CN110041402A - 针对多种肿瘤例如包括nsclc在内的肺癌的新型免疫疗法 - Google Patents

针对多种肿瘤例如包括nsclc在内的肺癌的新型免疫疗法 Download PDF

Info

Publication number
CN110041402A
CN110041402A CN201910287774.XA CN201910287774A CN110041402A CN 110041402 A CN110041402 A CN 110041402A CN 201910287774 A CN201910287774 A CN 201910287774A CN 110041402 A CN110041402 A CN 110041402A
Authority
CN
China
Prior art keywords
cell
peptide
cancer
expression
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910287774.XA
Other languages
English (en)
Other versions
CN110041402B (zh
Inventor
托妮·维因斯申克
斯特芬·沃尔特
延斯·弗里切
科莱特·宋
哈普瑞特·辛格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immatics Biotechnologies GmbH
Original Assignee
Immatics Biotechnologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1313987.8A external-priority patent/GB201313987D0/en
Priority claimed from GBGB1403297.3A external-priority patent/GB201403297D0/en
Application filed by Immatics Biotechnologies GmbH filed Critical Immatics Biotechnologies GmbH
Priority to CN201910287774.XA priority Critical patent/CN110041402B/zh
Priority claimed from CN201480035925.8A external-priority patent/CN105377290B/zh
Publication of CN110041402A publication Critical patent/CN110041402A/zh
Application granted granted Critical
Publication of CN110041402B publication Critical patent/CN110041402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • C12N9/6491Matrix metalloproteases [MMP's], e.g. interstitial collagenase (3.4.24.7); Stromelysins (3.4.24.17; 3.2.1.22); Matrilysin (3.4.24.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24065Macrophage elastase (3.4.24.65), i.e. metalloelastase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells

Abstract

本发明涉及用于免疫治疗方法的肽、核酸和细胞。特别是,本发明涉及癌症的免疫疗法。本发明还涉及单独使用或与其他肿瘤相关肽(能够例如作为刺激抗肿瘤免疫反应或体外刺激T细胞并转入患者的疫苗组合物的活性药物成分)联合使用的肿瘤相关T细胞(CTL)肽表位。

Description

针对多种肿瘤例如包括NSCLC在内的肺癌的新型免疫疗法
本申请是2014年8月4日提交的申请号为CN201480035925.8、发明名称为“用于治疗多种肿瘤(例如包括NSCLC在内的肺癌)的新型免疫疗法”的中国申请的分案。
技术领域
本发明涉及用于免疫治疗方法的肽、核酸和细胞。特别是,本发明涉及癌症的免疫疗法。本发明还涉及单独使用或与其他肿瘤相关肽(作为刺激抗肿瘤免疫反应的疫苗复合物的活性药物成分)联合使用的肿瘤相关T细胞(CTL)肽表位。本发明涉及67种新型肽序列及其变体,它们得自人肿瘤细胞的HLA-I和HLA-II类分子,可用在引发抗肿瘤免疫反应的疫苗组合物中。
背景技术
无论男女,肺癌均为癌症相关死亡的第一诱因。无论就发病率还是死亡率而言,肺癌均是全球最常见的癌症。2008年新增161万肺癌病例以及138万肺癌死亡病例,其中欧洲与北美的比率最高。
自1987年以来,每年死于肺癌的女性人数均高于死于乳腺癌的人数。1991年至2003年,男性死亡率持续显著下降,每年下降约1.9%。女性肺癌死亡率在连续增长数十年后正趋于平稳。以上肺癌死亡率的趋势反映了过去30年中吸烟率的降低。
据美国国立癌症研究所(NCI)数据,预计美国2013年将有约23万新增肺癌病例以及16万肺癌死亡病例。
为便于治疗,肺癌可临床分类为小细胞癌(13%,SCLC)或非小细胞癌(87%,NSCLC),其预后通常不良。在所有肺癌患者中,15%可在确诊后存活5年。确诊时通常已为晚期。出现病情时30-40%的NSCLC病例为IV期,60%的SCLC病例为IV期。
根据肿瘤的类型(小细胞或非小细胞)和期别选择治疗方案,包括手术、放疗、化疗以及靶向生物疗法,例如贝伐单抗和厄洛替尼对于局限性癌灶,通常选择外科手术治疗。最近的研究表明,手术后化疗改善了早期非小细胞肺癌的生存。由于该肿瘤发现时通常已扩散,因此常使用放疗与化疗,有时与手术联合使用。单一化疗或与放疗联合使用是小细胞肺癌的首选疗法;采用此治疗方案的患者有很大一部分出现缓解,某些患者甚至达到长期缓解。
肺癌的1年生存率略有升高,从1975-1979年的37%升至2002年的42%,这主要归因于手术技术与联合疗法的进步。但所有期别的肺癌一起5年生存率仅为16%。发现时为局限性肿瘤的患者,其生存率为49%;但仅有16%的肺癌可在此早期得到确诊。
尽管如此,仍亟需安全有效的新疗法治疗肺癌,特别是不同表型的非小细胞肺癌(NSCLC)、胃癌和脑癌,以在改善患者的健康状况的同时不过度使用化疗药物或其它可导致严重副作用的药物。
本发明使用可刺激患者免疫系统且以非侵入性方式作为抗肿瘤药物的肽。
发明内容
首先,本发明涉及一种肽或其药用盐,包含选自SEQ ID NO:1至SEQ ID NO:65、SEQID NO:76至SEQ ID NO:84、以及SEQ ID NO:92的氨基酸序列,或与SEQ ID NO:1至SEQ IDNO:65、SEQ ID NO:76至SEQ ID NO:84、以及SEQ ID NO:92具有至少80%、优选至少90%同源(优选至少80%或至少90%相同)的变体序列,其中变体诱导T细胞与所述肽发生交叉反应,其中所述肽不是全长多肽。
本发明进一步涉及本发明的肽,包含选自SEQ ID NO:1至SEQ ID NO:65、SEQ IDNO:76至SEQ ID NO:84、以及SEQ ID NO:92的序列,或与SEQ ID NO:1至SEQ ID NO:65、SEQID NO:76至SEQ ID NO:84、以及SEQ ID NO:92具有至少80%、优选至少90%同源(优选至少80%或至少90%相同)的变体序列,其中对于SEQ ID No:1至SEQ ID No:65、SEQ ID No:78至SEQ ID No:84和SEQ ID No:92而言,所述肽或其变体的总长度为8至100个、优选为8至30个、最优选为8至14个氨基酸;对于SEQ ID No:76和77,所述肽或其变体的总长度为12至100个、优选为12至30个、最优选为12至18个氨基酸。
下表为本发明所涉肽及其相应SEQ ID NO,以及此类肽的预期源蛋白。表1a、1b和1c中的所有肽均可与HLA A*02等位基因结合,表1d中的肽可与HLA-DR等位基因结合。表1c中的肽还可用于胃癌和/或成胶质细胞瘤的诊断和/或治疗。
表1d中的II类肽还可用于胃癌和其它过量表达或过量呈递MMP12或POSTN的癌症的诊断和/或治疗。
因此,本发明特别地涉及含有SEQ ID No.76的本发明的肽或其变体,该变体与SEQID No:76至少80%同源、优选为90%同源(优选为至少80%相同或至少90%相同),其中上述肽或其变体的总长度为12至100个氨基酸,优选为12至30个,最优选为12至18个氨基酸。本发明特别涉及由SEQ ID No:76序列组成的本发明肽。
同时,本发明特别地涉及含有SEQ ID No.77的本发明的肽或其变体,该变体与SEQID No:77至少80%同源、优选为90%同源(优选为至少80%相同或至少90%相同),其中上述肽或其变体的总长度为12至100个氨基酸,优选为12至30个,最优选为12至18个氨基酸。本发明特别涉及由SEQ ID No:77序列组成的本发明肽。
表1a:本发明的肽
表1b:本发明的其他肽
SEQ ID NO: 肽代码 序列 源蛋白
49 SAMSN1-001 RLLJAAENFL SAMSN1
50 STAT2-001 SLLPVDIRQYL STAT2
51 CNOT1-001 YLAPFLRNV CNOT1
52 SHMT2-001 ALLERGYSL SHMT2
53 JUNB-001 YLPHAPPFA JUNB
54 TACC3-001 KLVEFDFLGA TACC3
55 CNOT1-002 SLADFMQEV CNOT1
56 RAD54B-001 SLYKGLLSV RAD54B
57 EEF2-002 GLAEDIDKGEV EEF2
58 CCNA2-001 SLIDADPYL CCNA2
59 NET1-001 ILVSWLPRL NET1
60 C11orf24-001 VVDKTLLLV C11orf24
61 RCC1-001 TLISRLPAV RCC1
62 MAGEF1-001 ILFPDIIARA MAGEF1
63 NCAPD2-001 SLAGDVALQQL NCAPD2
64 C12orf44-001 AMLAVLHTV C12orf44
65 HERC4-001 KVLEILHRV HERC4
表1c:成胶质细胞瘤和/或胃癌中亦有过量表达的其他肽
SEQ ID NO: 肽代码 序列 源蛋白
66 IGF2BP3-001 KIQEILTQV IGF2BP3
67 CDC6-001 ILQDRLNQV CDC6
68 FAP-003 YVYQNNIYL FAP
69 WNT5A-001 AMSSKFFLV WNT5A
70 TPX2-001 KILEDVVGV TPX2
71 HMMR-001 KLLEYIEEI HMMR
72 ADAM8-001 KLLTEVHAA ADAM8
73 COL6A3-002 FLLDGSANV COL6A3
74 THY1-001 SLLAQNTSWLL THY1
75 DIO2-001 ALYDSVILL DIO2
表1d:本发明的MHC II类肽
SEQ ID NO: 肽代码 序列 源蛋白
76 MMP12-002 INNYTPDMNREDVDYAIR MMP12
77 POSTN-002 TNGVIHVVDKLLYPADT POSTN
表1e:在其他肿瘤中过度表达的其他本发明优选肽
SEQ ID NO: 肽代码 序列 源蛋白
78 SLI-001 SLYDNQITTV SLIT1,SLIT2
79 TLX3-001 SLAPAGVIRV TLX3
80 CEP192-001 SLFGNSGILENV CEP192
81 ANKS1A-001 ALYGRLEVV ANKS1A
82 CEP250-002 ALWEKNTHL CEP250
83 MDN1-001 ALANQKLYSV MDN1
84 OLFM1-001 ILMGTELTQV OLFM1
92 NEFH-001 HLLEDIAHV NEFH
表1f:在其他肿瘤中过度表达的其他本发明的肽
SEQ ID NO: 肽代码 序列 源蛋白
85 BUB1B-001 KIVDFSYSV BUB1B
86 PI4KA-001 AMATESILHFA PI4KA
87 AURKB-001 RVLPPSALQSV AURKB
88 SLC3A2-001 SLLESNKDLLL SLC3A2
89 IFT81-001 ALASVIKEL IFT81
90 COG4-001 SLVAVELEKV COG4
91 NCBP1-001 AMFENFVSV NCBP1
本发明还涉及本发明的肽,其具有与人主要组织兼容性复合体(MHC)I或II类分子结合的能力。
本发明还涉及本发明中的肽,其中所述肽由或基本由根据SEQ ID NO:1至SEQ IDNO:65、SEQ ID NO:76至SEQ ID NO:84、以及SEQ ID NO:92的氨基酸序列组成。
本发明还涉及本发明的肽,其中所述肽被修饰和/或包含非肽键。
本发明还涉及本发明的肽,其中所述肽为融合蛋白的一部分,特别是与HLA-DR抗原相关不变链(Ii)的N-端氨基酸融合,或与抗体(例如,树突状细胞特定抗体)融合,或融合到抗体的序列中。
本发明还涉及编码本发明肽的核酸。
本发明还涉及本发明的核酸,其为DNA、cDNA、PNA、RNA或其组合。
本发明还涉及一种能表达本发明核酸的表达载体。
本发明还涉及本发明的肽、本发明的核酸或本发明的表达载体在药物中的用途。
本发明还涉及本发明中的抗体、以及制备这些抗体的方法。
本发明还涉及本发明的T细胞受体(TCR),特别是可溶性TCR(sTCR),以及制造这些TCR的方法。
本发明还涉及含本发明核酸或前述表达载体的宿主细胞。
本发明还涉及本发明的宿主细胞,其为抗原提呈细胞。
本发明还涉及本发明的宿主细胞,其中抗体提呈细胞为树突细胞。
本发明还涉及制备本发明肽的方法,所述方法包括培养本发明的宿主细胞,以及从所述宿主细胞或其培养基中分离肽。
本发明还涉及体外制备激活的细胞毒性T细胞(CTL)的方法,该方法包括使CTL与表达在合适的抗原提呈细胞表面且加载有抗原的人MHC-I或II类分子在体外接触一段时间,该时间足以以抗原特异性方式激活该CTL,其中该抗原是本发明的任一肽。
本发明还涉及本发明中的方法,其中通过使足量的抗原与抗原提呈细胞接触,使抗原加载在表达于合适抗原提呈细胞表面的I或II类MHC分子上。
本发明还涉及本发明的方法,其中抗原提呈细胞包含能表达含SEQ ID NO:1至SEQID NO:92,优选为含SEQ ID NO:1至SEQ ID No:65和SEQ ID NO:76至SEQ ID No:84以及SEQID NO:92或其变体氨基酸序列的肽的表达载体。
本发明还涉及以本发明方法制造的激活的细胞毒性T细胞(CTL),其有选择性地识别一种细胞,该细胞异常地表达含本发明氨基酸序列的多肽。
本发明还涉及一种杀伤患者靶细胞的方法,其中靶细胞异常地表达含本发明任意氨基酸序列的多肽,该方法包括对患者施用本发明的有效量的细胞毒性T细胞(CTL)。
本发明还涉及任何所述肽、本发明的核酸、本发明的表达载体、本发明的细胞、本发明的激活的细胞毒性T淋巴细胞作为药物或在药物制备中的用途。
本发明还涉及本发明的用途,其中所述药物为疫苗。
本发明还涉及本发明的用途,其中所述药物有效抗癌。
本发明还还涉及本发明中的用途,其中所述癌细胞为肺癌、胃癌、胃肠癌、结直肠癌、胰腺癌或肾癌细胞,优选胶质细胞瘤细胞。
本发明进一步涉及一种基于本发明肽的特定标记物蛋白和生物标志物,其可用于肺癌、胃癌、胃肠癌、结直肠癌、胰腺癌或肾癌、以及胶质细胞瘤的诊断和/或预后。
此外,本发明涉及这些新靶点在癌症治疗中的用途。
具体实施方式
是否能刺激免疫反应取决于是否存在被宿主免疫系统视为异物的抗原。发现肿瘤相关抗原的存在增加了运用宿主免疫系统干预肿瘤生长的可能性。目前,针对癌症免疫治疗,正在探索利用免疫系统的体液和细胞进行免疫的各种机制。
细胞免疫反应的特定元素能特异性地识别和破坏肿瘤细胞。从肿瘤浸润细胞群或外周血中分离出的细胞毒性T细胞表明,这些细胞在癌症的天然免疫防御中发挥了重要作用。特别是CD8阳性T细胞在这种反应中发挥重要作用,CD8+T细胞识别携带有通常为8至10个氨基酸残基的源自蛋白或缺陷核糖体产物(DRIP)的肽的主要组织兼容性复合体(MHC)-I类分子。人MHC分子也称为人白细胞-抗原(HLA)。
MHC分子分为两类:MHC I类分子存在于多数带核细胞中。MHC分子包含一条α重链和一个β-2微球蛋白(MHC I类受体)或α和β重链各一条(MHC II类受体)。其三维构象形成一个结合槽,供与肽进行非共价相互作用。I类MHC所呈递的肽多源于主要内源蛋白、DRIP和较大肽的溶蛋白性裂解。MHC II类分子多见于专业性抗原呈递细胞(APC),其所呈递的肽多源于由APC在细胞内吞中所摄取的外源性或跨膜蛋白。肽与MHC I类分子的复合物可由负载适当的TCR(T细胞受体)的CD8阳性细胞毒性T细胞所识别,而肽与MHC II类分子的复合物可由负载适当的TCR的CD4阳性辅助T细胞所识别。本领域已熟知,TCR、肽与MHC由此按1:1:1的化学计算量比存在。
CD4阳性辅助T细胞对于引发和维持CD8阳性细胞毒性T细胞的有效应答起到重要作用。鉴别源于肿瘤相关性抗原(TAA)的CD4阳性T细胞表型对激发抗肿瘤免疫应答的药品之开发有重要意义(Kobayashi et al.,2002;Qin et al.,2003;Gnjatic et al.,2003)。在肿瘤部位,辅助T细胞可提供亲CTL的细胞因子环境(Mortara et al.,2006)并吸引效应细胞,例如CTL、自然杀伤细胞、巨噬细胞、粒细胞(Hwang et al.,2007)。
在炎症环境中,MHC II类分子的表达主要限于免疫系统细胞,特别是专业性抗原呈递细胞(APC),例如单核细胞、单核细胞衍生的细胞、巨噬细胞和树突细胞。在癌症患者中,意外发现肿瘤细胞可表达MHC II类分子(Dengjel et al.,2006)。
哺乳动物模型(如小鼠)试验显示,即使不存在CTL效应细胞(例如CD8阳性T淋巴细胞),CD4阳性T细胞仍足以通过抑制干扰素γ(IFNγ)分泌所导致的血管生成来抑制肿瘤表现。
此外,研究显示,可识别源自肿瘤相关性抗原(由HLA II类分子呈递)的肽的CD4阳性T细胞可通过引发抗体(Ab)应答来阻止肿瘤进展。
不同于与HLA I类分子相结合的肿瘤相关性肽,迄今仅报告了少数肿瘤相关性抗原(TAA)的II类配体。
由于HLA II类分子的组成型表达通常限于免疫系统细胞,因此认为无法直接从原发肿瘤中分离II类肽。但Dengjel等人成功地从肿瘤中直接识别出若干MHC II类表型(WO2007/028574,EP 1760088B1;(Dengjel et al.,2006))。
由肿瘤特异性细胞毒性T淋巴细胞所识别的抗原(即其表型)可以是源自各类蛋白(例如酶、受体、转录因子等)的分子,此类分子在相应的肿瘤细胞中存在表达和上调(相比于同源的未变化细胞)。
由于两种类型的应答(分别为CD8和CD4依赖型)可共同产生协同抗肿瘤作用,因此肿瘤相关性抗原(通过CD8+CTL(配体:MHC I类分子+多肽表型)或CD4阳性辅助T细胞(配体MHC II类分子+多肽表型)来识别)的鉴别和表征对于抗肿瘤疫苗的开发有重要意义。
本发明另涉及两种非常有用的新型MHC II类肽(对应于SEQ ID NO 76和77)。这两种肽对于胃癌、NSCLC和其它分别过量表达和/或过量呈递MMP12和POSTN的癌症之诊断和/治疗尤为有用。
本发明另涉及新型MHC II类肽的所谓长度变异体(对应于SEQ ID NO 76或77)。如上文所述,对应于SEQ ID NO 76的肽含有氨基酸序列INNYTPDMNREDVDYAIR(MMP12-肽),对应于SEQ ID NO 77的肽含有氨基酸序列TNGVIHVVDKLLYPADT(POSTN-002-肽)。变异体的长度通常为N和/或C末端延伸(1至5个氨基酸,优选为1至10个氨基酸)或N和/或C末端缩短(1至5个氨基酸),这些变异体仍可与MHC相结合并引发本文所述的细胞性免疫应答。目前已知肽与II类蛋白的结合不受限于大小,长度为11至30个氨基酸不等。MHC II类分子中的肽结合槽在两端均敞开,由此可结合相对较长的肽。虽然“核心”的9个残基长的一段对识别肽最重要,而侧翼区对肽的II类等位基因的特异性有重要作用(参见Meydan C,et al.,Prediction of peptides binding to MHC class I and II alleles by temporalmotifmining.BMC Bioinformatics.2013;14Suppl 2:S13.Epub 2013Jan 21)。使用现有的诸多软件工具(如上文所述工具),具备当前技术水平的人员可确定结合基序,并由此确定MHC II类肽是否能够出现相对于SEQ ID NO 76或77的延伸和/或缺失,以此产生长度变异体。
肽须与一种MHC分子相结合方可触发(引发)细胞系免疫应答。该过程取决于该MHC分子的等位基因以及该肽氨基酸序列的特定多态性。MHC I类结合肽的长度通常为8-12个氨基酸残基,其序列中通常包含2个保守残基(“锚位点”),可与相应MHC分子的结合槽相反应。由此每个MHC等位基因均包含一个“结合基序”,此基序可决定何种肽可与结合槽特异性结合。
在MHC I类依赖型免疫反应中,肽不仅须与特定的由肿瘤细胞表达的MHC I类分子相结合,而且须被负载特异性T细胞受体(TCR)的T细胞所识别。
由肿瘤特异性细胞毒性T淋巴细胞所识别的抗原(即其表型)可以是源自各类蛋白(例如酶、受体、转录因子等)的分子,此类分子在相应的肿瘤细胞中存在表达,并且与同源未变的细胞相比,其表达上调。
目前的肿瘤相关性抗原主要分为以下几组:
a)肿瘤-睪丸抗原:第一个发现可被T细胞识别的TAA即属于此类别。最初称其为肿瘤-睪丸(CT)抗原是因为该组成员在具有组织学差异的人体肿瘤中存在表达,而在正常组织中的表达仅限于睪丸精母细胞/精原细胞以及(少数情况下)胎盘。由于睪丸细胞不表达I类和II类HLA分子,此类抗原无法在正常组织中被T细胞识别,因此可认为具有免疫学肿瘤特异性。较为知名的CT抗体包括MAGE家族成员和NY-ESO-1。
b)分化抗原:此类抗原在肿瘤以及产生肿瘤的正常组织中均存在,最常见于黑素瘤和正常黑素细胞。有许多此类黑素细胞谱系相关性蛋白参与黑色素的生物合成,因此不具肿瘤特异性,但广泛用于肿瘤免疫治疗。实例包括但不限于络氨酸酶、Melan-A/MART-1(针对黑素瘤)和PSA(针对前列腺癌)。
c)过量表达的TAA:已在具有组织学差异的多种肿瘤以及许多正常组织中发现了编码广泛表达的TAA之基因,通常为低表达水平。有可能许多由正常组织加工并可能由正常组织呈递的表型低于T细胞识别阈水平,但这些表型在肿瘤细胞中的过量表达可通过打破之前建立的耐受性而触发抗肿瘤应答。该TAA类别中的知名抗原包括Her-2/neu、生存素、端区酶和WT1。
d)肿瘤特异性抗原:此类独特的TAA产生于正常基因(例如β-连环蛋白、CDK4等)的突变。此类分子变化中有一部分与瘤性转化和/进展相关。肿瘤特异性抗原通常可引发较强的免疫应答,且没有对正常组织的自免疫反应这一风险。从另一方面讲,此类TAA在多数情况下仅与发现此类TAA的特定肿瘤有关,且不同时存在于多种肿瘤。
e)异常翻译后修饰所产生的TAA:此类TAA可产生于在肿瘤中非特异性亦非过量表达的蛋白,但可通过主要活跃于肿瘤的翻译后加工过程而成为肿瘤相关性抗原。实例有:该类抗原产生于糖基化方式的改变,由此引发肿瘤中的新表型(例如MUCI)或降解过程中的蛋白质剪接等事件,可能具有肿瘤特异性,也可能不具有。
f)肿瘤病毒蛋白:此类TAA为病毒蛋白,可在肿瘤发生过程中起到关键作用,且由于其为外源性(非人源)蛋白,因此可引起T细胞应答。此类蛋白包括人乳头瘤16型病毒蛋白、E6和E7(表达于宫颈癌中)。
蛋白被细胞毒性T淋巴细胞识别为肿瘤特异性或相关性抗原并用于治疗需满足特定的前提条件。该抗原需主要由肿瘤细胞表达,且在正常健康组织中无表达或表达量相当小,或该肽在另一优选的实施方案中需由肿瘤细胞过量呈递(相比于正常健康组织)。若相关抗原不仅存在于某一肿瘤类型,而且含量较高,则更为理想。肿瘤特异性和肿瘤相关性抗原通常源自直接参与正常细胞转化为肿瘤细胞这一过程(通过细胞周期控制、雕亡抑制等功能)的蛋白。此外,直接引发转化的蛋白之下游目标可能因上调而间接具有肿瘤相关性。此类间接肿瘤相关性抗原也可作为接种免疫的目标(Singh-Jasuja et al.,2004)。两种情况下均须有表型存在于抗原的氨基酸序列,原因是此类源自肿瘤相关性抗原的肽(“免疫原性肽”)应能引发体外或体内T细胞应答。
基本上所有可与MHC分子结合的肽均可作为T细胞表型。引发体外或体内T细胞应答的前提条件是具有相应TCR的T细胞以及不存在对这一特定表型的免疫耐受。
综上所述,TAA是肿瘤疫苗开发的起始点。TAA的鉴别与表征方法基于(从患者或健康受试者分离的)CTL的使用,或基于肿瘤与正常组织间的分化转录谱或分化肽表达谱。
