团聚粉体沉积在基体表面,形成(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7高熵陶瓷热障涂层。
  4. 根据权利要求3所述的高熵陶瓷热障涂层的制备方法,其特征在于,所述原料包括ZrO2和稀土氧化物粉末,所述稀土氧化物包括Y2O3、Sm2O3、Eu2O3、Gd2O3和Yb2O3
    优选地,所述ZrO2的粒径为0.2-1μm,质量纯度≥99.99%;
    优选地,所述稀土氧化物的粒径为5-10μm,质量纯度≥99.99%。
  5. 根据权利要求3所述的高熵陶瓷热障涂层的制备方法,其特征在于,所述湿法球磨的球磨介质为乙醇,球磨珠材质为ZrO2,转速为300-400rpm,球磨混合时间为8-24h。
  6. 根据权利要求3所述的高熵陶瓷热障涂层的制备方法,其特征在于,所述干燥的干燥温度为105-120℃,干燥时间为10-12h。
  7. 根据权利要求3所述的高熵陶瓷热障涂层的制备方法,其特征在于,所述预烧结的温度为1500-1600℃,预烧结的时间为2-10h。
  8. 根据权利要求3所述的高熵陶瓷热障涂层的制备方法,其特征在于,所述二次造粒的过程中的喷雾干燥参数为:固含量40-65%,分散剂6-10%PAA,粘结剂8-10%PVP,进口温度240-260℃,出口温度110-130℃,进料转速30-50rpm,喷雾转速5-6m3/h,气压2-3bar。
  9. 根据权利要求3所述的高熵陶瓷热障涂层的制备方法,其特征在于,将所述(Y0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7团聚粉体沉积在基体表面时,喷涂参数为:喷涂距离800-1000mm,喷枪移动速度300-500mm/s,温度900-1000℃,送粉速率5-10g/min,载气流量5-20SLPM,氩气流量25-40SLPM氦气流量40-60SLPM,氧气流量0-5SLPM,电流2400-2700A,舱压4-6×10-5MPa。
  10. 如权利要求1或2所述的高熵陶瓷热障涂层在航空发动机与燃气轮机中的应用。
PCT/CN2023/127499 2023-03-30 2023-10-30 一种高熵陶瓷热障涂层及其制备方法 WO2024027858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310332788.5A CN116377372A (zh) 2023-03-30 2023-03-30 一种高熵陶瓷热障涂层及其制备方法
CN202310332788.5 2023-03-30

Publications (1)

Publication Number Publication Date
WO2024027858A1 true WO2024027858A1 (zh) 2024-02-08

Family

ID=86974400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127499 WO2024027858A1 (zh) 2023-03-30 2023-10-30 一种高熵陶瓷热障涂层及其制备方法

Country Status (2)

Country Link
CN (1) CN116377372A (zh)
WO (1) WO2024027858A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116377372A (zh) * 2023-03-30 2023-07-04 广东省科学院新材料研究所 一种高熵陶瓷热障涂层及其制备方法
CN116874298A (zh) * 2023-07-12 2023-10-13 内蒙古科技大学 一种稀土锆酸盐高熵陶瓷及其制备方法
CN117229054A (zh) * 2023-08-03 2023-12-15 广东省科学院新材料研究所 一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258467B1 (en) * 2000-08-17 2001-07-10 Siemens Westinghouse Power Corporation Thermal barrier coating having high phase stability
CN102925843A (zh) * 2012-10-25 2013-02-13 西安交通大学 一种原位合成制备复合热障涂层的方法
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
CN112661511A (zh) * 2021-01-13 2021-04-16 中国人民解放军国防科技大学 一种掺杂改性的稀土锆酸盐粉体及其制备方法和应用
CN114000089A (zh) * 2021-10-11 2022-02-01 上海交通大学 一种利用aps技术制备的高熵氧化物超高温热障涂层及其方法
CN114956820A (zh) * 2022-05-31 2022-08-30 西北工业大学 一种稀土复合氧化物多孔高熵陶瓷及其制备方法和应用
CN116377372A (zh) * 2023-03-30 2023-07-04 广东省科学院新材料研究所 一种高熵陶瓷热障涂层及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815797B2 (ja) * 2004-12-14 2011-11-16 船井電機株式会社 受光装置
WO2020142125A2 (en) * 2018-10-09 2020-07-09 Oerlikon Metco (Us) Inc. High-entropy oxides for thermal barrier coating (tbc) top coats
CN114000107B (zh) * 2021-10-11 2022-12-30 上海交通大学 一种利用eb-pvd技术制备的高熵氧化物超高温热障涂层及其方法
CN114149260B (zh) * 2021-12-14 2023-01-03 内蒙古工业大学 一种低热导率高熵陶瓷热障涂层材料
CN115011905A (zh) * 2022-07-12 2022-09-06 广东省科学院新材料研究所 一种热障涂层及其制备方法和应用
CN115536386B (zh) * 2022-11-04 2024-04-02 华东理工大学 一种高断裂韧性、抗cmas腐蚀及超高温烧结热障涂层材料及其制备和应用、热障涂层