然而仅鉴别在肿瘤组织或人肿瘤细胞系中过量表达(或在此组织或细胞系中选择性表达)的基因不能为从此类基因转录的抗原用作免疫疗法提供准确的信息。其原因是:须存在具有相应TCR的T细胞,且对于此特定表型的免疫耐受须不存在或极小,导致此类基因仅有个别表型亚群适用于此用途。因此,在本发明的实施方案中,所选用的过量呈递或选择性呈递的肽须存在相应的功能性和/或增生性T细胞。该功能性T细胞定义为经特异性抗原刺激,可克隆性地扩张并产生效应功能的T细胞(“效应T细胞”)。
若为根据本发明所述的TCR和抗体,则基本肽的免疫原性为继发性。就根据本发明所述的TCR和抗体而言,其呈递为决定因素。
辅助T细胞对于CTL在抗肿瘤免疫中发挥效应功能有重要作用。可触发TH1型辅助T细胞应答的辅助T细胞表型可支持CD8阳性杀伤T细胞的效应功能。CD8阳性杀伤T细胞的细胞毒性功能直接作用于呈现肿瘤相关性肽/MHC复合物的肿瘤细胞。由此,肿瘤相关性辅助T细胞肽表型(单用或与其它肿瘤相关性肽联合使用)可作为疫苗组合物中的活性药物成分刺激抗肿瘤免疫应答。
下文披露了根据本发明所述的肽的蛋白在其它癌症中的应用。
层粘连蛋白γ2(LAMC2)
层粘连蛋白是一个细胞外基质糖蛋白家族,是基底膜的主要非胶原性组分,广泛参与多种生理过程,包括细胞粘附、分化、迁移、信号传导、神经突生长和转移。LAMC2基因负责编码层粘连蛋白-5γ2链。该链是层粘连蛋白-5的一部分,后者是基底膜区的主要组分之一。胃癌中常存在启动子去甲基化所介导的LAMC2上调(Kwon et al.,2011)。曾发现LAMC2在向血管性黑素瘤区(相比于无血管黑素瘤区)存在过量表达(Lugassy et al.,2009)。LAMC2是膀胱癌转移的标记物之一,其表达水平与肿瘤等级相关(Smith et al.,2009b)。32个非SCLC细胞系中有21个(66%)存在LAMB3和LAMC2基因共表达,而13个SCLC细胞系中仅有1个(8%)。所有4例非SCLC细胞中均发现存在LAMB3和LAMC2基因共表达,但相应的非癌性肺细胞系中不存在(Manda et al.,2000)。
除非另有说明外,本文所使用的所有术语定义如下:
本文所用的“肽”这一术语系指一系列的氨基酸残基,彼此之间通常通过邻近氨基酸的α氨基酸与羰基间的肽键相连接。肽的长度优选为9个氨基酸,但也可以短至8个氨基酸,长至10、11、12、13或14个氨基酸,而MHC II类肽可长至15、16、17、18、19或20个氨基酸。
此外,“肽”这一术语应包括一系列氨基酸残基的盐类,彼此之间通常通过邻近氨基酸的α氨基酸与羰基间的肽键相连接。此盐类优选为药用盐。
“肽”这一术语应包括“寡肽”。本文所用的“寡肽”这一术语系指一系列的氨基酸残基,彼此之间通常通过邻近氨基酸的α氨基酸与羰基间的肽键相连接。只要寡肽能维持正确的表型,其长度对于本发明并非关键。寡肽通常少于约30个氨基酸残基,多余约15个氨基酸。
“本发明的肽”这一术语包括由SEQ ID No.1至SEQ ID No.92组成的肽或包含SEQID No.1至SEQ ID No.92的肽。
“多肽”这一术语系指一系列的氨基酸残基,彼此之间通常通过邻近氨基酸的α氨基酸与羰基间的肽键相连接。只要多肽能维持正确的表型,其长度对于本发明并非关键。与“肽”或“寡肽”相对,多肽这一术语系指包含多余约30个氨基酸残基的分子。
若一种肽、寡肽、蛋白或多聚核苷酸所编码的分子可引发免疫应答,则此肽、寡肽、蛋白或多聚核苷酸具有“免疫原性”(由此是本发明范围内的“免疫原”)。在本发明的情况下,免疫原性更具体定义为可诱导T细胞应答。因此“免疫原”是可诱导免疫应答的分子(具体到本发明则为可诱导T细胞应答的分子)。另一方面,免疫原可为一种肽、肽与MHC的复合物、寡肽和/或蛋白,用于产生其特异性抗体或TCR。
I类T细胞“表型”系指与I类MHC受体相结合的短肽,由此形成一个三元络合物(MHCI类α链、β-2-微球蛋白和肽),可由T细胞(携带与具有适当亲合力的MHC/肽复合物结合的相应T细胞受体)所识别。与MHC I类分子相结合的肽长度通常为8-14个氨基酸,以9个氨基酸最为常见。
人体中有3个不同的基因位点可编码MHC I类分子(人MHC-分子亦称人真核细胞抗原(HLA):HLA-A、HLA-B和HLA-C。HLA-A*01、HLA-A*02和HLA-B*07代表可从此位点表达的不同MHC I类等位基因。
表2:HLA*A02和最常见HLA-DR血清型的表达频率(F)。
依据Mori等人的方法,频率的推算基于美国人群中的单倍体频率Gf(Mori etal.,1997),该方法使用Hardy-Weinberg公式F=1-(1-Gf)2。由于连锁不平衡,A*02与某些HLA-DR等位基因组合后可能引起其各自单独频率的升高或降低。详情请参见Chanock等人的文献(Chanock et al.,2004)。
因此,出于治疗和诊断目的,能以适当的亲合力与多种不同的HLA II类受体相结合的肽是非常理想的。与数种不同的HLA II类分子结合的肽被称为混杂结合剂。
本文中对DNA序列的引用同时包括单链和多链DNA。因此除文中特别说明外,特定的序列均指该序列的单链DNA、此序列与其互补序列的双链体(双链DNA)以及此序列的互补序列。“编码区”这一术语系指可在自然基因组环境中自然或正常编码某基因表达产物的该基因组分,例如可在体外编码该基因天然表达产物的区域。
编码区域可来自非突变(“正常”)、突变或改变的基因,甚至可来自使用当前DNA合成方法在实验室全合成的DNA序列或基因。
“核苷酸序列”这一术语系指脱氧核糖核酸的异源多聚体。
编码特定肽、寡肽或多肽的核苷酸序列可为天然存在,也可为人工合成。通常而言,编码本发明的肽、多肽和蛋白的DNA片段组装自cDNA片段和短寡核苷酸连接器,或组装自一系列的寡肽,由此产生一个合成基因,该基因可在重组转录单元(由源自微生物或病毒操纵子的调控元素所组成)中表达。
本文所用的“编码肽的核苷酸”这一术语系指可编码肽的核苷酸序列(该肽含有适用于表达该序列的生物系统的人工起始和终止密码子)。
“表达产物”这一术语系指作为基因自然翻译产物的多肽或蛋白,或由遗传密码的简并性所产生的(因此可编码同种氨基酸的)任何氨基酸序列的同等编码产物。
“片段”这一术语用于编码序列时系指小于完整编码区的DNA的一部分,其表达产物所携带的生物功能或活性与完整编码区的表达产物本质上相同。
“DNA片段”这一术语系指作为单独片段或较大DNA构造组分的DNA聚合物。该片段源自至少分裂过一次、基本为初凝形式(即不含污染性内源物质,且其含量或浓度允许通过克隆用载体等标准生物化学方法对该片段或其氨基酸序列组分进行识别、操作和恢复)的DNA。此类片段表现为不被内部非翻译序列或内含子(通常存在于真核基因中)所打断的连续开放阅读框。非翻译DNA序列可能存在于该开放阅读框的下游,且该非翻译DNA序列不干扰编码区的操作或表达。
“引物”这一术语系指一种短核苷酸序列,可与一条DNA链配对形成一个游离3'-OH端,DNA聚合酶在此游离端开始合成脱氧核糖核酸链。
“启动子”这一术语系指一个参与RNA聚合酶结合(以此启动转录)的DNA区域。
“分离的”这一术语系指从原始环境(例如其天然环境(若为天然存在物质))中转移的物质。举例来说,天然存在的多聚核苷酸或存在于活体动物中的多肽为非分离物质,而从天然系统中某些或全部共存物质中分离的同种多聚核苷酸或多肽则为分离物质。此类多聚核苷酸可为载体的一部分,且/或此类多聚核苷酸或多肽可为某组分的一部分,但若此载体或组分不是其天然环境的一部分,此多聚核苷酸或多肽仍为分离物质。
根据本发明公开的多聚核苷酸以及重组或免疫原性多肽也可为“纯化”型。“纯化”这一术语并不要求绝对纯净,而是一个相对定义,可包含高度纯化的制剂或仅部分纯化的制剂。此类术语由具备相应的当前技术水平的人员所各自理解。例如,从cDNA库中分离的个体克隆物通常纯化至电泳匀质性即可。明确规定起始物料和自然物料应纯化至至少一个数量级(优选为2或3个数量级,更优选为4或5个数量级)。此外,明确规定多肽的纯度优选为99.999%,或至少99.99%或99.9%;甚至适宜以重量计为99%以上。
根据本发明公开的核苷酸和多肽表达产物以及含有此氨基酸和/或多肽的表达载体可能为“浓缩型”。本文所用“浓缩”这一术语系指物质的浓度至少为其(例如)天然浓度的2、5、10、100或1000倍,宜为0.01%(按重量),优选为至少0.1%(按重量)。也可考虑约0.5%、1%、5%、10%和20%(按重量)的浓缩制剂。本发明所涉序列、构造、载体、克隆物和其它物质宜为浓缩或分离型。
“活性片段”这一术语系指可单独使用或与适当辅剂联合使用,在动物(例如家兔或小鼠也包括人等哺乳动物)中产生免疫应答(即具有免疫原活性)的片段,此免疫应答的形式为在受体动物(例如人)中激发T细胞应答。“活性片段”也可用于引发体外T细胞应答。
本文中“部分”(portion)、“片段”(segment)和“片段”(fragment)等术语用于多肽时系指残基(例如氨基酸残基)的连续序列,该序列组成较大序列的一个亚组。例如,用常见的内肽酶(例如胰蛋白酶或糜蛋白酶)处理多肽后,由此处理所产生的寡肽即为起始多肽的部分、片段或片段。当用于多聚核苷酸时,以上术语系指用任何核酸内切酶处理相关多聚核苷酸后的产物。
本发明所涉“百分同一性”这一术语,用于序列时系指将需要比较的某一序列(“比较序列”)进行排列后与已明确的或已报告的序列(“参考序列”)相比较,然后用以下公式计算百分同一性:
百分同一性=100[1-(C/R)]
其中C为参考序列与比较序列在参考序列与比较序列之间排列长度中的差异数,其中(i)在比较序列中不存在相应排列碱基或氨基酸的参考序列中的各碱基或氨基酸、(ii)参考序列中的各空隙以及(iii)与比较序列中的排列碱基或氨基酸不同的参考序列中的各碱基或氨基酸均构成差异,并且(iiii)该排列必须起始于所排列序列的位置1;R为位于比较序列排列长度中的参考序列的碱基或氨基酸数量(将参考序列中的空隙也记为碱基或氨基酸)。
若比较序列与参考序列间存在排列,且二者按上述方法计算的百分同一性等于或大于特定的最低百分同一性限度,则可认为该比较序列与参考序列具有特定的最低百分同一性,即使也有可能存在按上述方法计算的排列百分同一性低于特定的百分同一性的情况。
如非另作说明,本文所涉的原始(非修饰)肽可均通过取代肽链中不同位点(有可能是选择性位点)上的一个或多个残基来进行修饰。
上述取代宜发生于氨基酸链的末端。此类取代可为保守性的,例如用一个结构或特性相似的氨基酸取代另一氨基酸(例如用一个疏水性氨基酸取代另一疏水性氨基酸)。相同或近似大小和化学性质的氨基酸间的取代则更为保守,例如用异亮氨酸取代白氨酸。在对天然存在的同源蛋白家族的序列变异体的研究中,某些氨基酸取代较之其它取代更易耐受,此类取代通常与相似大小、电荷、极性以及原氨基酸和其取代氨基酸间的疏水性相关。此类性质是定义“保守性取代”的基础。
本文定义保守性取代为以下任意五组残基间的交换:第1组-脂肪族、非极性或微极性小残基(Ala,Ser,Thr,Pro,Gly);第2组-极性、带负电荷残基及其酰胺(Asp,Asn,Glu,Gln);第3组-极性、带正电荷残基(His,Arg,Lys);第4组-脂肪族、非极性大残基(Met,Leu,Ile,Val,Cys);第5组-芳香族大残基(Phe,Tyr,Trp)。
较不保守的取代方式可能涉及用特性相近但大小有所不同的氨基酸取代另一氨基酸,例如用异亮氨酸残基取代丙氨酸。高度非保守取代可能涉及用酸性氨基酸取代具有极性或甚至碱性性质的氨基酸。但上述“激进”的取代不能因为有可能无效而被忽略,原因是化学作用并不是完全可预测的,激进的取代也有可能产生单一化学原则所无法预测的偶然效应。
当然,上述取代可能涉及与常见L-氨基酸不同的结构。因此,即使D-氨基酸有可能被本发明中的常见抗原性肽的L-氨基酸所替代,但是本发明仍然涵盖D-氨基酸。此外,可加工非标准R基团(即,除了天然蛋白的20个常见氨基酸之外的R基团)的氨基酸也有可能用于取代,以此产生根据本发明所述的免疫原和免疫原性多肽。
若发现存在多个位置的取代,产生了具有本质上同等或更强的抗原活性(定义见下文)的肽,则应检测此类取代组合以明确此组合取代是否对肽的抗原性产生了迭加或协同效应。同一个肽中最多可有不超过4个位置被同时取代。
本发明的肽可延长最多4个氨基酸,即:1、2、3或4个氨基酸可以4:0至0:4的任何组合形式加入任一末端。
表3列出了本发明所允许的肽延长组合类型:
C末端 N末端
4 0
3 0或1
2 0或1或2
1 0或1或2或3
0 0或1或2或3或4
N末端 C末端
4 0
3 0或1
2 0或1或2
1 0或1或2或3
0 0或1或2或3或4
用于延长的氨基酸可为蛋白原始序列的肽或任何其它氨基酸。延长的目的是提高肽的稳定性或溶解性。
“T细胞应答”这一术语系指肽在体外或体内引起的效应功能的特异性增殖和活化。对于MHC I类限制性CLT,其效应子功能可为肽冲击的、肽前体冲击的或天然肽呈递的靶细胞的溶解、细胞因子(优选为肽诱导的干扰素γ、TNFα或IL-2)分泌、效应分子(优选为肽诱导的粒酶或穿孔蛋白)分泌或脱粒。
理想情况下,当检测对SEQ ID No.1至SEQ ID No.92肽(相比于取代肽)特异性的CTL时,取代肽达到相对于背景值的最大溶解增值时的肽浓度不应超过约1mM,最好不超过约1μM,更优选为不超过约1nM,再更优选为不超过约100pM,最优选为不超过约10pM。取代肽宜在至少一个个体(最少为2个,更优选为3个)中被CTL识别。
因此本发明的表型可能与天然存在的肿瘤相关或肿瘤特异性表型一致,也可能包含与参考肽差异不超过4个残基的表型,只要该表型的抗原活性基本一致。
免疫应答的激发取决于被宿主免疫系统识别为外源性的抗原。肿瘤相关性抗原的发现提高了用宿主免疫系统阻碍肿瘤生长的可能性。对于癌症免疫疗法,目前正在探索各种利用免疫系统的体液和细胞免疫作用的机制。
细胞性免疫应答的特异性元素可特异性地识别和破坏肿瘤细胞。将细胞毒性T淋巴细胞(CTL)与肿瘤浸润细胞群或外周血相分离后发现,该细胞对于癌症的天然免疫防御起到重要作用。CD8阳性T细胞在该应答中的作用尤为重要,原因是其可识别携带主要组织相容性复复合物(MCH)I类分子(通常由8至10个由蛋白或细胞溶质中的缺陷核糖体产物(DRIPS)所衍生的氨基酸残基所组成)。人体中的MHC分子亦称为人白细胞抗原(HLA)。
MHC I类分子存在于多数带核细胞中,其所呈递的肽多源于内源蛋白、DRIPs和较大肽的溶蛋白性裂解。但也经常在MHC I类分子上发现源于内涵体腔室的或外源性肽。文献中将该非经典I类呈递称为交叉呈递。
由于两种类型的应答(分别为CD8和CD4依赖型)可共同产生协同抗肿瘤作用,因此肿瘤相关性抗原(通过CD8+CTL(配体:MHC I类分子+多肽表型)或CD4阳性辅助T细胞(配体MHC II类分子+多肽表型)来识别)的鉴别和表征对于抗肿瘤疫苗的开发有重要意义。因此本发明的目的之一是提出可与各类型MHC复合物相结合的肽组分。
考虑到癌症治疗的严重副作用和高昂费用,亟需更好的预后和诊断方法。因此有必要发现其它可作为癌症生物标记物的因子,特别是肺癌。此外,有必要发现肿瘤治疗所使用的因子,特别是肺癌。
本发明提出可用于治疗癌症/肿瘤(优选为肺癌,最优选为可过量表达或独特表达本发明的肽的非小细胞肺癌(NSCLC))的肽。质谱分析表明,此类肽可在原发性人肺癌样本中由HLA分子天然呈递(参见示例1和图1)。
肽的源基因/蛋白(亦称“全长蛋白”或“基本蛋白”)在非小细胞肺癌以及SEQ IDsNo.66至75的胃癌和成胶质细胞瘤中相比于正常组织存在高度过量表达(参见示例2,NSCLC参见图2),表明源基因与肿瘤的高度关联。此外,肽自身在肿瘤组织中也大量过量呈递,在正常组织中则没有(参见示例3和图3)。
HLA结合肽可被免疫系统特别是T淋巴细胞所识别。T细胞可破坏呈递所识别的HLA/肽复合物的细胞,例如呈递衍生肽的肺癌细胞。
研究显示本发明的肽可激发T细胞应答并/或存在过量呈递,因此可用于产生本发明所涉的抗体和/或TCR,特别是TCR(参见示例4和图4)。此外,与相应MHC络合的肽可用于产生本发明所涉的抗体和/或TCR,特别是TCR。相应的方法为技术熟练的人员所熟知,也可在相应的文献中找到。因此本发明的肽有助于产生免疫应答,该应答可在患者中破坏肿瘤细胞。可通过直接给予患者文中所述的肽或合适的前体物质(例如延长肽、蛋白或编码此类肽的核苷酸)可在患者中引发免疫应答,最好与促免疫原性药物(例如辅剂)联合使用。通过此治疗性接种免疫产生的免疫应答预计可对肿瘤细胞具有高度特异性,其原因是本发明的目的肽在正常组织中不存在一定的拷贝数,由此可防范对正常细胞的不良自免疫反应这一风险。
药品组合物包括游离形式或以一种药用盐形式存在的肽。本文中“药用盐”系指本发明所公开的肽的一种衍生物,其中的肽通过形成相应药物的酸或碱盐来进行修饰。例如酸盐可由游离碱(特别是含中性-NH2基团的药物的中性形式)与合适的酸反应而制得。用于制备酸盐的合适的酸包括有机酸(例如乙酸、丙酸、羟基乙酸、丙酮酸、草酸、苹果酸、丙二酸、琥珀酸、马来酸、富马酸、酒石酸、枸橼酸、苯甲酸、肉桂酸、扁桃酸、甲磺酸、乙磺酸、p-甲苯磺酸、乙酰水杨酸等)和无机酸(例如盐酸、氢溴酸、硫酸、磷酸等)。相反地,可能存在于肽中的酸基团的碱盐的制备需使用药用碱,例如氢氧化钠、氢氧化钾、氢氧化铵、氢氧化钙、三甲胺等。
在优选的实施方案中,药学组分可包括乙酸盐、三氟乙酸盐或盐酸盐形式的肽。
除可用于癌症治疗外,本发明的肽还可能用于诊断。由于此类肽产生于肺癌细胞而在正常细胞中不存在或水平较低,此类肽可用于癌症的诊断。
存在于活检组织中的相关肽类可协助病理医师诊断癌症。通过抗体、质谱或其它目前所用方法检测特定的肽可提示病理医师该组织为恶性、炎性还是一般疾病。特定组别的肽可用于病变组织的分类或次级分类。
检测病变组织标本中的肽可预测从免疫系统疗法的获益情况,特别是在已知或预期T淋巴细胞参与其作用机制的情况下。MHC表达缺失这一机制已得以充分报告,恶性细胞可通过该机制逃脱免疫监视。因此肽的存在显示所分析的细胞并未利用该机制。
本发明的肽有望用于分析淋巴细胞对此类肽的应答,例如对肽或肽-MHC分子复合物的T细胞应答或抗体应答。上述淋巴细胞应答可用作决定后续治疗步骤的预后标记物。此类应答亦可在旨在用多种方法(例如蛋白、核苷酸、自体物质的免疫接种和淋巴细胞的过继性转移)引发淋巴细胞应答的免疫疗法中用作替代标记物。在基因治疗中,副作用评估可考虑淋巴细胞对肽的应答。对淋巴细胞应答的监测有可能作为移植治疗中随访检查(例如发现移植物抗宿主或宿主抗移植物疾病)的有效工具。
本发明的肽可用于产生MHC/肽复合物的特异性抗体。此类抗体可用于治疗,使毒素或放射性物质靶向作用于病变组织。此类抗体的另一用途是使放射性核素靶向作用于病变组织,以便进行PET等影像疗法。这一用途有助于发现小转移或确定病变组织的大小和准确位置。
因此本发明的另一方面是提出产生一种可与人重要组织相容性复合物(MHC)I或II(与HLA限制性抗原相络合)特异性结合的重组抗体的方法,该方法包括:用络合了上述HLA限制性抗原的MHC I类或II类分子的可溶型对基因工程制备的非人哺乳动物细胞(可表达上述人MHC I类或II类)进行免疫;将mRNA分子从上述产生抗体的非人哺乳动物细胞中分离;产生一个噬菌体呈现文库以呈现由上述mRNA分子编码的蛋白分子;并从上述噬菌体呈现文库中分离至少一种噬菌体,该噬菌体可呈现上述可与MHC I类或I类(与上述HLA限制性抗原相络合)特异性结合的抗体。
本发明的另一方面是提出一种可与人重要组织相容性复合物(MHC)I或II(与HLA限制性抗原相络合)特异性结合的抗体,该抗体优选为多克隆抗体、单克隆抗体、双特异性抗体和/或嵌合抗体。
此外,本发明的另一方面涉及产生一种可与人重要组织相容性复合物(MHC)I或II(与HLA限制性抗原相络合)特异性结合的上述抗体的方法,该方法包括:用络合了上述HLA限制性抗原的MHC I类或II类分子可溶型对基因工程制备的非人哺乳动物细胞(可表达上述人MHC I类或II类)进行免疫;将mRNA分子从上述产生抗体的非人哺乳动物细胞中分离;产生一个噬菌体呈现文库以呈现由上述mRNA分子编码的蛋白分子;并从上述噬菌体呈现文库中分离至少一种噬菌体,该噬菌体可呈现上述可与MHC I类或I类(与上述HLA限制性抗原相络合)特异性结合的抗体。产生上述抗体、单链I类MHC以及产生上述抗体所用的其它工具的相应方法参见WO 03/068201、WO 2004/084798、WO 01/72768、WO 03/070752以及CohenCJ,Denkberg G,Lev A,Epel M,Reiter Y.Recombinant antibodies with MHC-restricted,peptide-specific,T-cell receptor-like specificity:new tools tostudy antigen presentation and TCR-peptide-MHC interactions.J MolRecognit.2003 Sep-Oct;16(5):324-32.;Denkberg G,Lev A,Eisenbach L,Benhar I,Reiter Y.Selective targeting of melanoma and APCs using a recombinantantibody with TCR-like specificity directed toward a melanoma differentiationantigen.J Immunol.2003 Sep 1;171(5):2197-207;以及Cohen CJ,Sarig O,Yamano Y,Tomaru U,Jacobson S,Reiter Y.Direct phenotypic analysis of human MHC class Iantigen presentation:visualization,quantitation,and in situ detection ofhuman viral epitopes using peptide-specific,MHC-restricted human recombinantantibodies.J Immunol.2003 Apr 15;170(8):4349-61,上述文献用于本发明时均通过完整引用而明确成为本文的一部分。
抗体对复合物的结合亲合力宜低于20纳摩尔,最好低于10纳摩尔,由此在本发明中即可认为具有“特异性”。
本发明的另一方面是提出可识别特异性肽-MHC复合物的一种可溶性T细胞受体的产生方法。此类T细胞受体可由特异性T细胞克隆产生,其亲合力可因作用于互补性决定区域的突变发生而增强。T细胞受体的选择可使用噬菌体呈现(US 2010/0113300,Liddy N,Bossi G,Adams KJ,Lissina A,Mahon TM,Hassan NJ,et al.Monoclonal TCR-redirectedtumor cell killing.Nat Med 2012 Jun;18(6):980-987)。出于使噬菌体呈现中的T细胞受体稳定的目的,以及在药物的实际应用中,α和β链可由非天然二硫键、其它共价键(单链T细胞受体)或二聚作用域等所连接(参见Boulter JM,Glick M,Todorov PT,Baston E,SamiM,Rizkallah P,et al.Stable,soluble T-cell receptor molecules forcrystallization and therapeutics.Protein Eng 2003 Sep;16(9):707-711.;Card KF,Price-Schiavi SA,Liu B,Thomson E,Nieves E,Belmont H,et al.A soluble single-chain T-cell receptor IL-2 fusion protein retains MHC-restricted peptidespecificity and IL-2 bioactivity.Cancer Immunol Immunother 2004 Apr;53(4):345-357;and Willcox BE,Gao GF,Wyer JR,O'Callaghan CA,Boulter JM,Jones EY,etal.Production of soluble alphabeta T-cell receptor heterodimers suitable forbiophysical analysis of ligand binding.Protein Sci 1999Nov;8(11):2418-2423)。T细胞受体可与毒素、药物、细胞因子(参见US 2013/0115191)、抗CD3域等效应细胞募集域等相连接,以对靶细胞产生特定功能。此外,T细胞受体可表达于过继性转移所用的T细胞中。
更详细信息参见WO 2004/033685A1和WO 2004/074322A1。sTCR的组合物使用报告于WO 2012/056407A1。受体产生的更详细信息包含于WO 2013/057586A1。
此外,此类受体可用于病理医师对活检标本所作的癌症诊断。
对呈递谱进行了测算以选择过量呈递肽,表明存在中度样本呈递和复制变异性。该图谱将相关肿瘤样本与正常组织样本(基线)相并列。由此可通过计算线性混合效应模型的p值将上述各谱用于过量呈递评分中(J.Pinheiro,D.Bates,S.DebRoy,Sarkar D.,RCore team.Nlme:Linear and Nonlinear Mixed Effects Models.2008)从而通过假发现率调整多项检验(Y.Benjamini and Y.Hochberg.Controlling the False DiscoveryRate:A Practical and Powerful Approach to Multiple Testing.Journal of theRoyal Statistical Society.Series B(Methodological),Vol.57(No.1):289-300,1995)。
使用质谱法进行HLA配体的鉴别和相对定量分析,对来自急速冷冻组织样本的HLA分子进行纯化,且分离HLA相关性肽。所分离的肽互相分开,用在线纳米电喷射离子化(nanoESI)液相色谱-质谱(LC-MS)试验对其序列进行鉴别。通过将NSCLC样本所记录的天然TUMAP的断裂谱与相应的合成参考肽同一序列的断裂谱相比较,对所产生的肽序列进行了验证。由于将肽直接鉴别为原发肿瘤HLA分子的配体,因此上述结果为所鉴别的肽在NSCLC患者原发肿瘤组织中的自然加工和呈递提供了直接证据。
专利发现平台v2.1(参见US 2013-0096016等,以完整引用形式并入本文))可实现相关过量呈递肽候选疫苗的鉴别和选择(通过将癌症组织中的HLA限制性肽水平进行直接相对定量,与数种不同的肺癌组织器官相比较)。这一功能依赖于无标记型鉴别定量分析(使用经专利数据分析平台处理的LC-MS数据)的开发,结合了序列鉴别算法、谱聚类、离子计数、保留时间校正、电荷状态去卷积(deconvolution)和正态化。
确立了各个肽和样本的呈递水平(包括误差预估)。发现了仅呈递于肿瘤组织和在肿瘤组织(相比如非癌组织器官)中过量呈递的肽。
对从50份急速冷冻NSCLC肿瘤组织样本中获取的HLA-肽复合物进行了纯化,并用LC-MS对HLA相关性肽进行了分离和分析。
本项申请所含的所有TUMAPs均使用上述方法在原发NSCLC肿瘤样本中发现,证实其在原发NSCLC中的呈递。
通过对无标记LC-MS数据进行离子计数对多种NSCLC肿瘤和正常组织中的TUMAPs进行了定量分析。该方法假定肽的LC-MS信号面积与其在样本中的含量相关。多种LC-MS试验中的所有肽定量信号均按集中趋势和每个样本的平均值进行正态化,并绘制为条形图,该图即为呈递谱。呈递谱结合了多种不同的分析方法,例如蛋白质数据库搜索、谱聚类、电荷状态去卷积(去电荷)、保留时间校正和正态化。
因此本发明涉及包含选自SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ IDNo.84和SEQ ID No.92或其(与SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ IDNo.84和SEQ ID No.92至少90%同源(优选为同一))的变异序列的序列的肽,且上述变异序列可引发T细胞与上述肽的交叉反应,其中上述肽为非全长多肽。
本发明还涉及包含选自SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ IDNo.84和SEQ ID No.92或其(与SEQ ID No.1至SEQ ID No.65和SEQ ID No.76至SEQ IDNo.84至少90%同源(优选为同一))的变体序列的序列的肽。其中,上述肽或其变异体的总长度为8至100个氨基酸(优选为8至30个,最优选为8至14个)。
T本发明还涉及根据本发明所述的、可与人主要组织相容性复合物(MHC)I类或II类相结合的肽。
本发明还涉及根据本发明所述的肽,此类肽由、或基本由SEQ ID No.1至SEQ IDNo.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92的氨基酸序列所组成。
本发明还涉及根据本发明所述的肽,此类肽经过修饰且/或包含非肽键。
本发明还涉及根据本发明所述的肽,此类肽为融合蛋白的一部分,特别是与HLA-DR抗原相关性不变链(Ii)的N末端氨基酸相融合的蛋白,或与某种抗体(或其序列)(例如树突细胞特异性抗体)相融合的蛋白。
本发明还涉及一种核酸,该核酸可编码根据本发明所述的肽(条件是该肽并非完整人体蛋白)。
本发明还涉及根据本发明所述的核酸,该核酸为DNA、cDNA、PNA、RNA或DNA、cDNA、PNA、RNA的组合形式。
本发明还涉及一种表达载体,该载体可表达根据本发明所述的核酸。
本发明还涉及一种根据本发明所述的肽、根据本发明所述的核酸或根据本发明所述的表达载体在医学中的用途。
本发明还涉及包含本发明核酸或本发明表达载体的宿主细胞。
本发明还涉及根据本发明所述的一种宿主细胞,其为抗原呈递细胞。
本发明还涉及根据本发明所述的一种宿主细胞,其中的抗原呈递细胞为树突细胞。
本发明还涉及根据本发明所述的一种肽的制备方法,该方法包括培养本发明所述的宿主细胞,以及将肽从宿主细胞或其培养基中分离。
本发明还涉及活化的细胞毒性T淋巴细胞(CTL)的体外制备方法,该方法包括将体外CTL与在适当抗原呈递细胞表面表达且负载抗原的人I类或MHC II类分子相接触一段时间,该时间足以以抗原特异性方式活化上述CTL,其中所述抗原可为根据本发明所述的任何肽。
本发明还涉及一种根据本发明所述的方法,其中通过将足量的抗原与抗原呈递细胞相接触,使抗原载入表达于适当的抗原呈递细胞表面的I类或MHC II类分子。
本发明还涉及一种根据本发明所述的方法,其中的抗原呈递细胞包含能够表达含SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84,以及SEQ ID No.92或其上述变体氨基酸序列的肽的表达载体。
本发明还涉及根据本发明所述的方法所制备的活化细胞毒性T淋巴细胞(CTL),可选择性地识别异常表达含有根据本发明所述的氨基酸序列的多肽的细胞。
本发明还涉及在患者中杀伤异常表达含有任何根据本发明所述的氨基酸序列的多肽的靶细胞的方法,包括根据本发明所述的方法给予患者有效数量的细胞毒性T淋巴细胞(CTL)。
本发明还涉及本发明的任何上述肽、根据本发明所述的核酸、根据本发明所述的表达载体、根据本发明所述的细胞或根据本发明所述的活化细胞毒性T淋巴细胞作为药物或在药物制备中的用途。
本发明还涉及根据本发明所述的用途,其中所述药剂为疫苗。
本发明还涉及根据本发明所述的用途,其中所述药剂具有抗肿瘤活性。
发明还涉及根据本发明所述的用途,其中癌细胞为肺癌、胃癌、胃肠癌、结直肠癌、胰腺癌或肾癌细胞,以及成胶质细胞瘤细胞。
本发明还涉及基于根据本发明所述的肽的特定标记蛋白和生物标记物,可用于肺癌的预后。
此外,本发明还涉及上述新型靶标用于癌症治疗的用途。
本文所用的“抗体”是一个广义术语,包括多克隆与单克隆抗体。除了完整的或“全”免疫球蛋白分子外,“抗体”这一术语也包括此类免疫球蛋白的片段或多聚体,或免疫球蛋白分子的人源化形式,只要其能产生本发明所期望的特性(例如肺癌标记物多肽的特异性结合、将毒素传递至肺癌标记物基因表达水平升高的肺癌细胞以及/或抑制肺癌标记物多肽的活性)。
本发明的抗体应尽可能购自市售途径。本发明的抗体也可通过常用的方法来制备。本领域技术人员会知晓全长肺癌标记物多肽或其片段皆可用于生成本发明的肽。生成本发明的抗体所用的多肽可通过自然途径部分或完全纯化,也可通过重组DNA技术制得。
例如,编码ABCA13、MMP12、DST、MXRA5、CDK4、HNRNPH、TANC2、1RNF213、SMYD3和SLC34A2或SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84或SEQ ID No.92的任何相关多肽的cDNA(或其片段)可在原核细胞(例如细菌)或真核细胞(例如酵母、昆虫或哺乳动物细胞)中表达,其后可对重组蛋白进行纯化,用于产生单克隆或多克隆抗体制品,该抗体可与本发明中用于产生抗体的肺癌标记物多肽特异性地结合。
具备当前技术水平的人员知晓,产生至少2组单克隆或多克隆抗体可最大程度的确保所得抗体具备其预定用途所(例如ELISA免疫组织化学、体内影像分析、免疫毒素治疗)要求的特异性和亲合力。可依据抗体的预定用途采用已知方法(例如ELISA、免疫组织化学、免疫治疗等;有关抗体生成和检测的更为具体的指导请参见Harlow and Lane,Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press,ColdSpring Harbor,N.Y.,1988,new 2nd edition 2013等)对抗体的期望活性进行检测。例如,可使用ELISA分析、Western印迹或免疫组织化学染色对福尔马林固定的肺癌或冷冻组织切片进行抗体检测。在初次体外表征完成后,对计划用于治疗或体内诊断的抗体,应使用已知的临床检测方法进行检测。
本文所用“单克隆抗体”这一术语系指从本质上同源的抗体群中获取的抗体,即:该抗体群中的各抗体除了可能的少量天然突变外是完全相同的。本文中单克隆抗体具体还包括“嵌合”抗体,该抗体中的一部分重链和/或轻链与从特定物种获取的或属于特定的抗体类别或子类别的抗体的相应序列同一或同源,而剩余的链与从另一物种获取的或属于另一的抗体类别或子类别的抗体(以及此抗体的片段)的相应序列同一或同源,只要该抗体可表现期望的抗肿瘤活性(美国专利编号4816567,以完整引用形式并入本文)。
本发明的单克隆抗体可使用杂交瘤方法制备。采用杂交瘤方法时,通常用免疫剂对小鼠或其它适当的宿主细胞进行免疫,以使淋巴细胞生成或可以生成可与该免疫剂特异性结合的抗体。或者可以对淋巴细胞进行体外免疫。
单克隆抗体也可通过重组DNA方法(例如美国专利编号4816567所描述的方法)制得。编码本发明的单克隆抗体的DNA可用传统的操作进行分离和测序(例如使用可与编码鼠抗体重链和轻链的基因相结合的寡核苷酸探针)。
体外方法也适用于制备单价抗体。可使用本领域已知的常规方法将抗体分解为其片段(特别是Fab片段)。例如可用番木瓜蛋白酶进行分解。1994年12月22日发表的WO 94/29348以及美国专利编号4342566均描述了番木瓜蛋白酶分解的示例。番木瓜蛋白酶分解抗体通常产生两个完全相同的抗原结合片段(称为Fab片段,各含一个单抗原结合位点)以及一个残留Fe片段。胃蛋白酶处理可产生一个包含2个抗原结合位点且可与抗原进行交联的片段。
抗体片段(无论是否加入其它序列)也可包含特定区域或特定氨基酸残基的插入、缺失、取代或其它选定的修饰,只要与未修饰的抗体或抗体片段相比该片段的活性未被显著改变或损伤即可。这些修饰可产生某些附加特性,例如移除/加入可成二硫键的氨基酸以延长其生物寿命或改变其分泌特征等。任何情况下该抗体片段均应具备生物活性特性,例如结合活性以及对结合域结合的调控等。可通过蛋白特定区域中的突变发生然后通过量表达以及所表达多肽的检测来识别抗体的功能或活性区域。此类方法为本领域技术人员所熟知,可包含编码抗体片段的核苷酸的特定位点的突变。
本发明的抗体还可包含人源化抗体或人体抗体。非人(例如鼠类)抗体的人源化形式可为嵌合免疫球蛋白、免疫球蛋白链或其片段(例如Fv、Fab、Fab'或抗体的其它抗原结合序列),包含源自非人免疫球蛋白的最小序列。人源化抗体包括人免疫球蛋白(受体抗体),其中受体的互补决定区(CDR)残基被非人物种(供体抗体)(例如小鼠、大鼠、兔)的CDR中具有期望的特异性、亲合力和能力的残基所取代。某些情况下人免疫球蛋白的Fv框架(FR)残基可被相应的非人残基所取代。人源化抗体还可包含受体抗体、输入的CDR或框架序列中均不存在的残基。一般而言,人源化抗体包含至少1个(通常为2个)可变域,其中所有或几乎所有的CDR区域均与一种非人免疫球蛋白的CDR区域相对应,且所有或几乎所有FR区域均为人免疫球蛋白共有序列的FR区域。人源化抗体最好还包含免疫球蛋白(通常是人免疫球蛋白)恒定区(Fc)的至少一个片段。
非人抗体的人源化方法为本领域所熟知。一般而言,一种人源化抗体含有一个或多个氨基酸残基,该残基来源于非人途径。此类非人氨基酸残基常被称为“输入”残基,通常来源于“输入”可变域。本质上人源化通常可通过用相应的人体抗体序列取代啃齿类CDR或CDR序列来实现,由此产生的“人源化”抗体为嵌合抗体(美国专利编号4816567),其中一个小于完整的人可变域的序列被来自非人物种的相应序列所取代。实际操作中,人源化抗体通常为人抗体,其中某些CDR残基(也有可能是某些FR残基)被源于啃齿类抗体中同类位点的残基所取代。
可使用即使不存在在内源性免疫球蛋白也可经免疫产生全部人抗体的转基因动物(例如小鼠)。例如,嵌合与种系突变小鼠的抗体重链链接区基因的纯合缺失可引发内源性抗体生成的完全抑制。而将人种系免疫球蛋白基因阵列转移至上述种系突变小鼠中可在抗原激发下产生人抗体。人抗体也可在噬菌体呈现文库中产生。
本发明的抗体优选为通过药用载体给予受试者。通常在制剂中使用适当剂量的药用盐,以使该制剂呈等渗性。药用载体包括生理盐水、Ringer溶液和葡萄糖溶液。溶液的pH优选为约5至约8,更优选为约7至约7.5。其它载体包括缓释制剂(例如含抗体的固体疏水多聚物的半渗透性基质溶液),其基质为有形物,例如膜、脂质体或微粒。本领域的技术人员熟知,某些载体可为更优选(依据给药途径和所给予的抗体浓度等)。
抗体可注射(例如静脉注射、腹膜内注射、皮下注射、肌肉注射)给予受试者、患者或细胞,也可通过其它途径(例如输注),只要能保证抗体可以有效形式进入血流。抗体也可通过瘤内或瘤周途径给药,以产生局部和全身疗效反应。局部或静脉注射给药为优选。
抗体给药剂量和日程可在当前技术范围内按经验确定。本领域的技术人员知晓抗体的给药剂量会依据接受抗体的受试者类型、给药途径、所使用的抗体和其它药物的特定类型等而有所不同。依据上述因素,常见的抗体单用每日剂量从约每日1μg/kg至最高100mg/kg体重不等,也可能更高。肺癌治疗抗体给药后可通过技术熟练的相关人员所熟知的多种方式评估治疗用抗体的疗效。例如可通过标准肿瘤影像技术对接受治疗的受试者的肿瘤大小、数量和/或分布情况进行监测。若某一治疗性抗体可停止肿瘤生长、引发肿瘤缩小并/或防止肿瘤新生的治疗性抗体(相比于不进行抗体治疗的正常病程),则可认为该抗体可有效治疗肺癌。
由于本发明的非肿瘤标记物ABCA13和MMP12在肺癌细胞中高度表达且在正常细胞中表达水平极低,因此抑制ABCA13和MMP12表达或多肽活性可作为NSCLC治疗或预防策略的一部分。
反义治疗原则基于下列假设:基因表达的序列特异性抑制(通过转录或翻译)可通过基因组DNA或mRNA与互补反义序列的细胞内杂交而实现。此杂交核酸双链体的形成可干扰编码目标肿瘤抗原的DNA的转录,或干扰目标肿瘤抗原mRNA的加工/转运/翻译和/或稳定性。
反义核酸可通过多种途径来传递。例如反义寡核苷酸或反义RNA可以肿瘤细胞可摄取的形式直接给予(例如通过静脉注射)受试者。或者可在体外将编码反义RNA(或RNA片段)的病毒或质粒载体导入细胞中。也可通过有义序列引发反义效应;但表型变化的大小具有高度差异性。有效的反义治疗所引发的表型变化可根据变化来评估,例如通过靶mRNA水平、靶蛋白水平和/或靶蛋白活性水平。
具体举例而言,反义基因治疗抑制肺部肿瘤标记物功能可通过直接给予受试者反义肺部肿瘤标记物RNA而实现。反义肿瘤标记物RNA可通过标准技术产生和分离,但也可在高效启动子(例如T7启动子)的调控下通过反义肿瘤标记物cDNA在体外即刻制备。反义肿瘤标记物RNA的细胞内给药可通过以下任一直接核酸给药方法来进行。
抑制ABCA13和MMP12功能的另一种基因治疗策略涉及抗ABCA13、MMP12抗体或抗ABCA13、MMP12抗体片段的细胞内表达。例如可使编码某一可与ABCA13、MMP12多肽特异性结合并抑制其生物活性的单克隆抗体的基因在核酸表达载体中受到特异性(例如组织或肿瘤特异性)基因调控序列的转录调控。随后将该载体给予受试者以便肺癌细胞或其它细胞摄取,该细胞随后分泌抗ABCA13、MMP12抗体,以此抑制ABCA13、MMP12多肽的活性。ABCA13、MMP12多肽宜位于胃癌细胞的细胞外表面中。
在上述将外源DNA给予或摄入受试者细胞(例如通过基因转导或转染)的方法中,本发明的核苷酸可为裸DNA形式,或者核苷酸可通过载体传递至细胞中,以抑制胃部肿瘤标记物蛋白的表达。该载体可为市售制剂,例如腺病毒载体(Quantum Biotechnologies,Inc.(Laval,Quebec,Canada)。可通过多种机制将核苷酸或载体传递至细胞中。例如可使用LIPOFECTIN、LIPOFECTAMINE(GIBCO-25BRL,Inc.,Gaithersburg,Md.)、SUPERFECT(Qiagen,Inc.Hilden,Germany)和TRANSFECTAM(Promega Biotec,Inc.,Madison,Wis.)等市售脂质体制剂以及其它按照当前标准操作制备的脂质体进行脂质体传递。此外,本发明的核苷酸或载体可通过电穿孔法在体内传递,这一技术可购自Genetronics,Inc.(San Diego,Calif.),也可通过SONOPORATION仪器(ImaRx Pharmaceutical Corp.,Tucson,Arizona)来开展。
举例而言,可通过病毒系统(例如可包装一个重组逆转录病毒基因组的逆转录病毒载体系统)进行载体传递。重组逆转录病毒随后可感染细胞,由此将可抑制ABCA13、MMP12表达的反义核苷酸传递至受染细胞中。当然,将改变的核苷酸导入哺乳动物细胞的具体方法不限于使用逆转录病毒载体。这一步骤所普遍采用的其它技术包括使用腺病毒载体、腺病毒伴随病毒(AAV)载体、慢病毒载体和假型病毒载体。也可使用物理传导技术,例如脂质体传递以及受体介导的和其它细胞内吞机制。本发明可与上述或任何其它常用的基因转移方法联合使用。
抗体也可用于体内诊断检测。一般而言,可用放射性核苷酸(例如111In、99Tc、14C、131I、3H、32P或35S)标记抗体,以使用免疫闪烁照相术进行肿瘤定位。在一实施方案中,抗体或其片段可与至少2个ABCA13、MMP12靶标的细胞外域相结合,其亲合力值(Kd)低于1x 10μM。
诊断抗体可用适于通过多种影像方法检测的探针来标记。探针检测方法包括但不限于荧光、自然光、共聚焦和电子显微镜;磁共振成像和磁共振波谱;荧光镜透视检查、计算机断层摄影和正电子发射断层摄影。适用的探针包括但不限于荧光素、罗丹明、曙红和其它荧光基团、放射性同位素、金、钆或其它镧系元素、顺磁离子、氟-18和其它正电子发射放射性核素。此外,上述探针可为双功能或多功能探针,且可用上述多种方法来检测。探针与抗体的结合方法包括探针共价结合、探针掺合入抗体、螯合物共价结合引发的探针结合以及其它常用的技术。用于免疫组织化学检测的病变组织样本可为新鲜或冷冻样本,也可为石蜡包埋样本或防腐剂(例如福尔马林)固定样本。固定或包埋切片样本与标记的初级抗体或次级抗体相接触,其中的抗体用于检测ABCA13、MMP12蛋白的原位表达。
因此本发明提出一种包含选自SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQID No.84和SEQ ID No.92或其(与SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ IDNo.84和SEQ ID No.92为90%同源)的变体序列的序列的肽,且上述序列或其变体序列可引发T细胞与上述肽的交叉反应。
本发明的肽具有与人主要组织相容性复合物(MHC)I类和/或II类分子相结合的能力。
在本发明中,“同源的”这一术语系指两个氨基酸序列(即肽或多肽序列)之间的同一度(参见上文中的百分同一度)。上文所述“同源性”通过将两个序列在最优条件下排列在需比较的序列之上来评定。此序列同源性可通过使用ClustalW等算法来建立序列对比来计算。公共数据库中提供了常用的序列分析软件(体为Vector NTI,GENETYX)或其它分析工具。
技术熟练的人员有能力评估由特定的肽变异序列引发的T细胞是否可与肽本身交叉反应(Fong et al.,2001);(Zaremba et al.,1997;Colombetti et al.,2006;Appay etal.,2006)。
发明者所使用的特定氨基酸序列的“变异序列”是指一或两个氨基酸残基的侧链发生改变(例如通过用另一天然氨基酸残基的侧链或其它的侧链来取代该侧链),但该肽仍可以与SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84以及SEQ ID No.92中特定氨基酸序列所组成的的肽基本相同的方式与HLA分子相结合。例如,某肽经修饰后至少可以维持(即使不能提高)与适当的MHC分子(例如HLA-A*02或-DR)的结合槽相反应和结合的能力,且至少可以维持(即使不能提高)与活化CTL的TCR相结合的能力。
上述CTL可与细胞进一步交叉反应,并可杀伤表达包含本发明所定义的关联肽的天然氨基酸序列的多肽。可从科学文献(Rammensee et al.,1997)以及数据库(Rammenseeet al.,1999)推断,HLA结合肽中的某些位置是典型的锚定残基,可形成一个核心序列,该序列可装配至HLA受体的结合基序。这一过程由组成结合槽的多肽链的极性、电子物理学特性、疏水性和空间特性所决定。由此本领域技术人员可通过维持已知的锚定残基来修饰SEQID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92所对应的氨基酸序列,并可确定此类变异序列是否可保持与MHC I或II类分子相结合的能力。本发明的变异序列可保留与活化CTL的TCR相结合的能力,后者可进一步与表达包含本发明所定义的关联肽的天然氨基酸序列的多肽的细胞交叉反应并杀死该细胞。
基本不参与与T细胞受体相互反应的氨基酸残可通过由另一氨基酸(其掺合基本不影响T细胞反应性且不消除与相关MHC的结合)取代来修饰。因此,除了上述条件外,本发明的肽可能是任何肽(发明者使用该术语时同时包含寡肽和多肽),包含给定的氨基酸序列或其片段或变异序列。
表4:与SEQ ID NO:1、2、4、5和7相对应的肽的变异序列和基序
较长的肽也可能适用。虽然MHC I类表型通常长度为8-11个氨基酸,但也有可能产生于包含实际表型的更长的肽或蛋白的加工。实际表型的侧面残基优选为基本不影响实际表型暴露所需的蛋白水解裂解的残基。
相应地,本发明也提出MHC I类表型的肽与变异序列,其中的肽或变异序列总长度为8至100个氨基酸(优选为8至30个氨基酸,最优选为8至14个,即8、9、10、11、12、13或14个氨基酸,而II类结合肽的长度也可为15、16、17、18、19、20,21或33个氨基酸)。
当然,本发明的肽或变异序列有能力与人主要组织相容性复合物(MHC)I类分子相结合。肽或变异序列与MHC的结合可由已知的方法来检测。
在本发明的一优选实施方案中,此类肽由、或基本由SEQ ID No.1至SEQ IDNo.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92氨基酸序列所组成。
“基本由。。。组成”意指除SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ IDNo.84和SEQ ID No.92或其变体序列外,本发明的肽还包含额外的N或C末端氨基酸延伸,而该延伸对形成MHC分子表型所需的肽表型并非必需。
尽管如此,此类延伸有可能对根据本发明所述的肽有效导入细胞起到重要作用。在本发明的一优选实施方案中,肽可以是一种融合蛋白,例如含80个N末端氨基酸的HLA-DR抗原相关性不变链(p33,后面简称“Ii”)(衍生自NCBI,GenBank登记号X00497)。在其它融合中,本发明的肽可与本文所述的抗体(或其功能基团)(具体为抗体的序列)相融合,以此特异性的针对上述抗体,例如树突细胞特异性抗体。
此外,肽或变异序列可被进一步修饰以提高稳定性和/或与MHC分子的结合强度,以此激发更强的免疫应答。肽序列的此种优化方法为该技术领域所常用,例如导入反向肽键或非肽键。
在反向肽键中,氨基酸残基不通过肽的(-CO-NH-)键合而连接,而是通过反向的肽键。此类逆向拟肽可由本领域已知的方法所制得,例如Meziere et al(1997)J.Immunol.159,3230-3237(通过引用并入本文)中所描述的方法。这一方法包括制备含有骨架(而不是侧链方向)变化的假肽。Meziere等人(1997)表明,上述假肽有助于MHC结合与辅助T细胞应答。包含NH-CO键而不是CO-NH肽键的逆向肽对于蛋白水解更为耐抗。
非肽键包括-CH2-NH、-CH2S-、-CH2CH2-、-CH=CH-、-COCH2-、-CH(OH)CH2-、-CH2SO-等。美国专利4897445提出了一种多肽链中非肽键(-CH2-NH)固相合成的方法,其中涉及通过标准操作合成多肽,以及在NaCNBH3的参与下通过氨基醛与氨基酸反应来合成非肽键。
组成上述序列的肽可通过在其氨基和/或羧基端加入化学基团来合成,以此提高肽的稳定性、生物利用度和/或对肽的亲合力。例如可在肽的氨基末端加入芐氧羰基、丹酰基或t-叔丁氧羟基等疏水基团。类似地,可在肽的氨基末端加入乙酰基或9-芴甲氧羰基。此外,可在肽的羧基末端加入疏水基团、t-叔丁氧羟基或氨基。
本发明的肽也可通过改变其空间构型来合成。例如可使用肽的一种或多种氨基酸残基的D-异构体(而不是常见的L-异构体)。此外,本发明的肽的至少一个氨基酸残基可被一种常见的非天然氨基酸残基所取代。此类改变可提高本发明的肽的稳定性、生物利用度和/或结合活性。