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258467B1 (en) * 2000-08-17 2001-07-10 Siemens Westinghouse Power Corporation Thermal barrier coating having high phase stability
CN102925843A (zh) * 2012-10-25 2013-02-13 西安交通大学 一种原位合成制备复合热障涂层的方法
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
CN112661511A (zh) * 2021-01-13 2021-04-16 中国人民解放军国防科技大学 一种掺杂改性的稀土锆酸盐粉体及其制备方法和应用
CN114000089A (zh) * 2021-10-11 2022-02-01 上海交通大学 一种利用aps技术制备的高熵氧化物超高温热障涂层及其方法
CN114956820A (zh) * 2022-05-31 2022-08-30 西北工业大学 一种稀土复合氧化物多孔高熵陶瓷及其制备方法和应用
CN116377372A (zh) * 2023-03-30 2023-07-04 广东省科学院新材料研究所 一种高熵陶瓷热障涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUO, XUEWEI; XU, CHUNHUI; DUAN, SHUAISHUAI; HUANG, SHUO; JIN, HONGYUN: "Research progress on high-entropy thermal barrier coating ceramic materials", AERONAUTICAL MANUFACTURING TECHNOLOGY, vol. 65, no. 3, 31 December 2022 (2022-12-31), pages 82 - 91, XP009552765, ISSN: 1671-833X, DOI: 10.16080/j.issn1671-833x.2022.03.082 *

Also Published As

Publication number Publication date
CN116377372A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
WO2024027858A1 (zh) 一种高熵陶瓷热障涂层及其制备方法
CN113683430B (zh) 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法
CN115536386B (zh) 一种高断裂韧性、抗cmas腐蚀及超高温烧结热障涂层材料及其制备和应用、热障涂层
US7837967B2 (en) Thermal spray powder and method for forming thermal spray coating
JP6608580B2 (ja) 超低熱伝導性及び摩耗性の高温tbcの構造及び製造方法
JP2018511701A (ja) リチウム含有遷移金属酸化物ターゲット
CN106884132A (zh) 一种高温热障涂层材料
CN107815633B (zh) 一种高性能热障涂层及其陶瓷层
Zhou et al. Fabrication and characterization of novel powder reconstitution derived nanostructured spherical La2 (Zr0. 75Ce0. 25) 2O7 feedstock for plasma spraying
KR102013651B1 (ko) 우수한 부착력 및 열내구성을 가지는 세라믹 열차폐코팅층의 제조방법
CN114000107B (zh) 一种利用eb-pvd技术制备的高熵氧化物超高温热障涂层及其方法
CN112430091B (zh) 一种高韧性复相陶瓷材料及其制备方法和应用
CN111925211A (zh) 一种a2b2o7型稀土钽酸盐陶瓷及其制备方法
CN114672756A (zh) 一种高熵超高温氧化锆基热障涂层材料及其制备方法和应用、氧化锆基热障涂层
CN114000089A (zh) 一种利用aps技术制备的高熵氧化物超高温热障涂层及其方法
CN115466114A (zh) 一种高韧性长寿命超高温热障涂层材料及其制备方法和应用
CN115261762B (zh) 喷镀用材料
KR101458815B1 (ko) 서스펜션 플라즈마 용사를 이용한 열차폐 코팅층의 제조방법
Niu et al. Directed-energy deposition for ceramic additive manufacturing
Shi et al. Improved thermal shock resistance of GYYZO-YSZ double ceramic layer TBCs induced by induction plasma spheroidization
Guignard Development of thermal spray processes with liquid feedstocks
Shoja Razavi et al. Advance techniques for the synthesis of nanostructured zirconia-based ceramics for thermal barrier application
CN115093225A (zh) 一种Y4Al2O9/Y2O3共晶陶瓷粉体及球形喂料的制备方法
CN114315348A (zh) 一种全稳定四方ysz靶材及超长寿命eb-pvd涂层的制备方法
Shao et al. TEM exploration of in-situ nanostructured composite coating fabricated by plasma spraying 8YSZ-Al-SiC composite powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849562

Country of ref document: EP

Kind code of ref document: A1