类似地,本发明的肽或变异序列可通过与特定的氨基酸进行化学反应(在该肽的合成前后均可)来修饰。此类修饰的实施例为本领域所熟知,例如,在R.Lundblad所著的《Chemical Reagents for Protein Modification》(3rd ed.CRC Press,2005)(通过引用并入本文)对其进行了汇总。氨基酸的化学修饰包括但不限于酰化、胍基化、赖氨酸吡哆酸化、还原烷基化、用2,4,6-三硝基苯磺酸(TNBS)进行氨基的三硝基苯基化、羧基的酰胺修饰、通过半胱氨酸氧化为磺丙氨酸进行巯烃基修饰、汞衍生物的形成、与其它巯基化合物形成混合二硫化物、与马来酰亚胺反应、碘乙酸或碘乙酸胺引起的羧甲基化以及碱性环境下氰酸盐所引起的氨基甲酰化。有关蛋白化学修饰的更多方法,技术人员参考了《蛋白质科学最新技术方案》第15章,Eds.Coligan et al.(John Wiley and Sons NY 1995-2000)。
简而言之,蛋白中精氨酰残基等的修饰一般基于邻近的二碳化合物(例如苯乙二醛、2,3-丁二酮和1,2-环己二酮)以形成加成物。另例如甲基乙二醛与精氨酸残基的反应。半胱氨酸不经其它亲核位点(例如赖氨酸和组氨酸)的伴随修饰也可进行修饰,因此可用于半胱氨酸修饰的试剂数量众多。Sigma-Aldrich等公司的网站(http://www.sigma-aldrich.com)提供了特定试剂的信息。
蛋白二硫键的选择性还原也较常见。二硫键可在生物药物的热处理过程中形成和氧化。
Woodward试剂K可用于修饰特定的谷氨酸残基。N-(3-(二甲氨)丙基)-N’-碳酰二亚胺可用于形成赖氨酸残基和谷氨酸残基间的分子内交联。
例如,焦碳酸二乙酯试剂可用于修饰蛋白中的组氨酸残基。组氨酸也可用4-羟基-2-壬烯醛来修饰。
赖氨酸残基和其它α-氨基的反应有助于肽结合至蛋白/肽表面或与蛋白/肽的交联等。赖氨酸是聚(乙烯)乙二醇的附着位点,且是蛋白糖基化的主要修饰位点。
蛋白中的甲硫氨酸残基可用碘乙酰胺、溴乙胺和氯胺-T来修饰。
四硝基甲烷和N-乙酰基咪唑可用于酪氨酸残基的修饰。二酪氨酸形成所产生的交联可通过过氧化氢/铜离子来实现。
近期的色氨酸修饰研究使用了N-溴代琥珀酰亚胺、2-羟基-5-硝基溴化苄或3-溴基-3-甲基-2-(2-硝苯巯基)-3H-吲哚(BPNS-甲基吲哚)。
治疗用蛋白和肽成功的PEG修饰常涉及循环半衰期的延长。蛋白与戊二醛、丙烯酸聚乙二醇以及甲醛的交联用于水凝胶的制备。常通过氰酸钾氨的甲酰化来实现变应原化学修饰用于免疫治疗。
本发明实施方案中优选采用经过肽修饰的或包含非肽键的肽或变异体。一般而言,肽或变异体(至少为氨基酸残基间存在肽链合的肽或变异体)可通过Fmoc-聚酰胺固相肽合成法(如Lu等人(1981年)和本文的参考文献所述)来合成。9-芴甲氧羰基(Fmoc)可为时序N氨基提供保护。使用N,N-二甲基酰胺的20%哌啶溶液来进行这一高度碱基不稳定的保护基团的重复裂解。侧链功能的保护形式可为其丁基醚(丝氨酸、苏氨酸和酪氨酸的情况)、丁基酯(谷氨酸和天冬氨酸的情况)、叔丁氧羟基衍生物(赖氨酸和组氨酸的情况)、三苯甲基衍生物(半胱氨酸的情况)以及4-甲氧基-2,3,6-三甲基苯磺基衍生物(精氨酸的情况)。若谷氨酸或天冬氨酸为C末端残基,则使用4,4'-二甲基联苄来保护其侧链氨功能。固相支持的基础是由三种单体构成的聚二甲基-丙基酰胺聚合物:二甲基丙基酰胺(骨架单体)、二丙烯酰乙烯二胺(交联剂)和丙烯酰肌氨酸甲基酯(功能化剂)。所使用的肽-树脂可裂解连接剂为酸敏感性4-羟甲基-苯氧乙酸衍生物。加入的所有氨基酸衍生物皆为其预形成的对称酐衍生物,天冬氨酸和谷氨酸除外(其加成使用反向N,N-二环己基-碳化二亚胺/羟基苯并三唑介导的耦合程序)。所有耦合和脱保护反应均通过茚三酮、三硝基苯磺酸或异荷素检测程序来检测。合成完成后,肽被从树脂支承中裂解开,同时使用含50%清除剂混合物的95%三氟乙酸处理来移除侧链保护基团。常用的清除剂包括乙二硫醇、苯酚、苯甲醚和水,具体的选择取决于所合成肽的组成氨基酸。也有可能将固相和溶液相方法联合用于肽合成(参见(Bruckdorfer et al.,2004)及其所引用的参考文献等)。
三氟乙酸通过真空蒸发来去除,随后用二乙醚来碾制粗肽。留存的清除剂采用单一萃取程序来去除,随后将液相冻干制成不含清除剂的粗肽。肽合成所需的制剂基本可购自Calbiochem-Novabiochem(UK)Ltd,Nottingham NG72QJ,UK等。
可采用以下一种或多种技术组合进行纯化:再结晶、分子筛析色谱、离子交换色谱、疏水作用色谱和(通常为)反相高效液相色谱(采用乙腈/水梯度分离)。
可使用薄层色谱、电泳(特别是毛细管电泳)、固体萃取(CSPE)、反相高效液相色谱、酸水解后的氨基酸分析、快原子轰击(FAB)质谱分析,以及MALDI和ESI-Q-TOF质谱分析。
本发明的另一方面提出一种可编码本发明肽或肽变异体的核苷酸(例如多聚核苷酸)。此多聚核苷酸可为DNA、cDNA、PNA、RNA或其组合等,单链或双链皆可,或为多聚核苷酸的天然或稳定化形式,例如包含一个磷硫酰骨架的多聚肽。只要能编码所对应的肽,该多聚核苷酸包不包含内含子皆可。当然,多聚核苷酸仅可编码含由天然肽键结合的天然氨基酸残基的肽。本发明的另一方面提出一种可表达根据本发明所述的多肽表达载体。
已开发了多种方法以使多聚核苷酸(特别是DNA)与载体相连接,例如通过互补性粘性末端。举例而言,可在插入载体DNA的DNA片段中加入互补性同聚体区。该载体和DNA片段随后通过互补性同聚体尾之间的氢键来连接,以形成重组DNA分子。
包含一个或多个限制位点的合成连接子是DNA片段与载体相连接的另一种方法。包含多个限制位点的合成连接子可从多个渠道购得,例如InternationalBiotechnologies Inc.New Haven,CN,USA。
编码本发明的多肽的DNA的理想修饰方法之一使用聚合酶链式反应,如(Saiki etal.,1988)所述。该方法可用于将DNA导入合适的载体(例如合适限制位点的操作),也可用于在常见的技术中进行DNA修饰。若使用病毒载体,则宜使用痘病毒或腺病毒载体。
DNA(逆转录病毒载体则为RNA)可在合适的宿主中表达以产生含有本发明的肽或变异序列的多肽。因此可使用编码本发明的肽或变异序列的DNA,按已知的技术(根据本文作适当改进)来构建表达载体,该载体随后用于转化合适的宿主细胞使其表达和产生本发明的多肽。上述技术包括美国专利号4440859、4530901、4582800、4677063、4678751、4704362、4710463、4757006、4766075和4810648所述的技术。
编码本发明化合物的组成多肽的DNA(逆转录病毒载体则为RNA)可与许多其它DNA序列相结合以导入合适的宿主。伴侣DNA的选择取决于宿主的性质、将DNA导入宿主的方式以及是否需要附加型维持或整合。
一般而言,DNA以适当的方向和按正确的表达阅读框插入表达载体(例如质粒)。如有必要,可将DNA与适当的转录或翻译调控核苷酸序列(由期望的宿主所识别)相连接,虽然此类调控通常在表达载体中已存在。随后使用标准技术将载体导入宿主中。一般而言,并非所有宿主都会被载体所转化。因此有必要选择被成功转化的宿主细胞。有一种选择技术涉及使用任何必要的控制元素将一个DNA序列掺入表达载体中,该DNA序列可编码转化细胞的可选择特征(例如抗生素耐抗)。
此类可选择特征的基因也可位于用于共转化期望的宿主细胞的另一载体中。
经本发明的重组DNA转化的宿主细胞随后按本文的指导在适当的条件下(该条件为技术熟练人员所熟知)培养足够长时间以实现多肽的表达,随后可回收此多肽。
已知有多种表达系统,包括细菌(例如大肠杆菌、枯草杆菌)、酵母(例如啤酒酵母)、丝状真菌(例如曲霉属)、植物细胞、动物细胞和昆虫细胞。该系统优选为哺乳动物细胞,例如ATCC细胞生物学收集库中的CHO细胞。
用于组成型表达的典型哺乳动物细胞载体质粒包含带有一个适当的poly A尾和抗性标记的CMV或SV40启动子,例如新霉素。例如可购自Pharmacia,Piscataway,NJ,USA的pSVL。诱导性哺乳动物表达载体包括pMSG(也可购自Pharmacia)。有用的酵母质粒载体包括pRS403-406和pRS413-416,通常可购自Stratagene Cloning Systems,La Jolla,CA92037,USA。pRS403、pRS404、pRS405和pRS406质粒属于酵母整合型质粒(YIP),掺入了酵母可选择标记HIS3、TRP1、LEU2和URA3。pRS413-416质粒属于酵母中心粒质粒(Ycp)。含CMV启动子的载体(例如Sigma-Aldrich供应的载体)可产生顺势或稳定表达、细胞质表达或分泌,以及多种FLAG、3xFLAG、c-myc或MAT组合形式的N末端或C末端标记。此类融合蛋白可实现重组蛋白的检测、纯化和分析。双标记融合可使检测具有灵活性。
强效人巨细胞病毒(CMV)启动子调控区可使COS细胞中组成蛋白的表达水平高达1mg/L。而较弱细胞系的蛋白水平通常为约0.1mg/L。存在SV40复制起点可在SV40复制受纳COS细胞中引发高水平的DNA复制。CMV载体可含有细菌细胞中的pMB1(pBR322衍生物)复制起点、细菌中氨苄西林耐抗选择的b-内酰胺酶基因、hGH polyA以及f1起点。胰蛋白酶原前前导(PPT)序列的载体可将FLAG融合蛋白的分泌导入培养基中,以使用抗-FLAG抗体、树脂和板进行纯化。其它载体和表达系统使用该技术领域常用的多种宿主细胞。
在另一实施方案中,本发明的两种或两种以上的肽或肽变异体被编码并相继表达(类似于“线珠”(beads on a string)结构)。由此可将肽或肽变异体与连接氨基酸的延伸基团(例如LLLLLL)相连接或融合,其间没有任何其它肽时,也可相连接。
本发明还涉及一种由本发明的一种多聚核苷酸载体结构所转化的宿主细胞。该宿主细胞可为原核或真核细胞。某些情况下,细菌细胞是优先使用的原核宿主细胞,通常是大肠杆菌株,例如大肠杆菌DH5菌种,可购自BethesdaResearch Laboratories Inc.,Bethesda,MD,USA以及RR1菌种,可供自美国典型培养物保藏中心(ATCC)(Rockville,MD,USA(No ATCC 31343)。优先选用的真核宿主细胞包括酵母、昆虫和哺乳动物细胞,优选为脊椎动物细胞,例如小鼠、大鼠、猴或人成纤维细胞或结肠细胞系。酵母宿主细胞包括YPH499、YPH500和YPH501,通常可购自Stratagene Cloning Systems,La Jolla,CA 92037,USA。优先选用的哺乳动物宿主细胞包括中国仓鼠卵巢(CHO)细胞(ATCC CCL61细胞系)、NIH瑞士小鼠胚胎细胞NIH/3T3(ATCC CRL 1658)、猴肾源COS-1细胞(ATCC CRL 1650细胞系)以及293细胞(人真核肾脏细胞)。优先使用的昆虫细胞包括Sf9细胞(可通过杆状病毒表达载体转染)。合适的表达用宿主细胞的选择的综述可参见Paulina Balbás和Argelia Lorence的教科书《分子生物技术重组基因表达的方法:综述与方案》第2版第1部分,ISBN 978-1-58829-262-9,以及为熟练人员所知的其它文献。
通过本发明的DNA结构对宿主细胞进行适当的转化可通过常见的方法来实现,该方法通常依赖于所使用的载体类型。原核宿主细胞转化方面的信息可参见Cohen et al(1972)Proc.Natl.Acad.Sci.USA 69,2110以及Sambrook et al(1989)MolecularCloning,A Laboratory Manual,Cold Spring Harbor Laboratory,Cold Spring Harbor,NY等。酵母细胞的转化方法参见Sherman et al(1986)Methods In Yeast Genetics,ALaboratory Manual,Cold Spring Harbor,NY。Beggs(1978)Nature 275,104-109所提供的方法同样有用。脊椎动物细胞方面,可用于转染该类细胞的试剂(例如磷酸钙和DEAE-乙基葡聚糖或脂质体制剂)可购自Stratagene Cloning Systems或Life Technologies Inc.,Gaithersburg,MD 20877,USA。电穿孔也可用于细胞的转化和/或转染,该方法常用于酵母细胞、细菌细胞、昆虫细胞和脊椎动物细胞转化技术中。
成功转化的细胞(即包含本发明的DNA结构的细胞)可通过常见的PCR等技术来识别,或者可使用抗体来检测上清液中的蛋白质。
有价值的是,本发明的某些宿主细胞(例如细菌、酵母和昆虫细胞)可用于本发明的肽的制备。但其它宿主细胞也可能用于某些治疗方法。例如,抗原呈递细胞(例如树突细胞)有可能用于表达本发明的肽,此肽可能被载入适当的MHC分子中。因此本发明提出根据本发明所述的包含氨基酸的宿主细胞或表达载体。
在一个优选的实施方案中,宿主细胞是抗原呈递细胞,特别是树突细胞或抗原呈递细胞。载入了含前列腺酸性磷酸酶(PAP)的重组融合蛋白的APC(Sipuleucel–T)目前正研究用于治疗前列腺癌(Small et al.,2006;Rini et al.,2006)。
本发明的另一方面还包括一种肽或其变异体的制备方法,该方法包括培养宿主细胞以及将肽从宿主细胞或其培养基中分离。
在另一实施方案中,本发明的肽、核酸或表达载体被用于药物中。例如,可将肽或其变异体制成静脉(i.v.)注射剂、皮下(s.c.)注射剂、皮内(i.d.)注射剂、腹膜内(i.p.)注射剂和肌肉(i.m.)注射剂。优先选用的肽注射方法包括皮下、皮内、腹膜内和静脉注射。优先选用的DNA注射方法包括皮内、肌肉、皮下、腹膜内和静脉注射。所给予的肽或DNA剂量可为50μg至1.5mg之间(优选为125μg至500μg之间),具体取决于肽或DNA类型。该剂量范围在既往试验中曾被成功使用(Walter et al Nature Medicine 18,1254–1261(2012))。
本发明的另一方面包括一种体外制备活化T细胞的方法,该方法涉及将体外T细胞与负载抗原的人MHC分子相接触,该分子在合适的抗原呈递细胞表面表达足够长的时间以抗原特异性地激活T细胞,其中所述抗原为根据本发明所述的肽。宜采用抗原呈递细胞使用足量的抗原。
理想情况下哺乳动物应缺少或具备降低的TAP肽转运体水平或功能。缺少TAP肽转运体的合适细胞包括T2、RMA-S和果蝇细胞。TAP是与抗原加工相关的转运体。
可携带缺失T2细胞系的人体肽参见美国典型培养物保藏中心(ATCC)(12301Parklawn Drive,Rockville,Maryland 20852,USA)目录号CRL 1992;Drosophila细胞系Schneider细胞系2可参见ATCC目录号CRL 19863;小鼠RMA-S细胞系详情参见Karre etal 1985。
理想情况下,转染前的宿主细胞应基本不表达MHC I类分子。优先使用一种刺激细胞,该细胞可表达对于T细胞共刺激信号(例如B7.1、B7.2、ICAM-1和LFA 3)具有重要作用的分子。许多MHC I类分子和共刺激分子的核酸序列可参见公共的GenBank和EMBL数据库。
若将MHC I类表型用作抗原,则T细胞为CD8阳性CTL。
若将抗原呈递细胞转染用于表达上述表型,则该细胞宜包含可表达含SEQ IDNo.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92序列的肽(或其变异氨基酸序列)的表达载体。
另有数种方法可用于体外制备CTL。例如Peoples等人(1995)和Kawakami等人(1992)所描述的方法使用自体肿瘤浸润淋巴细胞来制备CTL。Plebanski等人(1995)使用自体外周血淋巴细胞(PLB)制备CTL。Jochmus等人(1997)描述了通过用肽或多肽冲击树突细胞(或通过重组病毒感染)来制备自体CTL。Hill等人(1995)和Jerome等人(1993)使用B细胞制备自体CTL。此外,经肽或多肽冲击或经重组病毒感染的巨噬细胞也可用于制备自体CTL。S.Walter等人(2003)描述了使用人工抗原呈递细胞(aAPC)来体外激发T细胞,这种方法也适用于制备抗首选肽的T细胞。该研究中通过将预成MHC/肽复合物耦合至聚苯乙烯粒子(微珠)表面(通过生物素/抗生蛋白链霉素生物化学机制)来产生aAPC。该系统可实现aAPC中MHC密度的精准控制,由此可从血液样本中选择性地高效激发高亲合力或低亲合力的抗原特异性T细胞应答。除MHC/肽复合物外,aAPC还应携带其它具有共刺激活性的蛋白(耦合至aAPC表面),例如抗CD28抗体。此外,此类aAPC系统常需要加入适当的可溶性因子,例如白介素-12等细胞因子。
也可使用同种异体细胞来制备T细胞,其中一种方法详述于WO 97/26328(通过引用而成为本文的一部分)。举例而言,除Drosophila细胞和T2细胞外,其它细胞也可用于抗原呈递,例如CHO细胞、感染杆状病毒的昆虫细胞、细菌、酵母、感染牛痘的靶细胞等。此外还可使用植物病毒(参见Porta et al(1994)等),该文献描述了将豇豆花叶病毒开发为外源性肽呈递的高产系统。
靶标为本发明的肽的活化T细胞可用于治疗。因此本发明的另一方面提出可通过本发明上述方法获得的活化T细胞。
通过上述方法制得的活化T细胞可选择性地识别异常表达一种含有SEQ ID No.1至SEQ ID No.92(优选为SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92)氨基酸序列的多肽的细胞。
优选情况是,T细胞通过其TCR与HLA/肽复合物相互反应(例如结合)来识别细胞。T细胞可用于一种靶细胞杀伤方法,其中患者的靶细胞异常表达含本发明氨基酸序列的多肽,且患者接受有效数量的活化T细胞。患者接受的T细胞可来源于患者自身并通过上述方法活化(即为自体T细胞)。该T细胞也可并非来自患者自身而是来自另一个体。当然,该个体优选为健康个体。发明者所用“健康个体”系指个体的总体健康状况良好,优选为具有完备的免疫系统,更优选为未患有易于检测或发现的疾病。
在体内,根据本发明所述的CD8阳性T细胞的靶细胞可为肿瘤细胞(某些情况下表达MHC II类)和/或肿瘤(肿瘤细胞)周围的间质细胞(某些情况下也可表达MHC II类;(Dengjel et al.,2006))。
本发明的T细胞可用作治疗组分中的活性成分。因此本发明还提出一种靶细胞杀伤方法,其中患者的靶细胞异常表达含本发明氨基酸序列的多肽,且患者接受有效数量的活化T细胞(如上文所定义)。
发明者使用“异常表达”系指多肽相比于正常表达水平过量表达,或在肿瘤中表达的基因在肿瘤组织标本中沉默。发明者使用“过量表达”系指多肽的表达水平至少为正常组织中的1.2倍,优选为正常组织中的至少2倍,更优选为至少5倍或10倍。
T细胞可通过本领已知的技术方法制得,例如上文所述方法。
T细胞的所谓过继性转移方法为常见的技术方法。其综述可参见(Gattinoni etal.,2006)和(Morgan et al.,2006)。
本发明的任何分子(即肽、核苷酸、抗体、表达载体、细胞、活化CTL、T细胞受体或其编码核苷酸)均可用于治疗特征为细胞逃脱免疫应答的疾病。因此本发明的任何分子均可能用作药剂或用于药剂生产。上述分子可单独使用或与本发明的其它分子或已知的分子结合使用。
优选情况是,本发明的药剂是一种疫苗。该疫苗可直接给予患者的病变器官或通过皮内、肌肉、皮下、腹膜内和静脉全身给药;或离体作用于源自患者的细胞或人细胞系中,随后将该细胞或细胞系给予患者;或在体外作用于源自患者的免疫细胞亚群,随后将该免疫细胞再次给予患者。若在体外给予细胞核苷酸,则将细胞转染以共表达免疫刺激细胞因子(例如白介素2)可能有所帮助。所用的肽可为基本纯净或与免疫刺激辅剂(见下文)联合使用,或通过合适的传递系统(例如脂质体)来给药。肽也可与合适的载体(例如钥孔戚血蓝素或甘露聚糖)相结合(参见WO 95/18145和Longenecker,1993)。肽也可进行标记,可为融合蛋白,也可为杂交分子。根据本发明所述的序列所编码的肽预期可刺激CD4或CD8T细胞,但刺激CD8CTL在CD4辅助T细胞的协助下更为高效。因此,对于刺激CD8CTL的MHC I类表型而言,使用融合伴侣或杂交分子剖面可适当产生刺激CD4阳性T细胞的表型。CD4和CD8刺激表型在相关技术领域常见,包括本发明所提出的表型。
一方面,疫苗包含具有SEQ ID No.1至SEQ ID No.92氨基酸序列的至少一种肽,以及至少一种其他肽,优选为2至50种其他肽,更优选为2至25种,再更优选为2至20种,最优选为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17或18种其他肽。肽可源自一种或多种特异性TAA,且可与MHC I类分子相结合。
另一方面,疫苗包含具有SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ IDNo.84和SEQ ID No.92氨基酸序列的至少一种肽,以及至少一种其他肽,优选为2至50种其他肽,更优选为2至25种其他,再更优选为2至20种其他肽,最优选为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17或18种肽。肽可源自一种或多种特异性TAA,且可与MHC I类分子相结合。
多肽可为基本纯净,或包含在合适的载体或传递系统中。核苷酸可为DNA、cDNA、PNA、RNA或DNA、cDNA、PNA、RNA的组合(Pascolo et al.,2005)。多聚核苷酸疫苗易于制备,但此类载体诱导免疫应答的作用方式尚不完全清楚。合适的载体和传递系统包括病毒DNA和/或RNA,例如腺病毒、牛痘病毒、逆转录病毒、疱疹病毒、腺相关病毒系统,或含有多种病毒原件的杂交体。非病毒传递系统包括阳离子脂质和阳离子多聚体,此类系统为DNA传递技术所常见。也可使用物理传递方法,例如“基因枪”。由核酸编码的肽可为融合蛋白,例如含有刺激T细胞相应CDR的T细胞的表型的融合蛋白。
本发明的药剂也可含有一种或多种辅剂。辅剂是指可非特异性地提高或增强对抗原的免疫应答(例如CTL和辅助T(TH)细胞所介导的免疫应答)的物质,因此可认为对本发明的药剂有用。合适的辅剂包括但不限于1018ISS、铝盐、AS15、BCG、CP-870,893、CpG7909、CyaA,dSLIM、鞭毛蛋白或鞭毛蛋白的TLR5配体、FLT3配体、GM-CSF、IC30、IC31、咪喹莫特瑞奎莫特、ImuFact IMP321、IL-2、IL-13、IL-21等白介素、干扰素-α或干扰素-β或其PEG化衍生物、IS贴剂、ISS、ISCOMATRIX、ISCOMs、LipoVac、MALP2、MF59、单磷酸类脂A、山小星蒜碱IMS 1312、山小星蒜碱ISA 206、山小星蒜碱ISA50V、山小星蒜碱ISA-51、油包水和水包油乳剂、OK-432、OM-174、OM-197-MP-EC、ONTAK、OspA、载体系统、聚羟基乙酸共聚物[PLG]和葡聚糖微利、乳铁传递蛋白SRL172、病毒小体或其它病毒样颗粒、YF-17D、VEGF陷阱、R848、β-葡聚糖、Pam3Cys、AquilaQS21促病毒素(衍生自皂角苷)、分支杆菌提取物和合成细菌细胞壁模拟物,以及其它专利辅剂例如Ribi's Detox、Quil或Superfos。优选佐剂如:Freund或GM-CSF。针对树突细胞的数种免疫辅剂(例如MF59)及其制剂曾有报告(Allison and Krummel,1995;Allison andKrummel,1995)。此外可使用细胞因子。已发现数种细胞因子可直接影响树突细胞迁移至淋巴组织(例如TNF-),由此加速树突细胞成熟为T淋巴细胞高效抗原呈递细胞(例如GM-CSF、IL-1和IL-4)(美国专利编号5849589,特别以完整引用形式并入本文)并起到免疫辅剂的作用(例如IL-12、IL-15、IL-23、IL-7、IFN-α、IFN-β)(Gabrilovich,1996)。
也有报告称CpG免疫刺激性寡核苷酸可增强疫苗中辅剂的作用。不受理论约束,CpG寡核苷酸可通过Toll样受体(TLR)(主要是TLR9)产生激活先天(非适应性)免疫系统。CpG触发的TLR9活化可增强对一系列抗原的抗原特异性体液性或细胞性应答,包括肽或蛋白抗原、活病毒或死病毒、树突细胞疫苗、自体细胞疫苗以及预防性和治疗性疫苗中的多糖结合物。更重要的是,该活化可促进树突细胞成熟和分化,引发TH1细胞活化和强细胞毒性T淋巴细胞(CTL)生成的增多(即使不存在CD4T细胞的协助)。即使存在通常促进TH2偏倚的不完全弗氏佐剂(IFA),TLR9刺激所引发的TH1偏倚仍可以维持。CpG寡核苷酸与其它辅剂联合给药时或在微粒、毫微粒、脂质乳剂或类似制剂中可产生更高的辅助活性,这对于效力相对较弱的抗原引发较强的应答尤为必要。CpG寡核苷酸还可加速免疫应答并确保抗原剂量降低约2个数量级,其所产生的抗体应答与不使用CpG的某些试验中的全剂量疫苗相当(Krieg,2006)。美国6406705B1号专利描述了CpG寡核苷酸、非核苷酸辅剂和抗原联合使用以引发抗原特异性免疫应答。一种CpG TLR9拮抗剂为Mologen公司(德国柏林)的dSLIM(双干环免疫调节剂),这是本发明药物组合物的优选成分。也可使用其它TLR结合分子,例如RNA结合性TLR 7、TLR8和/或TLR9。
其他有用的辅剂还包括但不限于化学修饰的CpGs(例如CpR,Idera)、dsRNA类似物(例如聚(I:C))及其衍生物(例如聚(ICLC)、聚(IC-R)、聚(I:C12U))、非CpG细菌DNA或RNA,以及免疫活性小分子和抗体,例如环磷酰胺、舒尼替尼、西乐葆、NCX-4016、昔多芬、他达拉非、伐地那非、索拉非尼、替莫唑胺、驮瑞塞尔、XL-999、CP-547632、帕唑帕尼、VEGF陷阱、ZD2171、AZD2171、抗-CTLA4、其它针对免疫系统关键结构的抗体(例如抗-CD40、抗-TGFβ、抗-TNFα受体)以及SC58175(可起到治疗作用并/或用作辅剂)。本领域技术人员无需过度进行不当实验就很容易确定本发明中有用的佐剂和添加剂的数量和浓度。
优先选用的辅剂包括咪喹莫特、瑞奎莫特、GM-CSF、环磷酰胺、舒尼替尼、贝伐单抗、干扰素-α、CpG寡核苷酸及衍生物、聚(I:C)和衍生物、RNA、昔多芬以及含有PLG或病毒小体的颗粒剂型。
在一个优选的实施方案中,本发明的药物组成中的辅料选自一组集落刺激因子,例如粒细胞-巨噬细胞集落刺激因子(GM-CSF,沙漠司亭)、环磷酰胺、咪喹莫特、瑞奎莫特和干扰素-α。
在一个优选的实施方案中,本发明的药物组成中的辅料选自一组集落刺激因子,例如粒细胞-巨噬细胞集落刺激因子(GM-CSF,沙漠司亭)、环磷酰胺、咪喹莫特和瑞奎莫特。
在根据本发明的药物组合物的一个优选实施方案中,辅剂为环磷酰胺、咪喹莫特或瑞奎莫特。.
更为优先使用的辅剂为山小星蒜碱MS 1312、山小星蒜碱ISA 206、山小星蒜碱ISA50V、山小星蒜碱ISA-51、聚-ICLC以及抗-CD40mAB或上述辅剂的组合物。
这一组成用于经肠给药,例如皮下、皮内、肌肉或口服给药。为方便给药,肽或其它分子溶解或混悬于药用、优选为液体的载体中。此外,药物组合物可包含辅料(例如缓冲剂、结合剂、爆炸剂、稀释剂、增味剂、润滑剂等)。肽也可与免疫刺激物质(例如细胞因子)联合给药。此药物组合物可用辅料的更广泛的列表可参见A.Kibbe,Handbook ofPharmaceutical Excipients,3rd Ed.,2000,American Pharmaceutical Associationandpharmaceutical press等。此组合物可用于腺瘤样或癌性疾病的预防和/或治疗。典型的制剂可参见EP2113253等。
尽管如此,根据本发明的肽的数量和物理化学性质,需进行进一步研究以产生肽的特定组合制剂,特别是含超过20个肽、稳定期超过12至18个月的组合制剂。
本发明提出一种可用于治疗癌症的药剂,特别是非小细胞肺癌、胃癌、肾细胞癌、结肠癌、腺癌、前列腺癌、良性肿瘤和恶性黑素瘤。
本发明还涉及下列试剂盒:
(a)包含上述药物组合物的包装,可为溶液或冻干剂型;
(b)(非必需)包含冻干制剂的稀释剂或复溶溶液的次级包装;
(c)(非必需)(i)溶液使用或(ii)冻干制剂复溶和/或使用说明书。
该试剂盒还可包含(iii)缓冲剂、(iv)稀释剂、(v)过滤器、(vi)针头或(v)注射器中的一种或多种。包装优选为药瓶、西林瓶、注射器或是试管,可为多用途包装。药物组合物优选为冻干制剂。
本发明的药物包装宜包含本发明的冻干制剂(带有合适的包装及其复溶和/使用说明书)。合适的包装包括药瓶、西林瓶(例如双腔西林瓶)、注射器(例如双腔注射器)和试管。理想情况下试剂盒和/或包装应在包装上或包装中加入复溶和/或使用说明。例如,可在标签中注明应将冻干制剂复溶至上述肽浓度。可在标签中进一步注明该制剂可用于或预定用于皮下给药。
存放制剂的包装可为多用途西林瓶,以便进行复溶制剂的重复给药(例如2-6次给药)。试剂盒中可包含另一装有适当稀释剂(例如碳酸氢钠溶液)的包装。
将稀释剂和复溶制剂混合后所得的最终复溶制剂中的肽浓度优选为至少0.15mg/mL/肽(=75μg)且不超过3mg/mL/肽(=1500μg)。试剂盒中还可包含其它销售和使用者方面的材料,包括其它缓冲剂、稀释剂、过滤器、针头、注射器和包含使用说明的说明书。
本发明的试剂盒可为根据本发明所述药物组合物制剂的单一包装,含有或不含有其它成分(例如其它化合物或这些化合物的药物组合物)皆可,也可为每一成分提供独立的包装。
理想情况下,本发明的试剂盒包含本发明的一种制剂,用于与另一化合物(例如辅剂(GM-CSF等)、化疗药物、天然制品、激素或拮抗剂、抗血管生成剂或血管生成抑制剂、雕亡诱导剂或螯合剂)或其药物组合物联合给药。在患者给药前,试剂盒的成分可为预混合,也可为每一成分提供独立包装。试剂盒的成分可为一种或多种液体溶液,优选为水性溶液,更优选为无菌水性溶液。试剂盒成分也可为固体,可通过加入适当的溶剂来转换为液体,该溶剂宜保存在另一独立包装中。
治疗试剂盒的包装可为西林瓶、试管、细颈瓶、药瓶、注射器或包封固体或液体的任何其它装置。通常情况下,若存在不止一种成分,则试剂盒会包含另一西林瓶或其它包装,以便于分开给药。试剂盒也可包含另一包装用于存放药用液体。理想情况下,治疗试剂盒应包含一种装置(例如一个或多个针头、注射器、滴眼管、移液管等),用于该试剂盒组分中本发明药物的给药。
本制剂允许用任何可接受的途径(例如口服(肠内)、鼻内、眼内、皮下、皮内、肌肉、静脉或经皮给药)进行肽的给药。优先使用皮下给药,皮内给药最宜使用输注泵。
由于本发明的肽分离自NSCLC,因此本发明的药剂优选用于治疗NSCLC。在一个优选实施方案中,由于源自ABCA13和MMP12的本发明的肽分离自NSCLC,因此本发明的药剂宜用于治疗NSCLC。
序列为SEQ ID Nos.78至92的肽分离自Merkel细胞癌,因此可用于治疗Merkel细胞癌。
现将在以下示例(描述其优先使用的实施方案)中介绍本发明,但不限于这些示例。出于本发明的目的,所有参考文献均以完整引用形式并入本文。
附图说明
图1示出ABC13-001的示例性质谱图,表明其在原发肿瘤样本NSCLC898中的呈递。对从NSCLC样本898洗脱的肽池进行NanoESI-LCMS。A)m/z 543.8318±0.001Da,z=2的质谱图呈现保留时间为86.36min的肽峰。B)质谱图中86.36min处的检测峰代表MS谱中的m/z543.8318信号。C)nanoESI-LCMS试验中特定保留时间处所记录的m/z 543.8318选定前体的碰撞衰变质谱证实NSCLC898肿瘤样本中存在ABCA13-001。D)记录了合成型ABCA13-001参考肽的裂解谱并与C中所生成的天然TUMP裂解谱相比较,以进行序列验证。
图2a和2b示出选定蛋白在正常组织和21份肺癌样本中的表达谱,其中图2a示出ABCA13(Probeset ID:1553605_a_at),图2b示出MMP12(Probeset ID:204580_at)的表达谱。
图3a-3c示出选定HLA I类分子的呈递谱。测算了每种肽的表达谱,给出样本平均表达量以及重复检测方差。谱中将相关的肿瘤样本与正常组织样本(基线)相并列。其中图3a示出ABCA13-001,图3b示出DST-001,图3c示出MXRA5-001的HLA I类分子呈递谱。
图4示出I类TUMAPs肽特异性体外免疫原性的示例性结果。特异性CD8+T细胞用连接两种不同荧光色素的HLA多聚体来染色。点状图代表刺激肽的MHC多聚体双阳性肽群(左图)以及相应的阴性对照刺激(右图)。
图5示出POSTN-002和MMP12-002对所研究的HLA单倍型的结合特性。图示为POSTN-002和MMP12-002对7种接受分析的HLA-DR单倍型中的5种的结合评分。
图6示出HLA-POSTN-002和MMP12-002复合物在37℃下放置24h的稳定性:图示出带有相应HLA分子的完整HLA-POSTN-002和HLA-MMP12-002复合物在37℃下放置24h后的结合评分百分比。
图7示出II类ICS分析中疫苗诱导的对CEA-006的典型CD4T细胞应答。体外致敏后,对36-031号患者的PBMCs进行分析以检测时间点池V8/EOS处CD4T细胞对CEA-006(上图)与模拟对照(下图)的应答。细胞用相应的肽刺激,并分别用细胞活力、抗CD3、抗CD-8、抗CD4和效应标记物(从右至左:CD154,TNF-α,IFN-γ,IL-2,IL-10)来染色。
图8示出多种II类肽的免疫原性。图示为使用ICS检测的对5种II类肽的免疫应答率(16名患者为IMA950肽,71名患者为IMA910肽)。
实施例
实施例1:细胞表面呈递的肿瘤相关性肽的鉴定与定量
组织样本
患者肿瘤样本由University of Heidelberg,Heidelberg,Germany提供。术前所有患者均给予了书面知情同意。手术结束后立即将组织在液氮中急速冷冻并保存于-80℃下,直至TUMAPs的分离。
从组织样本中分离HLA肽
按照一种略有改动的方案(Falk,K.,1991;Seeger,F.H.T.,1999),通过固态组织的免疫沉淀从急速冷冻样本获取HLA肽池,该方案使用HLA-A*02特异性抗体BB7.2、HLA-A、-B、C-特异性抗体W6/32、CNBr活化的琼脂糖、酸处理以及超滤。
方法
采用反相色谱(Acquity UPLC system,Waters)依据其疏水性对获取的HLA肽池进行分离,并用LTQ-轨道阱杂交质谱仪(ThermoElectron)(带有ESI源)对洗脱肽进行分析。肽池直接载入烧结二氧化硅微毛细管分析柱(75μm i.d.x 250mm),填充剂为1.7μm C18反相材料(Waters),流速为400nL/min。随后以300nL/min的流速进行从10%至33%B的二步二元梯度洗脱180min以分离肽。该梯度包括溶剂A(0.1%甲酸水溶液)和溶剂B(0.1%甲酸乙腈溶液)。采用包金玻璃柱(PicoTip,New Objective)来导入nanoESi源。LTQ-轨道阱质谱仪的操作采用数据依赖模式中的TOP5策略。简言之,在轨道阱中进行高质量准确度的全扫描以启动扫描周期(R=30000),随后依然在轨道阱中对含量最高的5种前体离子进行MS/MS扫描(R=7500)。采用SEQUEST和其它人工对照物进行串联质谱解析。通过将所生成的天然肽断裂谱与合成型同一序列参考肽的断裂谱相对比来确认所识别的肽序列。图1为肿瘤组织中MHC I类相关肽ABCA13-001在UPLC系统中的典型图谱及其洗脱图谱。
使用离子计数进行了无标记相对LC-MS定量分析(即LC-MS特征的提取和分析)(Mueller et al.2007a)。该方法假定肽的LC-MS信号面积与其在样本中的含量相关。随后通过电荷状态去卷积和保留时间校正对所提取的特征进行了进一步处理(Mueller etal.2007b;Sturm et al.2008)。最后将所有LC-MS特征与序列鉴定结果交叉参考,以将不同样本和组织的定量数据与肽呈递谱相结合。考虑到重复检测中的技术和生物变异性,根据中心趋势对定量数据作双层正态化。因此识别的每种肽均可与定量数据相关联,以实现样本和组织间的相对定量分析。此外,从候选肽获取的所有定量数据均作人工检查以确保数据一致性,并核实自动分析的准确性。测算了每种肽的表达谱,给出了样本平均表达量以及重复检测方差。该图谱将相关肿瘤样本与正常组织样本(基线)相并列。
示例性的过呈递肽的呈递谱示于图3。
实施例2:编码本发明肽的基因的表达谱测定
不是所有被鉴定为通过MHC分子呈递在肿瘤细胞表面的肽都适用于免疫治疗,因为这些肽中的大多数来自由众多细胞类型所表达的正常细胞蛋白。此类肽中仅有极少数与肿瘤相关并极有可能诱发对其源肿瘤具有高度识别特异性的T细胞。为明确此类的肽并尽量降低疫苗引起的自体免疫风险,发明者重点关注源自在肿瘤细胞中过量表达(相比于多数正常组织)的蛋白的肽。
理想的肽应源自相关肿瘤中所独有的且不存在于其它任何组织中的蛋白。为明确表达谱与理想表达谱相近的基因所衍生的肽,将所识别的肽分别与其来源蛋白和基因相并列,并生成此类基因的表达谱。
RNA来源和制备
手术切除组织标本由University of Heidelberg,Heidelberg,Germany(参见实施例1)提供。术前所有患者均给予了书面知情同意。手术结束后立即将肿瘤组织标本在液氮中急速冷冻,随后使用研钵和研棒在液氮环境中进行匀化。使用TRI试剂(Ambion,Darmstadt,Germany)从上述样本中制备总RNA,随后用RNeasy(QIAGEN,Hilden,Germany)进行RNA纯化;上述方法均按照制造商的说明来进行。
健康人体组织总RNA购自Ambion,Huntingdon,UK;Clontech,Heidelberg,Germany;Stratagene,Amsterdam,Netherlands;BioChain,Hayward,CA,USA。将来自多个个体(2到123个个体)的RNA进行混合以使来自各个体的RNA比重相同。
采用RNA 6000Pico LabChip试剂盒(Agilent),用Agilent 2100生物分析仪(Agilent,Waldbronn,Germany)对所有RNA样本进行定性和定量分析。
微阵列试验
所有肿瘤和正常组织RNA样本的基因表达分析均使用Affymetrix人基因组(HG)U133A或HG-U133Plus 2.0寡核苷酸微阵列(Affymetrix,Santa Clara,CA,USA)。所有步骤均按照Affymetrix的说明书开展。简言之,按照说明书所述,使用SuperScript RTII(Invitrogen)和寡-dT-T7引物(MWG Biotech,Ebersberg,Germany)从5-8μg总RNA合成双链cDNA。使用生物阵列高产RNA转录标记试剂盒(ENZO Diagnostics,Inc.,Farmingdale,NY,USA)(针对U133A阵列)或GeneChip IVT标记试剂盒(Affymetrix)(针对U133Plus 2.0阵列)进行体外转录,随后使用抗生蛋白链霉素-藻红蛋白以及生物素化抗-抗生蛋白链霉素抗体(Molecular Probes,Leiden,Netherlands)进行cRNA链断裂、杂交和染色。随后用Agilent2500A基因阵列扫描仪(U133A)或Affymetrix基因芯片扫描仪3000(U133Plus 2.0)进行图像扫描,并用GCOS软件(Affymetrix)(所有参数均为默认设定)进行资料分析。使用了Affymetrix提供的100个管家基因。使用软件所提供的信号对数比计算相对表达值,并将正常肾脏样本值任意设定为1.0。
在非小细胞肺癌中高度过量表达或独特表达的本发明的源基因的示例性表达谱见图2。
实施例4:MHC I类呈递肽对NSCLC的体外免疫原性
为获得本发明TUMAP的免疫原性信息,我们使用体外T细胞启动分析进行研究,采用负载肽/MHC复合物的人工抗原呈递细胞(aAPCs)对CD8+T细胞进行反复刺激。通过此方法我们明确了本发明迄今为止对9种HLA-A*0201限制性TUMAPs的免疫原性,表明此类肽为T细胞表型,且在人体中存在其CD8+前体T细胞(表4)。
CD8+T细胞的体外启动
为使用负载肽-MHC复合物(pMHC)和抗-CD28抗体的人工抗原呈递细胞进行体外刺激,我们首先使用CD8微珠(Miltenyi Biotec,Bergisch-Gladbach,Germany)进行正向选择以从新鲜HLA-A*02白细胞分离产物(来自Transfusion Medicine Tuebingen,Germany的给予知情同意的健康供者)中分离CD8+T细胞。
分离的CD8+淋巴细胞或PBMCs持续培养直至用于含RPMI-GutaMax的T细胞培养基(TCM)(Invitrogen,Karlsruhe,Germany)中,该培养基加入了10%热失活人AB血清(PAN-Biotech,Aidenbach,Germany)、100U/ml青霉素/100μg/ml链霉素(Cambrex,Cologne,Germany)、1mM丙酮酸钠(CC Pro,Oberdorla,Germany)、20μg/ml庆大霉素(Cambrex)。另在此步骤中向TCM中加入2.5ng/ml IL-7(PromoCell,Heidelberg,Germany)和10U/ml IL-2(Novartis Pharma,Nürnberg,Germany)。
采用明确定义的体外系统(每种刺激条件使用4种不同的pMHC分子,每种读出条件使用8种pMHC分子)进行pMHC/抗-CD28涂珠的生成、T细胞刺激和读出。
aAPC载入和细胞读数所用的所有pMHC复合物均由UV诱导的MHC配体交换来产生(Rodenko et al.,2006,有微小的改动)。为测定通过交换所得的pMHC单体数量,我们依据(Rodenko et al.,2006)的方法进行了抗生蛋白链霉素夹心ELISA。
纯化共刺激鼠IgG2a抗人CD28抗体9.3(Jung et al.,1987)使用生产商(Perbio,Bonn,Germany)推荐的硫代-N-羟基琥珀酰亚胺基生物素进行化学生物素化。所使用的微珠为5.6μm直径抗生蛋白链霉素,涂有聚苯乙烯颗粒(Bangs Laboratories,Illinois,USA)。
阳性和阴性对照刺激所使用的pMHC分别为A*0201/MLA-001(从修饰的Melan-A/MART得到的肽ELAGIGILTV)和A*0201/DDX5-001(从DDX5得到的DDX5YLLPAIVHI)。
将800.000微珠/200μl涂布于96孔板中(加入了4x 12.5ng不同的生物素-pMHC),洗板后加入200μl的600ng生物素抗-CD28。在96孔板中,将1x106CD8+T细胞与2x105冲洗所得涂布微珠在37℃下共孵育于200μl TCM(加入了5ng/ml IL-12(PromoCell))中3-4天,以此启动刺激。随后用加入了80U/ml IL-2的新鲜TCM取代一半的上述培养基,继续在37℃下孵育3-4天。这一刺激循环共重复三次。对于pMHC多聚体读数(每种条件使用8种不同的pMHC)采用二维组合编码法(如既往文献所述,仅作微小改动)(Andersen et al.,2012)使与5种不同的荧光色素相耦合。最后使用活/死近红外染料(Invitrogen,Karlsruhe,Germany)、CD8-FITC单抗体克隆SK1(BD,Heidelberg,Germany)以及荧光pMHC多聚体进行多聚体分析。分析中使用带有合适的激光与滤器的BD LSRII SORP细胞仪。肽特异性细胞数记为在总CD8+细胞中的百分比。使用FlowJo软件(Tree Star,Oregon,USA)进行多聚体分析的评估。通过与阴性对照刺激相比较来检测特异性多聚体+CD8+淋巴细胞的体外启动。若体外刺激后至少一名健康供着的可评估体外刺激孔中存在特异性CD8+T细胞系(即该孔CD8+T细胞中至少1%为特异性多聚体+且特异性多聚体+细胞是阴性对照刺激中位值的至少10倍)。
NSCLC肽的体外免疫原性
受试HLA I类肽的体外免疫原性可通过肽特异性T细胞系的产生来表现。图4为本发明的2种肽经TUMAP特异性多聚体染色后典型的流式细胞计量结果(另附相应的阴性对照结果)。本发明的25个肽的结果汇总于表5。
表5:本发明HLA I类肽的体外免疫原性
本发明的肽的申请者开展的体外免疫原性试验的典型结果。<20%=+;20%-49%=++;50%-70%=+++;以及>70%=++++
实施例5:肽的合成
所有肽的合成均使用标准、公认的固相肽合成方法(使用Fmoc-策略)。通过预备的RP-HPLC进行纯化后,通过离子交换程序结合生理相容性抗衡离子(例如三氟乙酸酯、乙酸酯、铵或氯化物)。
通过质谱法和RP-HPLC分析对各肽进行了鉴别和纯度测定。离子交换程序后所得的肽为白色或类白色冻干产物,纯度为90%至99.7%。
所有TUMAPs的给药形式均优选为三氟乙酸盐或乙酸盐,也可能是其它盐类。示例4中的测定使用肽的三氟乙酸盐形式。
实施例6:UV-配体交换
采用体外启动(priming)分析进一步检测根据本发明所述疫苗的候选肽的免疫原性。该分析所需的各种肽-MHC复合物通过UV-配体交换产生,其中UV敏感肽通过UV辐射来解离,并与所分析的候选肽相交换。只有能有效结合并稳定肽-感受MHC分子的候选肽方可防止MHC复合物的解离。通过ELISA检测稳定后的MHC复合物的轻链(β2m)来测定交换反应的产率。该分析方法基本依据Rodenko等人所述(Rodenko B,Toebes M,Hadrup SR,van EschWJ,Molenaar AM,Schumacher TN,Ovaa H.Generation of peptide-MHC class Icomplexes through UV-mediated ligand exchange.Nat Protoc.2006;1(3):1120-32.)。
96孔MAXISorp板(NUNC)用2ug/ml抗生蛋白链霉素的PBS溶液在室温下涂布整夜,在37℃下冲洗30min,重复4次,并用含封闭液的2%BSA封闭30min。以复性HLA-A*0201/MLA-001单体为标准品(涵盖8-500ng/ml)。UV交换反应中的肽-MHC单体用封闭液稀释100倍。样本在37℃下孵育1h,冲洗4次,用结合了抗-β2m的2ug/ml HRP在37℃下孵育1h,再次冲洗,最后用TMB溶液进行检测(用NH2SO4停流)。测定了450nm处的吸光度。
表6:UV-配体交换
表现出高交换产率(即高于40%,优选为高于50%,更优选为高于70%,最优选为高于80%)的候选肽通常优先用于抗体或其片段以及/或T细胞受体或其片段的生成和生产,原因是其对MHC分子具有足够的亲合力并可防止MHC复合物的解离。
实施例7:选定的MHC II类肽的结合与免疫活性
HLA II类蛋白可分为3个主要同种型,即HLA-DR、-DP和DQ,可由多种单倍型所编码。多种α-和β-链的组合增加了任意人群中HLA II类蛋白的多样性。因此选定的HLA II类TUMAP须可与多种不同的HLA-DR分子相结合(即表现出广泛的结合能力),从而在相当大百分比的患者中引发有效的T细胞应答。
通过外部服务提供商的体外结合试验评估了POSTN-002和MMP12-002与多种HLA-DR单倍型的广泛结合以及所形成的的复合物的稳定性,如下文所述。
材料和方法
肽列表
序列号 肽编号 序列 来源 大小
76 MMP12-002 INNYTPDMNREDVDYAIR IMA-942 18
77 POSTN-002 TNGVIHVVDKLLYPADT IMA-942 17
受试HLA-DR单倍型列表
根据在HLA-A*02和HLA-A*24阳性北美人群中的发生频率选择受试的7种HLA-DR单倍型(表7.1和7.2)
资料来源于对国家骨髓供着计划中登记的135万名经HLA分型的志愿者的分析(Mori et al.,1997)。分析人群进一步分为以下人种组:白种美国人(N=997,193)、非裔美国人(N=110,057)、亚裔美国人(N=81,139)、拉丁裔美国人(N=100,128)和美洲印第安人(N=19,203)。
表7.1 HLA-A*02阳性北美人群中各单倍型的频率:经分析的单倍型标灰突出。
表7.2 HLA-A*24阳性北美人群中各单倍型的发生频率:经分析的单倍型标灰突出。
检测原理
ProImmuneMHC-肽结合分析可测定各候选肽与选定的HLA II类单倍型相结合并稳定HLA-肽复合物的能力。通过此方法将候选肽与特定的HLA II类蛋白在体外装配。肽并入HLA分子的程度通过(复性程序完成后的)时间0点时装配后的HLA-肽复合物中天然构象的存在或缺失来评定(所谓“装配率”)。
候选肽与特定HLA分子的结合能力与一种已知的极强结合力肽(阳性对照)相比较,以计算相应的MHC-肽结合评分。阳性对照肽由ProImmune选择并提供(依据此类肽对各HLA单倍型的使用经验)。
除肽对特定HLA分子的亲合力外,所形成的的HLA-肽复合物的长期稳定性也对产生免疫应答至关重要。为此将所形成的HLA-肽复合物在37℃下孵育24h以检测其存在。随后计算所形成的MHC-肽复合物在24h时的结合评分与复性后(即时间0点)的即刻结合评分的百分比,以此评估所形成的的MHC-肽复合物的稳定性。
结果
对POSTN-002和MMP12-002所作的MHC-肽结合分析表明,两种肽均可与多种HLA单倍型相结合。在所研究的7种HLA单倍型中,POSTN-002可与其中的5种形成复合物,MMP12-002可与其中的4种形成复合物(图5)。两种肽均不与HLA-DR3和HLA-DR6结合。所测得的结合评分为阳性对照的0.02%至2.5%不等,且明显高于非结合肽的评分。
对所形成的HLA-POSTN-002和HLA-MMP12-002复合物的稳定性分析表明,在所研究的7种HLA-肽复合物中,分别有3种和2种可在37℃下稳定24h(图6)。
通过将肽的结合评分与已知具有免疫原性的肽的结合评分相比较,可推断该肽的免疫原性(依据与HLA分子的结合能力)。因此本项比较选用了5种经充分研究确认具有免疫原性的肽。离体测定了免疫接种患者(使用胞内细胞因子染色(ICS)CD4体细胞)血液样本中上述肽的免疫原性。
ICS检测原则上通过效应功能来评估特异性T细胞的质量。因此体外培养外周血单核细胞(PBMC),随后用待测肽、参考肽和阴性对照(此例为MOCK)进行再刺激。随后将再刺激细胞染色产生FN-γ、TNF-α、IL-2和IL-10,并表达共刺激分子CD154。用流式细胞仪对相关细胞进行计数(图7)。
免疫原性分析表明,16名患者通过IMA950肽(BIR-002和MET-005)免疫接种后产生了100%的免疫应答,而71名患者通过IMA910肽(CEA-006、TGFBI-004、MMP-001)免疫接种后产生了44%至86%的免疫应答。
为了将POSTN-002和MMP12-002结合评分与IMA910和IMA950肽的结合评分相比较,将所有肽按对所研究的各HLA-DR单倍型的结合评分结果列于表格中(表8.1、表8.2、表8.3、表8.4和表8.5)。
表8.1 POSTN-002和MMP12-002对HLA-DR1的结合评分(相比于已知免疫原性的II类肽的结合评分):POSTN-002和MMP12-002的结果标灰突出。
表8.2 POSTN-002和MMP12-002对HLA-DR2的结合评分(相比于已知免疫原性的II类肽的结合评分):POSTN-002和MMP12-002的结果标灰突出。
表8.3 POSTN-002和MMP12-002对HLA-DR4的结合评分(相比于已知免疫原性的II类肽的结合评分):POSTN-002和MMP12-002的结果标灰突出。
表8.4 POSTN-002和MMP12-002对HLA-DR5的结合评分(相比于已知免疫原性的II类肽的结合评分):POSTN-002和MMP12-002的结果标灰突出。
表8.5 POSTN-002和MMP12-002对HLA-DR7的结合评分(相比于已知免疫原性的II类肽的结合评分):POSTN-002和MMP12-002的结果标灰突出。
POSTN-002和MMP12-002相比于其它已知具有免疫原性的II类肽的结合评分表明,两种肽的结合能力多位于表的中下部(HLA-DR2除外)。两种肽对HLA-DR2的结合能力位于表的上半部分,其中MMP12-002为结合能力最强的候选肽。基于此分析,预期POSTN-002和MMP12-002这两种肽定可诱导免疫应答。
参考文献
Acuff HB,Sinnamon M,Fingleton B,Boone B,Levy SE,Chen X,Pozzi A,Carbone DP,Schwartz DR,Moin K,Sloane BF,Matrisian LM(2006).Analysis of host-and tumor-derived proteinases using a custom dual species microarray revealsa protective role for stromal matrixmetalloproteinase-12 innon-small celllung cancer.Cancer Res 66,7968-7975.
Adhikary S,Marinoni F,Hock A,Hulleman E,Popov N,Beier R,Bernard S,Quarto M,Capra M,Goettig S,Kogel U,Scheffner M,Helin K,Eilers M(2005).Theubiquitin ligase HectH9 regulates transcriptional activation by Myc and isessential for tumor cell proliferation.Cell 123,409-421.
Albig AR,Schiemann WP(2005).Identification and characterization ofregulator of Gprotein signaling 4(RGS4)as anovel inhibitor of tubulogenesis:RGS4 inhibits mitogen-activated protein kinases and vascular endothelialgrowth factor signaling.Mol.Biol.Cell 16,609-625.
Allison JP,Krummel MF(1995).The Yin and Yang of T cellcostimulation.Science 270,932-933.
An CH,Kim YR,Kim HS,Kim SS,Yoo NJ,Lee SH(2012).Frameshift mutationsof vacuolar protein sorting genes in gastric andcolorectal cancers withmicrosatellite instability.Hum.Pathol.43,40-47.
Appay V,Speiser DE,Rufer N,Reynard S,Barbey C,Cerottini JC,Leyvraz S,Pinilla C,Romero P(2006).Decreased specific CD8+T cell cross-reactivity ofantigen recognition following vaccination with Melan-A peptide.Eur.JImmunol.36,1805-1814.
Araki W,Takahashi-Sasaki N,Chui DH,Saito S,Takeda K,Shirotani K,Takahashi K,Murayama KS,Kametani F,Shiraishi H,Komano H,Tabira T(2008).Afamily of membrane proteins associated with presenilin expression and gamma-secretase function.FASEB J22,819-827.
Arenberg DA,Polverini PJ,Kunkel SL,Shanafelt A,Hesselgesser J,HorukR,Strieter RM(1997).The role of CXC chemokines in the regulation ofangiogenesis in non-small cell lung cancer.J Leukoc.Biol.62,554-562.
Asteriti IA,Rensen WM,Lindon C,Lavia P,Guarguaglini G(2010).TheAurora-A/TPX2 complex:a novel oncogenic holoenzyme?Biochim.Biophys.Acta 1806,230-239.
Aylsworth A,Jiang SX,Desbois A,Hou ST(2009).Characterization of therole of full-length CRMP3 and its calpain-cleaved product in inhibitingmicrotubule polymerization and neurite outgrowth.Exp.CellRes.315,2856-2868.
Badiglian FL,Oshima CT,De OliveiraLF,De Oliveira CH,De SousaDR,GomesTS,Goncalves WJ(2009).Canonical and noncanonical Wnt pathway:a comparisonamong normal ovary,benign ovarian tumor and ovarian cancer.Oncol Rep.21,313-320.
Bargo S,Raafat A,McCurdy D,Amirjazil I,Shu Y,Traicoff J,Plant J,Vonderhaar BK,Callahan R(2010).Transforming acidic coiled-coil protein-3(Tacc3)acts as a negative regulator of Notch signaling through binding toCDC10/Ankyrin repeats.Biochem.Biophys.Res Commun.400,606-612.
Beckers A,Organe S,Timmermans L,Scheys K,Peeters A,Brusselmans K,Verhoeven G,Swinnen JV(2007).Chemical inhibition of acetyl-CoA carboxylaseinduces growth arrest and cytotoxicity selectively in cancer cells.CancerRes.67,8180-8187.
Beckmann RP,Mizzen LE,Welch WJ(1990).Interaction of Hsp 70 with newlysynthesized proteins:implications for protein folding and assembly.Science248,850-854.
Behrens P,Brinkmann U,Fogt F,Wernert N,Wellmann A(2001).Implicationof the proliferation and apoptosis associated CSE1L/CAS gene for breastcancer development.Anticancer Res.21,2413-2417.
Belaaouaj A,Kim KS,Shapiro SD(2000).Degradation of outer membraneprotein A in Escherichia coli killing by neutrophil elastase.Science 289,1185-1188.
Beljan PR,Durdov MG,Capkun V,Ivcevic V,Pavlovic A,Soljic V,Peric M(2012).IMP3 can predict aggressive behaviour of lungadenocarcinoma.Diagn.Pathol.7,165.
Benaglio P,McGee TL,Capelli LP,Harper S,Berson EL,Rivolta C(2011).Next generation sequencing of pooled samples reveals new SNRNP200 mutationsassociated with retinitis pigmentosa.Hum.Mutat.32,E2246-E2258.
Bennett G,Sadlier D,Doran PP,Macmathuna P,Murray DW(2011).Afunctional and transcriptomic analysis of NET1 bioactivity in gastriccancer.BMC.Cancer 11,50.
Bergner A,Kellner J,Tufman A,Huber RM(2009).Endoplasmic reticulum Ca2+-homeostasis is altered in Small and non-small Cell Lung Cancer cell lines.JExp.Clin Cancer Res.28,25.
Bird AW,Hyman AA(2008).Building a spindle of the correct length inhuman cells requires the interaction between TPX2 and Aurora A.J CellBiol.182,289-300.
Boni R,Wellmann A,Man YG,Hofbauer G,Brinkmann U(1999).Expression ofthe proliferation and apoptosis-associated CAS protein in benign andmalignant cutaneous melanocytic lesions.Am.J Dermatopathol.21,125-128.
Brandt S,Ellwanger K,Beuter-Gunia C,Schuster M,Hausser A,Schmitz I,Beer-Hammer S(2010).SLy2 targets the nuclear SAP30/HDAC1 complex.Int.JBiochem.Cell Biol.42,1472-1481.
Brozic P,Turk S,Rizner TL,Gobec S(2011).Inhibitors of aldo-ketoreductases AKR1C1-AKR1C4.Curr.Med.Chem.18,2554-2565.
Bruckdorfer T,Marder O,Albericio F(2004).From production of peptidesin milligram amounts for research to multi-tons quantities for drugs of thefuture.Curr.Pharm.Biotechnol.5,29-43.
Brunsvig PF,Aamdal S,Gjertsen MK,Kvalheim G,Markowski-Grimsrud CJ,SveI,Dyrhaug M,Trachsel S,Moller M,Eriksen JA,Gaudernack G(2006).Telomerasepeptide vaccination:a phase I/II study in patients with non-small cell lungcancer.Cancer Immunol.Immunother.55,1553-1564.
Brusselmans K,De SE,Verhoeven G,Swinnen JV(2005).RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growthinhibition and apoptosis of prostate cancer cells.Cancer Res.65,6719-6725.
Brustmann H(2004).Expression of cellular apoptosis susceptibilityprotein in serous ovarian carcinoma:a clinicopathologic andimmunohistochemical study.Gynecol.Oncol 92,268-276.
Bukau B,Horwich AL(1998).The Hsp70 and Hsp60 chaperone machines.Cell92,351-366.
Byrns MC,Jin Y,Penning TM(2011).Inhibitors of type 5 17beta-hydroxysteroid dehydrogenase(AKR1C3):overview and structural insights.JSteroid Biochem.Mol.Biol.125,95-104.
Calabrese F,Lunardi F,Balestro E,Marulli G,Perissinotto E,Loy M,Nannini N,Valente M,Saetta M,Agostini C,Rea F(2012).Serpin B4 isoformoverexpression is associated with aberrant epithelial proliferation and lungcancer in idiopathic pulmonary fibrosis.Pathology 44,192-198.
Cao X,Coskun U,Rossle M,Buschhorn SB,Grzybek M,Dafforn TR,Lenoir M,Overduin M,Simons K(2009).Golgi protein FAPP2 tubulates membranes.Proc.Natl.Acad.Sci.U.S.A 106,21121-21125.
Cataldo DD,Gueders MM,Rocks N,Sounni NE,Evrard B,Bartsch P,Louis R,Noel A,Foidart JM(2003).Pathogenic role of matrix metalloproteases and theirinhibitors in asthma and chronic obstructive pulmonary disease andtherapeutic relevance of matrix metalloproteases inhibitors.Cell Mol.Biol.(Noisy.-le-grand)49,875-884.
Chajes V,Cambot M,Moreau K,Lenoir GM,Joulin V(2006).Acetyl-CoAcarboxylase alpha is essential to breast cancer cell survival.Cancer Res.66,5287-5294.
Chakraborti S,Mandal M,Das S,Mandal A,Chakraborti T(2003).Regulationof matrix metalloproteinases:an overview.Mol.Cell Biochem.253,269-285.
Chami M,Gozuacik D,Saigo K,Capiod T,Falson P,Lecoeur H,Urashima T,Beckmann J,Gougeon ML,Claret M,le MM,Brechot C,Paterlini-Brechot P(2000).Hepatitis B virus-related insertional mutagenesis implicates SERCA1 gene inthe control of apoptosis.Oncogene 19,2877-2886.
Chandler S,Cossins J,Lury J,Wells G(1996).Macrophage metalloelastasedegrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein.Biochem.Biophys.Res Commun.228,421-429.
Chang CC,Tai CJ,Su TC,Shen KH,Lin SH,Yeh CM,Yeh KT,Lin YM,Jiang MC(2012).The prognostic significance of nuclear CSE1L in urinary bladderurothelial carcinomas.Ann.Diagn.Pathol.16,362-368.
Chanock SJ,Foster CB,Miller FW,O'Hanlon TP(2004).HLA-A,-B,-Cw,-DQA1and-DRB1 Alleles in a Caucasian Population from Bethesda,USA.Hum.Immunol.65,1211-1223.
Chen CY,Fang HY,Chiou SH,Yi SE,Huang CY,Chiang SF,Chang HW,Lin TY,Chiang IP,Chow KC(2011a).Sumoylation of eukaryotic elongation factor 2 isvital for protein stability and anti-apoptotic activity in lungadenocarcinoma cells.Cancer Sci.102,1582-1589.
Chen CY,Fang HY,Chiou SH,Yi SE,Huang CY,Chiang SF,Chang HW,Lin TY,Chiang IP,Chow KC(2011b).Sumoylation of eukaryotic elongation factor 2 isvital for protein stability and anti-apoptotic activity in lungadenocarcinoma cells.Cancer Sci.102,1582-1589.
Chen D,Brooks CL,Gu W(2006).ARF-BP1 as a potential therapeutictarget.Br.J Cancer 94,1555-1558.
Chen D,Kon N,Li M,Zhang W,Qin J,Gu W(2005a).ARF-BP1/Mule is acritical mediator of the ARF tumor suppressor.Cell 121,1071-1083.
Chen DR,Chien SY,Kuo SJ,Teng YH,Tsai HT,Kuo JH,Chung JG(2010a).SLC34A2 as a novel marker for diagnosis and targeted therapy of breastcancer.Anticancer Res.30,4135-4140.
Chen J,Emara N,Solomides C,Parekh H,Simpkins H(2010b).Resistance toplatinum-based chemotherapy in lung cancer cell lines.CancerChemother.Pharmacol.66,1103-1111.
Chen JF,Zhang LJ,Zhao AL,Wang Y,Wu N,Xiong HC,Liang Z,Li JY,Huang XF,Yang Y(2005b).[Abnormal expression of Thy-1 as a novel tumor marker in lungcancer and its prognostic significance].Zhonghua Yi.Xue.Za Zhi.85,1921-1925.
Chen P,Wang SJ,Wang HB,Ren P,Wang XQ,Liu WG,Gu WL,Li DQ,Zhang TG,ZhouCJ(2012).The distribution of IGF2 and IMP3 in osteosarcoma and itsrelationship with angiogenesis.J Mol.Histol.43,63-70.
Cho NH,Hong KP,Hong SH,Kang S,Chung KY,Cho SH(2004).MMP expressionprofiling in recurred stage IB lung cancer.Oncogene 23,845-851.
Choi KU,Yun JS,Lee IH,Heo SC,Shin SH,Jeon ES,Choi YJ,Suh DS,Yoon MS,Kim JH(2010).Lysophosphatidic acid-induced expression of periostin in stromalcells:Prognoistic relevance of periostin expression in epithelial ovariancancer.Int J Cancer.
Chong IW,Chang MY,Chang HC,Yu YP,Sheu CC,Tsai JR,Hung JY,Chou SH,TsaiMS,Hwang JJ,Lin SR(2006).Great potential of a panel of multiple hMTH1,SPD,ITGA11 and COL11A1 markers for diagnosis of patients with non-small cell lungcancer.Oncol Rep.16,981-988.
Chouchane L,Ahmed SB,Baccouche S,Remadi S(1997).Polymorphism in thetumor necrosis factor-alpha promotor region and in the heat shock protein 70genes associated with malignant tumors.Cancer 80,1489-1496.
Chung FY,Cheng TL,Chang HJ,Chiu HH,Huang MY,Chang MS,Chen CC,Yang MJ,Wang JY,Lin SR(2010).Differential gene expression profile of MAGE family intaiwanese patients with colorectal cancer.J Surg.Oncol 102,148-153.
Ciocca DR,Calderwood SK(2005).Heat shock proteins in cancer:diagnostic,prognostic,predictive,and treatment implications.CellStress.Chaperones.10,86-103.
Ciocca DR,Fuqua SA,Lock-Lim S,Toft DO,Welch WJ,McGuire WL(1992).Response of human breast cancer cells to heat shock and chemotherapeuticdrugs.Cancer Res.52,3648-3654.
Claudio JO,Zhu YX,Benn SJ,Shukla AH,McGlade CJ,Falcioni N,Stewart AK(2001).HACS1 encodes a novel SH3-SAM adaptor protein differentially expressedin normal and malignant hematopoietic cells.Oncogene 20,5373-5377.
Coe BP,Henderson LJ,Garnis C,Tsao MS,Gazdar AF,Minna J,Lam S,MacAulayC,Lam WL(2005).High-resolution chromosome arm 5p array CGH analysis of smallcell lung carcinoma cell lines.Genes Chromosomes.Cancer 42,308-313.
Colombetti S,Basso V,Mueller DL,Mondino A(2006).Prolonged TCR/CD28engagement drives IL-2-independent T cell clonal expansion through signalingmediated by the mammalian target of rapamycin.J Immunol.176,2730-2738.
Confalonieri S,Quarto M,Goisis G,Nuciforo P,Donzelli M,Jodice G,Pelosi G,Viale G,Pece S,Di Fiore PP(2009).Alterations of ubiquitin ligases inhuman cancer and their association with the natural history of thetumor.Oncogene 28,2959-2968.
Cooper CR,Graves B,Pruitt F,Chaib H,Lynch JE,Cox AK,Sequeria L,vanGolen KL,Evans A,Czymmek K,Bullard RS,Donald CD,Sol-Church K,Gendernalik JD,Weksler B,Farach-Carson MC,Macoska JA,Sikes RA,Pienta KJ(2008).
Novel surface expression of reticulocalbin 1 on bone endothelialcells and human prostate cancer cells is regulated by TNF-alpha.J CellBiochem.104,2298-2309.
Cooper WA,Kohonen-Corish MR,McCaughan B,Kennedy C,Sutherland RL,LeeCS(2009).Expression and prognostic significance of cyclin B1 and cyclin A innon-small cell lung cancer.Histopathology 55,28-36.
Cordes C,Munzel AK,Gorogh T,Leuschner I,Ambrosch P,Gottschlich S,Hoffmann M(2010).Prognostic relevance of the proliferation marker REPP86 forlaryngeal cancer.Anticancer Res 30,3541-3547.
Creighton CJ,Bromberg-White JL,Misek DE,Monsma DJ,Brichory F,Kuick R,Giordano TJ,Gao W,Omenn GS,Webb CP,Hanash SM(2005).Analysis of tumor-hostinteractions by gene expression profiling of lung adenocarcinoma xenograftsidentifies genes involved in tumor formation.Mol.Cancer Res 3,119-129.
D'Angelo G,Rega LR,De Matteis MA(2012).Connecting vesicular transportwith lipid synthesis:FAPP2.Biochim.Biophys.Acta 1821,1089-1095.
Da Forno PD,Pringle JH,Hutchinson P,Osborn J,Huang Q,Potter L,HancoxRA,Fletcher A,Saldanha GS(2008).WNT5A expression increases during melanomaprogression and correlates with outcome.Clin Cancer Res 14,5825-5832.
de Souza Meyer EL,Dora JM,Wagner MS,Maia AL(2005).Decreased type 1iodothyronine deiodinase expression might be an early and discrete event inthyroid cell dedifferentation towards papillary carcinoma.Clin Endocrinol.(Oxf)62,672-678.
Delpech B,Girard N,Bertrand P,Courel MN,Chauzy C,Delpech A(1997).Hyaluronan:fundamental principles and applications in cancer.J Intern.Med242,41-48.
Dengjel J,Nastke MD,Gouttefangeas C,Gitsioudis G,Schoor O,AltenberendF,Muller M,Kramer B,Missiou A,Sauter M,Hennenlotter J,Wernet D,Stenzl A,Rammensee HG,Klingel K,Stevanovic S(2006).Unexpected Abundance of HLA ClassII Presented Peptides in Primary Renal Cell Carcinomas.Clin Cancer Res.12,4163-4170.
Denli AM,Tops BB,Plasterk RH,Ketting RF,Hannon GJ(2004).Processing ofprimary microRNAs by the Microprocessor complex.Nature 432,231-235.
Denys H,De WO,Nusgens B,Kong Y,Sciot R,Le AT,Van DK,Jadidizadeh A,Tejpar S,Mareel M,Alman B,Cassiman JJ(2004).Invasion and MMP expressionprofile in desmoid tumours.Br.J Cancer 90,1443-1449.
Deshpande A,Sicinski P,Hinds PW(2005).Cyclins and cdks in developmentand cancer:a perspective.Oncogene 24,2909-2915.
Dharmavaram RM,Huynh AI,Jimenez SA(1998).Characterization of humanchondrocyte and fibroblast type XII collagen cDNAs.Matrix Biol.16,343-348.
Dobashi Y,Shoji M,Jiang SX,Kobayashi M,Kawakubo Y,Kameya T(1998).Active cyclin A-CDK2 complex,a possible critical factor for cellproliferation in human primary lung carcinomas.Am J Pathol.153,963-972.
Dolznig H,Schweifer N,Puri C,Kraut N,Rettig WJ,Kerjaschki D,Garin-Chesa P(2005).Characterization of cancer stroma markers:in silico analysis ofan mRNA expression database for fibroblast activation protein andendosialin.Cancer Immun.5,10.
Dong-Dong L(2007).Small interfering RNA(siRNA)inhibited human livercancer cell line SMMC7721 proliferation and tumorigenesis.Hepatogastroenterology 54,1731-1735.
Drucker KL,Kitange GJ,Kollmeyer TM,Law ME,Passe S,Rynearson AL,BlairH,Soderberg CL,Morlan BW,Ballman KV,Giannini C,Jenkins RB(2009).Characterization and gene expression profiling in glioma cell lines withdeletion of chromosome 19 before and after microcell-mediated restoration ofnormal human chromosome 19.Genes Chromosomes.Cancer 48,854-864.
Dudley ME,Wunderlich JR,Robbins PF,Yang JC,Hwu P,Schwartzentruber DJ,Topalian SL,Sherry R,Restifo NP,Hubicki AM,Robinson MR,Raffeld M,Duray P,Seipp CA,Rogers-Freezer L,Morton KE,Mavroukakis SA,White DE,Rosenberg SA(2002).Cancer regression and autoimmunity in patients after clonalrepopulation with antitumor lymphocytes.Science 298,850-854.
Dudley ME,Wunderlich JR,Yang JC,Sherry RM,Topalian SL,Restifo NP,Royal RE,Kammula U,White DE,Mavroukakis SA,Rogers LJ,Gracia GJ,Jones SA,Mangiameli DP,Pelletier MM,Gea-Banacloche J,Robinson MR,Berman DM,Filie AC,Abati A,Rosenberg SA(2005).Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patientswith refractory metastatic melanoma.J.Clin.Oncol.23,2346-2357.
Ecimovic P,Murray D,Doran P,McDonald J,Lambert DG,Buggy DJ(2011).Direct effect of morphine on breast cancer cell function in vitro:role ofthe NET1 gene.Br.J Anaesth.107,916-923.
Ehrmann J,Strakova N,Vrzalikova K,Hezova R,Kolar Z(2008).Expressionof STATs and their inhibitors SOCS and PIAS in brain tumors.In vitro and invivo study.Neoplasma 55,482-487.
Fang WY,Liu TF,Xie WB,Yang XY,Wang S,Ren CP,Deng X,Liu QZ,Huang ZX,LiX,Ding YQ,Yao KT(2005).Reexploring the possible roles of some genesassociated with nasopharyngeal carcinoma using microarray-baseddetection.Acta Biochim.Biophys.Sin.(Shanghai)37,541-546.
Feng CJ,Li HJ,Li JN,Lu YJ,Liao GQ(2008).Expression of Mcm7 and Cdc6in oral squamous cell carcinoma and precancerous lesions.Anticancer Res 28,3763-3769.
Findeis-Hosey JJ,Xu H(2012).Insulin-like growth factor II-messengerRNA-binding protein-3 and lung cancer.Biotech.Histochem.87,24-29.
Findeis-Hosey JJ,Yang Q,Spaulding BO,Wang HL,Xu H(2010).IMP3expression is correlated with histologic grade of lungadenocarcinoma.Hum.Pathol.41,477-484.
Fong L,Hou Y,Rivas A,Benike C,Yuen A,Fisher GA,Davis MM,Engleman EG(2001).Altered peptide ligand vaccination with Flt3 ligand expanded dendriticcells for tumor immunotherapy.Proc.Natl.Acad.Sci.U.S.A 98,8809-8814.
Fukuda T,Oyamada H,Isshiki T,Maeda M,Kusakabe T,Hozumi A,Yamaguchi T,Igarashi T,Hasegawa H,Seidoh T,Suzuki T(2007).Distribution and variableexpression of secretory pathway protein reticulocalbin in normal human organsand non-neoplastic pathological conditions.J Histochem.Cytochem.55,335-345.
Gamero AM,Young MR,Mentor-Marcel R,Bobe G,Scarzello AJ,Wise J,ColburnNH(2010).STAT2 contributes to promotion of colorectal and skincarcinogenesis.Cancer Prev.Res.(Phila)3,495-504.
Gares SL,Pilarski LM(2000).Balancing thymocyte adhesion and motility:a functional linkage between beta1 integrins and the motility receptorRHAMM.Dev.Immunol 7,209-225.
Garg M,Kanojia D,Saini S,Suri S,Gupta A,Surolia A,Suri A(2010a).Germcell-specific heat shock protein 70-2 is expressed in cervical carcinoma andis involved in the growth,migration,and invasion of cervical cells.Cancer116,3785-3796.
Garg M,Kanojia D,Seth A,Kumar R,Gupta A,Surolia A,Suri A(2010b).Heat-shock protein 70-2(HSP70-2)expression in bladder urothelial carcinoma isassociated with tumour progression and promotes migration and invasion.Eur.JCancer 46,207-215.
Gattinoni L,Powell DJ,Jr.,Rosenberg SA,Restifo NP(2006).Adoptiveimmunotherapy for cancer:building on success.Nat.Rev.Immunol.6,383-393.
Ghosh S,Albitar L,LeBaron R,Welch WR,Samimi G,Birrer MJ,Berkowitz RS,Mok SC(2010).Up-regulation of stromal versican expression in advanced stageserous ovarian cancer.Gynecol.Oncol 119,114-120.
Gorrin Rivas MJ,Arii S,Furutani M,Harada T,Mizumoto M,Nishiyama H,Fujita J,Imamura M(1998).Expression of human macrophage metalloelastase genein hepatocellular carcinoma:correlation with angiostatin generation and itsclinical significance.Hepatology 28,986-993.
Gorrin-Rivas MJ,Arii S,Mori A,Takeda Y,Mizumoto M,Furutani M,ImamuraM(2000).Implications of human macrophage metalloelastase and vascularendothelial growth factor gene expression in angiogenesis of hepatocellularcarcinoma.Ann Surg 231,67-73.
Graf F,Mosch B,Koehler L,Bergmann R,Wuest F,Pietzsch J(2010).Cyclin-dependent kinase 4/6(cdk4/6)inhibitors:perspectives in cancer therapy andimaging.Mini.Rev.Med.Chem.10,527-539.
Greenfield JJ,High S(1999).The Sec61 complex is located in both theER and the ER-Golgi intermediate compartment.J Cell Sci.112(Pt 10),1477-1486.
Gregory KE,Keene DR,Tufa SF,Lunstrum GP,Morris NP(2001).Developmentaldistribution of collagen type XII in cartilage:association with articularcartilage and the growth plate.J Bone Miner.Res.16,2005-2016.
Grunda JM,Fiveash J,Palmer CA,Cantor A,Fathallah-Shaykh HM,Nabors LB,Johnson MR(2010).Rationally designed pharmacogenomic treatment usingconcurrent capecitabine and radiotherapy for glioblastoma;gene expressionprofiles associated with outcome.Clin Cancer Res.16,2890-2898.
Gruter P,Tabernero C,von KC,Schmitt C,Saavedra C,Bachi A,Wilm M,Felber BK,Izaurralde E(1998).TAP,the human homolog of Mex67p,mediates CTE-dependent RNA export from the nucleus.Mol.Cell 1,649-659.
Gudmundsson J,Sulem P,Gudbjartsson DF,Blondal T,Gylfason A,AgnarssonBA,Benediktsdottir KR,Magnusdottir DN,Orlygsdottir G,Jakobsdottir M,StaceySN,Sigurdsson A,Wahlfors T,Tammela T,Breyer JP,McReynolds KM,Bradley KM,SaezB,Godino J,Navarrete S,Fuertes F,Murillo L,Polo E,Aben KK,van Oort IM,SuarezBK,Helfand BT,Kan D,Zanon C,Frigge ML,Kristjansson K,Gulcher JR,Einarsson GV,Jonsson E,Catalona WJ,Mayordomo JI,Kiemeney LA,Smith JR,Schleutker J,Barkardottir RB,Kong A,Thorsteinsdottir U,Rafnar T,Stefansson K(2009).Genome-wide association and replication studies identify four variants associatedwith prostate cancer susceptibility.Nat Genet.41,1122-1126.
Guo Y,Hsu DK,Feng SL,Richards CM,Winkles JA(2001).Polypeptide growthfactors and phorbol ester induce progressive ankylosis(ank)gene expression inmurine and human fibroblasts.J Cell Biochem.84,27-38.
Hagemann T,Gunawan B,Schulz M,Fuzesi L,Binder C(2001).mRNA expressionof matrix metalloproteases and their inhibitors differs in subtypes of renalcell carcinomas.Eur.J Cancer 37,1839-1846.
Hamamoto R,Silva FP,Tsuge M,Nishidate T,Katagiri T,Nakamura Y,Furukawa Y(2006).Enhanced SMYD3 expression is essential for the growth ofbreast cancer cells.Cancer Sci.97,113-118.
Han J,Lee Y,Yeom KH,Nam JW,Heo I,Rhee JK,Sohn SY,Cho Y,Zhang BT,KimVN(2006).Molecular basis for the recognition of primary microRNAs by theDrosha-DGCR8 complex.Cell 125,887-901.
Han S,Nam J,Li Y,Kim S,Cho SH,Cho YS,Choi SY,Choi J,Han K,Kim Y,Na M,Kim H,Bae YC,Choi SY,Kim E(2010).Regulation of dendritic spines,spatialmemory,and embryonic development by the TANC family of PSD-95-interactingproteins.J Neurosci.30,15102-15112.
Hartl FU,Hayer-Hartl M(2002).Molecular chaperones in the cytosol:fromnascent chain to folded protein.Science 295,1852-1858.
Hase ME,Yalamanchili P,Visa N(2006).The Drosophila heterogeneousnuclear ribonucleoprotein M protein,HRP59,regulates alternative splicing andcontrols the production of its own mRNA.J Biol.Chem.281,39135-39141.
Hernandez I,Moreno JL,Zandueta C,Montuenga L,Lecanda F(2010).Novelalternatively spliced ADAM8 isoforms contribute to the aggressive bonemetastatic phenotype of lung cancer.Oncogene 29,3758-3769.
Hitakomate E,Hood FE,Sanderson HS,Clarke PR(2010).The methylated N-terminal tail of RCC1 is required for stabilisation of its interaction withchromatin by Ran in live cells.BMC.Cell Biol.11,43.
Hjelmqvist L,Tuson M,Marfany G,Herrero E,Balcells S,Gonzalez-Duarte R(2002).ORMDL proteins are a conserved new family of endoplasmic reticulummembrane proteins.Genome Biol.3,RESEARCH0027.
Ho CY,Wong CH,Li HY(2008).Perturbation of the chromosomal binding ofRCC1,Mad2 and survivin causes spindle assembly defects and mitoticcatastrophe.J Cell Biochem.105,835-846.
Hochrainer K,Mayer H,Baranyi U,Binder B,Lipp J,Kroismayr R(2005).Thehuman HERC family of ubiquitin ligases:novel members,genomic organization,expression profiling,and evolutionary aspects.Genomics 85,153-164.
Hofmann HS,Hansen G,Richter G,Taege C,Simm A,Silber RE,Burdach S(2005).Matrix metalloproteinase-12 expression correlates with localrecurrence and metastatic disease in non-small cell lung cancer patients.ClinCancer Res 11,1086-1092.
Honda A,Valogne Y,Bou NM,Brechot C,Faivre J(2012).An intron-retainingsplice variant of human cyclin A2,expressed in adult differentiated tissues,induces a G1/S cell cycle arrest in vitro.PLoS.ONE.7,e39249.
Honore B,Baandrup U,Vorum H(2004).Heterogeneous nuclearribonucleoproteins F and H/H'show differential expression in normal andselected cancer tissues.Exp.Cell Res.294,199-209.
Hood FE,Royle SJ(2011).Pulling it together:The mitotic function ofTACC3.Bioarchitecture.1,105-109.
Hosokawa N,Sasaki T,Iemura S,Natsume T,Hara T,Mizushima N(2009).Atg101,a novel mammalian autophagy protein interacting withAtg13.Autophagy.5,973-979.
Houghton AM,Grisolano JL,Baumann ML,Kobayashi DK,Hautamaki RD,NehringLC,Cornelius LA,Shapiro SD(2006).Macrophage elastase(matrixmetalloproteinase-12)suppresses growth of lung metastases.Cancer Res 66,6149-6155.
Houghton AM,Rzymkiewicz DM,Ji H,Gregory AD,Egea EE,Metz HE,Stolz DB,Land SR,Marconcini LA,Kliment CR,Jenkins KM,Beaulieu KA,Mouded M,Frank SJ,Wong KK,Shapiro SD(2010).Neutrophil elastase-mediated degradation of IRS-1accelerates lung tumor growth.Nat Med.16,219-223.
Hovhannisyan RH,Carstens RP(2007).Heterogeneous ribonucleoprotein mis a splicing regulatory protein that can enhance or silence splicing ofalternatively spliced exons.J Biol.Chem.282,36265-36274.
Hua D,Shen L,Xu L,Jiang Z,Zhou Y,Yue A,Zou S,Cheng Z,Wu S(2012).Polypeptide N-acetylgalactosaminyltransferase 2 regulates cellularmetastasis-associated behavior in gastric cancer.Int.J Mol.Med.30,1267-1274.
Huang CL,Liu D,Nakano J,Ishikawa S,Kontani K,Yokomise H,Ueno M(2005).Wnt5a expression is associated with the tumor proliferation and the stromalvascular endothelial growth factor--an expression in non-small-cell lungcancer.J Clin Oncol 23,8765-8773.
Huang KH,Chiou SH,Chow KC,Lin TY,Chang HW,Chiang IP,Lee MC(2010).Overexpression of aldo-keto reductase 1C2 is associated with diseaseprogression in patients with prostatic cancer.Histopathology 57,384-394.
Huang MY,Wang HM,Tok TS,Chang HJ,Chang MS,Cheng TL,Wang JY,Lin SR(2012).EVI2B,ATP2A2,S100B,TM4SF3,and OLFM4 as potential prognostic markersfor postoperative Taiwanese colorectal cancer patients.DNA Cell Biol.31,625-635.
Huo J,Liu Y,Ma J,Xiao S(2010).A novel splice-site mutation of ATP2A2gene in a Chinese family with Darier disease.Arch.Dermatol.Res.302,769-772.
Hwang YS,Park KK,Cha IH,Kim J,Chung WY(2012).Role of insulin-likegrowth factor-II mRNA-binding protein-3 in invadopodia formation and thegrowth of oral squamous cell carcinoma in athymic nude mice.Head Neck 34,1329-1339.
Ishikawa N,Daigo Y,Yasui W,Inai K,Nishimura H,Tsuchiya E,Kohno N,Nakamura Y(2004).ADAM8 as a novel serological and histochemical marker forlung cancer.Clin Cancer Res.10,8363-8370.
Ishikawa Y,Vranka J,Wirz J,Nagata K,Bachinger HP(2008).The roughendoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecularchaperone that interacts with collagens.J Biol.Chem.283,31584-31590.
Ito K,Takahashi A,Morita M,Suzuki T,Yamamoto T(2011).The role of theCNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cellviability.Protein Cell 2,755-763.
Iuchi S,Green H(1999).Basonuclin,a zinc finger protein ofkeratinocytes and reproductive germ cells,binds to the rRNA gene promoter.Proc.Natl.Acad.Sci.U.S.A 96,9628-9632.
Jalbout M,Bouaouina N,Gargouri J,Corbex M,Ben AS,Chouchane L(2003).Polymorphism of the stress protein HSP70-2gene is associated with thesusceptibility to the nasopharyngeal carcinoma.Cancer Lett.193,75-81.
Jeng YM,Wang TH,Lu SH,Yuan RH,Hsu HC(2009).Prognostic significance ofinsulin-like growth factor II mRNA-binding protein 3 expression in gastricadenocarcinoma.Br.J Surg 96,66-73.
Jung CK,Jung JH,Park GS,Lee A,Kang CS,Lee KY(2006).Expression oftransforming acidic coiled-coil containing protein 3 is a novel independentprognostic marker in non-small cell lung cancer.Pathol.Int 56,503-509.
Jung G,Ledbetter JA,Muller-Eberhard HJ(1987).Induction ofcytotoxicity in resting human T lymphocytes bound to tumor cells by antibodyheteroconjugates.Proc Natl Acad Sci U S A 84,4611-4615.
Kabbarah O,Nogueira C,Feng B,Nazarian RM,Bosenberg M,Wu M,Scott KL,Kwong LN,Xiao Y,Cordon-Cardo C,Granter SR,Ramaswamy S,Golub T,Duncan LM,Wagner SN,Brennan C,Chin L(2010).Integrative genome comparison of primary andmetastatic melanomas.PLoS.ONE.5,e10770.
Kadara H,Lacroix L,Behrens C,Solis L,Gu X,Lee JJ,Tahara E,Lotan D,Hong WK,Wistuba II,Lotan R(2009).Identification of gene signatures andmolecular markers for human lung cancer prognosis using an in vitro lungcarcinogenesis system.Cancer Prev.Res(Phila)2,702-711.
Kamlekar RK,Simanshu DK,Gao YG,Kenoth R,Pike HM,Prendergast FG,Malinina L,Molotkovsky JG,Venyaminov SY,Patel DJ,Brown RE(2013).Theglycolipid transfer protein(GLTP)domain of phosphoinositol 4-phosphateadaptor protein-2(FAPP2):structure drives preference for simple neutral glycosphingolipids.Biochim.Biophys.Acta 1831,417-427.Kanno A,Satoh K,Masamune A,Hirota M,Kimura K,Umino J,Hamada S,Satoh A,Egawa S,Motoi F,Unno M,ShimosegawaT(2008).Periostin,secreted from stromal cells,has biphasic effect on cellmigration and correlates with the epithelial to mesenchymal transition ofhuman pancreatic cancer cells.Int J Cancer 122,2707-2718.
Kanno T,Kamba T,Yamasaki T,Shibasaki N,Saito R,Terada N,Toda Y,MikamiY,Inoue T,Kanematsu A,Nishiyama H,Ogawa O,Nakamura E(2012).JunB promotes cellinvasion and angiogenesis in VHL-defective renal cell carcinoma.Oncogene 31,3098-3110.
Kao RH,Francia G,Poulsom R,Hanby AM,Hart IR(2003).Application ofdifferential display,with in situ hybridization verification,to microscopicsamples of breast cancer tissue.Int.J Exp.Pathol.84,207-212.
Kars MD,Iseri OD,Gunduz U(2011).A microarray based expressionprofiling of paclitaxel and vincristine resistant MCF-7 cells.Eur.JPharmacol.657,4-9.
Katagiri C,Iida T,Nakanishi J,Ozawa M,Aiba S,Hibino T(2010).Up-regulation of serpin SCCA1 is associated with epidermal barrier disruption.JDermatol.Sci.57,95-101.
Katoh M(2008).WNT signaling in stem cell biology and regenerativemedicine.Curr.Drug Targets.9,565-570.
Katoh M,Katoh M(2007).STAT3-induced WNT5A signaling loop in embryonicstem cells,adult normal tissues,chronic persistent inflammation,rheumatoidarthritis and cancer(Review).Int J Mol.Med 19,273-278.
Kawata H,Shimada N,Kamiakito T,Komatsu K,Morita T,Ota T,Obayashi M,Shitara K,Tanaka A(2012).RhoC and guanine nucleotide exchange factor Net1 inandrogen-unresponsive mouse mammary carcinoma SC-4 cells and human prostatecancer after short-term endocrine therapy.Prostate 72,1071-1079.
Kelly SM,Corbett AH(2009).Messenger RNA export from the nucleus:aseries of molecular wardrobe changes.Traffic.10,1199-1208.
Kennedy A,Dong H,Chen D,Chen WT(2009).Elevation of seprase expressionand promotion of an invasive phenotype by collagenous matrices in ovariantumor cells.Int J Cancer 124,27-35.
Kikuchi A,Yamamoto H,Sato A,Matsumoto S(2012).Wnt5a:its signalling,functions and implication in diseases.Acta Physiol(Oxf)204,17-33.
Kikuchi Y,Kashima TG,Nishiyama T,Shimazu K,Morishita Y,Shimazaki M,Kii I,Horie H,Nagai H,Kudo A,Fukayama M(2008).Periostin is expressed inpericryptal fibroblasts and cancer-associated fibroblasts in the colon.JHistochem.Cytochem.56,753-764.
Kim DH,Park SE,Kim M,Ji YI,Kang MY,Jung EH,Ko E,Kim Y,Kim S,Shim YM,Park J(2011).A functional single nucleotide polymorphism at the promoterregion of cyclin A2 is associated with increased risk of colon,liver,and lungcancers.Cancer 117,4080-4091.
Kim EH,Park AK,Dong SM,Ahn JH,Park WY(2010a).Global analysis of CpGmethylation reveals epigenetic control of the radiosensitivity in lung cancercell lines.Oncogene 29,4725-4731.
Kim HS,Kim dH,Kim JY,Jeoung NH,Lee IK,Bong JG,Jung ED(2010b).Microarray analysis of papillary thyroid cancers in Korean.Korean JIntern.Med.25,399-407.
Kim MY,Oskarsson T,Acharyya S,Nguyen DX,Zhang XH,Norton L,Massague J(2009).Tumor self-seeding by circulating cancer cells.Cell 139,1315-1326.
Kim S,Park HS,Son HJ,Moon WS(2004).[The role of angiostatin,vascularendothelial growth factor,matrix metalloproteinase 9 and 12 in theangiogenesis of hepatocellular carcinoma].Korean J Hepatol.10,62-72.
Kimura J,Kudoh T,Miki Y,Yoshida K(2011).Identification ofdihydropyrimidinase-related protein 4 as a novel target of the p53 tumorsuppressor in the apoptotic response to DNA damage.Int.J Cancer 128,1524-1531.
Kloth JN,Oosting J,van WT,Szuhai K,Knijnenburg J,Gorter A,Kenter GG,Fleuren GJ,Jordanova ES(2007).Combined array-comparative genomichybridization and single-nucleotide polymorphism-loss of heterozygosityanalysis reveals complex genetic alterations in cervical cancer.BMC.Genomics8,53.
Knight HM,Pickard BS,Maclean A,Malloy MP,Soares DC,McRae AF,Condie A,White A,Hawkins W,McGhee K,van BM,MacIntyre DJ,Starr JM,Deary IJ,Visscher PM,Porteous DJ,Cannon RE,St CD,Muir WJ,Blackwood DH(2009).A cytogeneticabnormality and rare coding variants identify ABCA13 as a candidate gene inschizophrenia,bipolar disorder,and depression.Am J Hum.Genet.85,833-846.
Kolehmainen J,Black GC,Saarinen A,Chandler K,Clayton-Smith J,Traskelin AL,Perveen R,Kivitie-Kallio S,Norio R,Warburg M,Fryns JP,de laChapelle A,Lehesjoki AE(2003).Cohen syndrome is caused by mutations in anovel gene,COH1,encoding a transmembrane protein with a presumed role invesicle-mediated sorting and intracellular protein transport.Am.JHum.Genet.72,1359-1369.
Konishi N,Shimada K,Nakamura M,Ishida E,Ota I,Tanaka N,Fujimoto K(2008).Function of JunB in transient amplifying cell senescenceandprogression of human prostate cancer.Clin Cancer Res.14,4408-4416.
Kornak U,Brancati F,Le MM,Lichtenbelt K,Hohne W,Tinschert S,GaraciFG,Dallapiccola B,Nurnberg P(2010).Three novel mutations in the ANK membraneprotein cause craniometaphyseal dysplasia with variable conductive hearingloss.Am.J Med.Genet.A 152A,870-874.
Korosec B,Glavac D,Rott T,Ravnik-Glavac M(2006).Alterations in theATP2A2 gene in correlation with colon and lung cancer.CancerGenet.Cytogenet.171,105-111.
Kramer MW,Escudero DO,Lokeshwar SD,Golshani R,Ekwenna OO,Acosta K,Merseburger AS,Soloway M,Lokeshwar VB(2010).Association of hyaluronic acidfamily members(HAS1,HAS2,and HYAL-1)with bladder cancer diagnosis andprognosis.Cancer.
Krieg AM(2006).Therapeutic potential of Toll-like receptor 9activation.Nat.Rev.Drug Discov.5,471-484.
Kuang P,Zhou C,Li X,Ren S,Li B,Wang Y,Li J,Tang L,Zhang J,Zhao Y(2012).Proteomics-based identification of secreted protein dihydrodioldehydrogenase 2 as a potential biomarker for predicting cisplatin efficacy inadvanced NSCLC patients.Lung Cancer 77,427-432.
Kuang SQ,Tong WG,Yang H,Lin W,Lee MK,Fang ZH,Wei Y,Jelinek J,Issa JP,Garcia-Manero G(2008).Genome-wide identification of aberrantly methylatedpromoter associated CpG islands in acute lymphocytic leukemia.Leukemia 22,1529-1538.
Kudo Y,Ogawa I,Kitajima S,Kitagawa M,Kawai H,Gaffney PM,Miyauchi M,Takata T(2006).Periostin promotes invasion and anchorage-independent growthin the metastatic process of head and neck cancer.Cancer Res 66,6928-6935.
Kwon OH,Park JL,Kim M,Kim JH,Lee HC,Kim HJ,Noh SM,Song KS,Yoo HS,PaikSG,Kim SY,Kim YS(2011).Aberrant up-regulation of LAMB3 and LAMC2 by promoterdemethylation in gastric cancer.Biochem.Biophys.Res.Commun.406,539-545.
Kwon YJ,Lee SJ,Koh JS,Kim SH,Kim YJ,Park JH(2009).Expression patternsof aurora kinase B,heat shock protein 47,and periostin in esophageal squamouscell carcinoma.Oncol Res 18,141-151.
Labied S,Galant C,Nisolle M,Ravet S,Munaut C,Marbaix E,Foidart JM,Frankenne F(2009).Differential elevation of matrix metalloproteinaseexpression in women exposed to levonorgestrel-releasing intrauterine systemfor a short or prolongedperiod of time.Hum.Reprod.24,113-121.
Lau E,Zhu C,Abraham RT,Jiang W(2006).The functional role of Cdc6 inS-G2/M in mammalian cells.EMBO Rep.7,425-430.
Lazaris AC,Chatzigianni EB,Panoussopoulos D,Tzimas GN,Davaris PS,Golematis BC(1997).Proliferating cell nuclear antigen and heat shock protein70 immunolocalization in invasive ductal breast cancer not otherwisespecified.Breast Cancer Res.Treat.43,43-51.
Le CB,Rynkowski M,Le MM,Bruyere C,Lonez C,Gras T,Haibe-Kains B,Bontempi G,Decaestecker C,Ruysschaert JM,Kiss R,Lefranc F(2010).Long-term invitro treatment of human glioblastoma cells with temozolomide increasesresistance in vivo through up-regulation of GLUT transporter and aldo-ketoreductase enzyme AKR1C expression.Neoplasia.12,727-739.
Lee KH,Kim JR(2012).Regulation of HGF-mediated cell proliferation andinvasion through NF-kappaB,JunB,and MMP-9 cascades in stomach cancercells.Clin Exp.Metastasis 29,263-272.
Lee WS,Jain MK,Arkonac BM,Zhang D,Shaw SY,Kashiki S,Maemura K,Lee SL,Hollenberg NK,Lee ME,Haber E(1998).Thy-1,a novel marker for angiogenesisupregulated by inflammatory cytokines.Circ.Res 82,845-851.
Lee Y,Ahn C,Han J,Choi H,Kim J,Yim J,Lee J,Provost P,Radmark O,Kim S,Kim VN(2003).The nuclear RNase III Drosha initiates microRNAprocessing.Nature 425,415-419.
Lefave CV,Squatrito M,Vorlova S,Rocco GL,Brennan CW,Holland EC,PanYX,Cartegni L(2011).Splicing factor hnRNPH drives an oncogenic splicingswitch in gliomas.EMBO J 30,4084-4097.
Leivo I,Jee KJ,Heikinheimo K,Laine M,Ollila J,Nagy B,Knuutila S(2005).Characterization of gene expression in major types of salivary glandcarcinomas with epithelial differentiation.Cancer Genet.Cytogenet.156,104-113.
Lemmel C,Weik S,Eberle U,Dengjel J,Kratt T,Becker HD,Rammensee HG,Stevanovic S(2004).Differential quantitative analysis of MHC ligands by massspectrometry using stable isotope labeling.Nat.Biotechnol.22,450-454.
Li H,Guo L,Li J,Liu N,Liu J(2000a).Alternative splicing of RHAMM genein chinese gastric cancers and its in vitro regulation.ZhonghuaYi.Xue.Yi.Chuan Xue.Za Zhi.17,343-347.
Li H,Guo L,Li JW,Liu N,Qi R,Liu J(2000b).Expression of hyaluronanreceptors CD44 and RHAMM in stomach cancers:relevance with tumorprogression.Int J Oncol 17,927-932.
Li HG,Han JJ,Huang ZQ,Wang L,Chen WL,Shen XM(2011).IMP3 is a novelbiomarker to predict metastasis and prognosis of tongue squamous cellcarcinoma.J Craniofac.Surg.22,2022-2025.
Li J,Ying J,Fan Y,Wu L,Ying Y,Chan AT,Srivastava G,Tao Q(2010).WNT5Aantagonizes WNT/beta-catenin signaling and is frequently silenced by promoterCpG methylation in esophageal squamous cell carcinoma.Cancer Biol.Ther.10,617-624.
Li Y,Chu LW,LI Z,Yik PY,Song YQ(2009).A study on the association ofthe chromosome 12p13 locus with sporadic late-onset Alzheimer's disease inChinese.Dement.Geriatr.Cogn Disord.27,508-512.
Liang WJ,Qiu F,Hong MH,Guo L,Qin HD,Liu QC,Zhang XS,Mai HQ,Xiang YQ,Min HQ,Zeng YX(2008).[Differentially expressed genes between upward anddownward progressing types of nasopharyngeal carcinoma].Ai.Zheng.27,460-465.
Liao B,Hu Y,Brewer G(2011).RNA-binding protein insulin-like growthfactor mRNA-binding protein 3(IMP-3)promotes cell survival via insulin-likegrowth factor II signaling after ionizing radiation.J Biol.Chem.286,31145-31152.
Liao B,Hu Y,Herrick DJ,Brewer G(2005).The RNA-binding protein IMP-3is a translational activator of insulin-like growth factor II leader-3 mRNAduring proliferation of human K562 leukemia cells.J Biol.Chem.280,18517-18524.
Lin DM,Ma Y,Xiao T,Guo SP,Han NJ,Su K,Yi SZ,Fang J,Cheng SJ,Gao YN(2006).[TPX2 expression and its significance in squamous cell carcinoma oflung].Zhonghua Bing.Li Xue.Za Zhi.35,540-544.
Litjens SH,de Pereda JM,Sonnenberg A(2006).Current insights into theformation and breakdown of hemidesmosomes.Trends Cell Biol.16,376-383.
Liu J,Yang L,Jin M,Xu L,Wu S(2011a).regulation of the invasion andmetastasis of human glioma cells by polypeptide N-acetylgalactosaminyltransferase 2.Mol.Med.Rep.4,1299-1305.
Liu T,Jin X,Zhang X,Yuan H,Cheng J,Lee J,Zhang B,Zhang M,Wu J,Wang L,Tian G,Wang W(2012).A novel missense SNRNP200 mutation associated withautosomal dominant retinitis pigmentosa in a Chinese family.PLoS.ONE.7,e45464.
Liu W,Morito D,Takashima S,Mineharu Y,Kobayashi H,Hitomi T,HashikataH,Matsuura N,Yamazaki S,Toyoda A,Kikuta K,Takagi Y,Harada KH,Fujiyama A,Herzig R,Krischek B,Zou L,Kim JE,Kitakaze M,Miyamoto S,Nagata K,Hashimoto N,Koizumi A(2011b).Identification of RNF213 as a susceptibility gene formoyamoya disease and its possible role in vascular development.PLoS.ONE.6,e22542.
Lleres D,Denegri M,Biggiogera M,Ajuh P,Lamond AI(2010).Directinteraction between hnRNP-M and CDC5L/PLRG1proteins affects alternativesplice site choice.EMBO Rep.11,445-451.
Lu D,Yang X,Jiang NY,Woda BA,Liu Q,Dresser K,Mercurio AM,Rock KL,Jiang Z(2011).IMP3,a new biomarker to predict progression of cervicalintraepithelial neoplasia into invasive cancer.Am.J Surg.Pathol.35,1638-1645.
Lu Z,Zhou L,Killela P,Rasheed AB,Di C,Poe WE,McLendon RE,Bigner DD,Nicchitta C,Yan H(2009).Glioblastoma proto-oncogene SEC61gamma is requiredfor tumor cell survival and response to endoplasmic reticulum stress.CancerRes.69,9105-9111.
Lugassy C,Torres-Munoz JE,Kleinman HK,Ghanem G,Vernon S,Barnhill RL(2009).Overexpression of malignancy-associated laminins and laminin receptorsby angiotropic human melanoma cells in a chick chorioallantoic membranemodel.J Cutan.Pathol.36,1237-1243.
Ma LJ,Li W,Zhang X,Huang DH,Zhang H,Xiao JY,Tian YQ(2009).Differential gene expression profiling of laryngeal squamous cell carcinomaby laser capture microdissection and complementary DNA microarrays.Arch.MedRes 40,114-123.
Ma TS,Mann DL,Lee JH,Gallinghouse GJ(1999).SR compartment calcium andcell apoptosis in SERCA overexpression.Cell Calcium 26,25-36.
Ma Y,Lin D,Sun W,Xiao T,Yuan J,Han N,Guo S,Feng X,Su K,Mao Y,Cheng S,Gao Y(2006).Expression of targeting protein for xklp2 associated with bothmalignant transformation of respiratory epithelium and progression ofsquamous cell lung cancer.Clin Cancer Res 12,1121-1127.
MacLennan DH,Rice WJ,Green NM(1997).The mechanism of Ca2+transport bysarco(endo)plasmic reticulum Ca2+-ATPases.J Biol.Chem.272,28815-28818.
Maeder C,Kutach AK,Guthrie C(2009).ATP-dependent unwinding of U4/U6snRNAs by the Brr2 helicase requires the C terminus of Prp8.NatStruct.Mol.Biol.16,42-48.
Manda R,Kohno T,Niki T,Yamada T,Takenoshita S,Kuwano H,Yokota J(2000).Differential expression of the LAMB3and LAMC2 genes between small celland non-small cell lung carcinomas.Biochem.Biophys.Res.Commun.275,440-445.Marchand M,Van BN,Weynants P,Brichard V,Dreno B,Tessier MH,Rankin E,Parmiani G,Arienti F,Humblet Y,Bourlond A,Vanwijck R,Lienard D,Beauduin M,Dietrich PY,Russo V,Kerger J,Masucci G,Jager E,De GJ,Atzpodien J,Brasseur F,Coulie PG,van der BP,Boon T(1999).Tumor regressions observed in patients withmetastatic melanoma treated with an antigenic peptide encodedby gene MAGE-3and presented by HLA-A1.Int.J.Cancer 80,219-230.
Marchand M,Weynants P,Rankin E,Arienti F,Belli F,Parmiani G,Cascinelli N,Bourlond A,Vanwijck R,Humblet Y,.(1995).Tumor regressionresponses in melanoma patients treated with a peptide encodedby gene MAGE-3.Int.J Cancer 63,883-885.
Masson NM,Currie IS,Terrace JD,Garden OJ,Parks RW,Ross JA(2006).Hepatic progenitor cells in human fetal liver express the oval cell markerThy-1.Am J Physiol Gastrointest.Liver Physiol 291,G45-G54.
McManus KJ,Barrett IJ,Nouhi Y,Hieter P(2009).Specific syntheticlethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing.Proc.Natl.Acad.Sci.U.S.A 106,3276-3281.
Mercer CA,Kaliappan A,Dennis PB(2009).A novel,human Atg13 bindingprotein,Atg101,interacts with ULK1 and is essential formacroautophagy.Autophagy.5,649-662.
Mestiri S,Bouaouina N,Ahmed SB,Khedhaier A,Jrad BB,Remadi S,ChouchaneL(2001).Genetic variation in the tumor necrosis factor-alpha promoter regionand in the stress protein hsp70-2:susceptibility and prognostic implicationsin breast carcinoma.Cancer 91,672-678.
Meyer EL,Goemann IM,Dora JM,Wagner MS,Maia AL(2008).Type 2iodothyronine deiodinase is highly expressed in medullary thyroidcarcinoma.Mol.Cell Endocrinol.289,16-22.
Miller NH,Justice CM,Marosy B,Swindle K,Kim Y,Roy-Gagnon MH,Sung H,Behneman D,Doheny KF,Pugh E,Wilson AF(2012).Intra-familial tests ofassociation between familial idiopathic scoliosis and linked regions on9q31.3-q34.3 and 16p12.3-q22.2.Hum.Hered.74,36-44.
Milovanovic T,Planutis K,Nguyen A,Marsh JL,Lin F,Hope C,Holcombe RF(2004).Expression of Wnt genes and frizzled 1 and 2 receptors in normalbreast epithelium and infiltrating breast carcinoma.Int.J Oncol 25,1337-1342.
Mochizuki S,Okada Y(2007).ADAMs in cancer cell proliferation andprogression.Cancer Sci.98,621-628.
Morgan RA,Dudley ME,Wunderlich JR,Hughes MS,Yang JC,Sherry RM,RoyalRE,Topalian SL,Kammula US,Restifo NP,Zheng Z,Nahvi A,de Vries CR,Rogers-Freezer LJ,Mavroukakis SA,Rosenberg SA(2006).Cancer Regression in PatientsAfter Transfer of Genetically Engineered Lymphocytes.Science.
Mori M,Beatty PG,Graves M,Boucher KM,Milford EL(1997).HLA gene andhaplotype frequencies in the North American population:the National MarrowDonor Program Donor Registry.Transplantation 64,1017-1027.
Moroy G,Alix AJ,Sapi J,Hornebeck W,Bourguet E(2012).Neutrophilelastase as a target in lung cancer.Anticancer Agents Med.Chem.12,565-579.
Morris MR,Ricketts C,Gentle D,Abdulrahman M,Clarke N,Brown M,KishidaT,Yao M,Latif F,Maher ER(2010).Identification of candidate tumour suppressorgenes frequently methylated in renal cell carcinoma.Oncogene 29,2104-2117.
Moss DK,Wilde A,Lane JD(2009).Dynamic release of nuclear RanGTPtriggers TPX2-dependent microtubule assembly during the apoptotic executionphase.J Cell Sci.122,644-655.
Murakami M,Araki O,Morimura T,Hosoi Y,Mizuma H,Yamada M,Kurihara H,Ishiuchi S,Tamura M,Sasaki T,Mori M(2000).Expression of type II iodothyroninedeiodinase in brain tumors.J Clin Endocrinol.Metab 85,4403-4406.
Nakamura Y,Muguruma Y,Yahata T,Miyatake H,Sakai D,Mochida J,Hotta T,Ando K(2006).Expression of CD90 on keratinocyte stem/progenitor cells.Br.JDermatol.154,1062-1070.
Neidert MC,Schoor O,Trautwein C,Trautwein N,Christ L,Melms A,HoneggerJ,Rammensee HG,Herold-Mende C,Dietrich PY,Stevanovic S(2012).Natural HLAclass I ligands from glioblastoma:extending the options for immunotherapy.JNeurooncol.
Nestle FO,Alijagic S,Gilliet M,Sun Y,Grabbe S,Dummer R,Burg G,Schadendorf D(1998).Vaccination of melanoma patients with peptide-or tumorlysate-pulsed dendritic cells.Nat Med.4,328-332.
Niedergethmann M,Alves F,NeffJK,Heidrich B,Aramin N,Li L,Pilarsky C,Grutzmann R,Allgayer H,Post S,Gretz N(2007).Gene expression profiling ofliver metastases and tumour invasion in pancreatic cancer using an orthotopicSCID mouse model.Br.J Cancer 97,1432-1440.
Nikolova DN,Zembutsu H,Sechanov T,Vidinov K,Kee LS,Ivanova R,BechevaE,Kocova M,Toncheva D,Nakamura Y(2008).Genome-wide gene expression profilesof thyroid carcinoma:Identification of molecular targets for treatment ofthyroid carcinoma.Oncol Rep.20,105-121.
Nirde P,Derocq D,Maynadier M,Chambon M,Basile I,Gary-Bobo M,Garcia M(2010).Heat shock cognate 70 protein secretion as a new growth arrest signalfor cancer cells.Oncogene 29,117-127.
Nishinakamura R,Uchiyama Y,Sakaguchi M,Fujimura S(2011).Nephronprogenitors in the metanephric mesenchyme.Pediatr.Nephrol.26,1463-1467.
Odermatt A,Taschner PE,Khanna VK,Busch HF,Karpati G,Jablecki CK,Breuning MH,MacLennan DH(1996).Mutations in the gene-encoding SERCA1,thefast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ATPase,are associatedwith Brody disease.Nat Genet.14,191-194.
Oh SP,Taylor RW,Gerecke DR,Rochelle JM,Seldin MF,Olsen BR(1992).Themouse alpha 1(XII)and human alpha 1(XII)-like collagen genes are localized onmouse chromosome 9 and human chromosome 6.Genomics 14,225-231.
Ohta S,Koide M,Tokuyama T,Yokota N,Nishizawa S,Namba H(2001).Cdc6expression as a marker of proliferative activity in brain tumors.Oncol Rep.8,1063-1066.
Ortega P,Moran A,Fernandez-Marcelo T,De JC,Frias C,Lopez-Asenjo JA,Sanchez-Pernaute A,Torres A,Diaz-Rubio E,Iniesta P,Benito M(2010).MMP-7 andSGCE as distinctive molecular factors in sporadic colorectal cancers from themutator phenotype pathway.Int.J Oncol 36,1209-1215.
Osborne AR,Rapoport TA,van den Berg B(2005).Protein translocation bythe Sec61/SecY channel.Annu.Rev.Cell Dev.Biol.21,529-550.
Pascolo S,Ginhoux F,Laham N,Walter S,Schoor O,Probst J,Rohrlich P,Obermayr F,Fisch P,Danos O,Ehrlich R,Lemonnier FA,Rammensee HG(2005).The non-classical HLA class I molecule HFE does not influence the NK-like activitycontained in fresh human PBMCs and does not interact with NKcells.Int.Immunol.17,117-122.
Pascreau G,Eckerdt F,Lewellyn AL,Prigent C,Maller JL(2009).Phosphorylation of p53 is regulated by TPX2-Aurora A in xenopus oocytes.JBiol.Chem.284,5497-5505.
Patterson CE,Abrams WR,Wolter NE,Rosenbloom J,Davis EC(2005).Developmental regulation and coordinate reexpression of FKBP65 withextracellular matrix proteins after lung injury suggest a specializedfunction for this endoplasmic reticulum immunophilin.CellStress.Chaperones.10,285-295.
Patterson CE,Schaub T,Coleman EJ,Davis EC(2000).Developmentalregulation of FKBP65.An ER-localized extracellular matrix binding-protein.Mol.Biol.Cell 11,3925-3935.
Peiro G,Diebold J,Baretton GB,Kimmig R,Lohrs U(2001).Cellularapoptosis susceptibility gene expression in endometrial carcinoma:correlationwith Bcl-2,Bax,and caspase-3 expression and outcome.Int.J Gynecol.Pathol.20,359-367.
Peng C,Togayachi A,Kwon YD,Xie C,Wu G,Zou X,Sato T,Ito H,Tachibana K,Kubota T,Noce T,Narimatsu H,Zhang Y(2010).Identification of a novel humanUDP-GalNAc transferase with unique catalytic activity and expression profile.Biochem.Biophys.Res.Commun.402,680-686.
Penning TM,Burczynski ME,Jez JM,Hung CF,Lin HK,Ma H,Moore M,PalackalN,Ratnam K(2000).Human 3alpha-hydroxysteroid dehydrogenase isoforms(AKR1C1-AKR1C4)of the aldo-keto reductase superfamily:functional plasticity andtissue distribution reveals roles in the inactivation and formation of maleand female sex hormones.Biochem.J 351,67-77.
Perrin-Tricaud C,Rutschmann C,Hennet T(2011).Identification ofdomains and amino acids essential to the collagen galactosyltransferaseactivity of GLT25D1.PLoS.ONE.6,e29390.
Pine SR,Mechanic LE,Enewold L,Chaturvedi AK,Katki HA,Zheng YL,BowmanED,Engels EA,Caporaso NE,Harris CC(2011).Increased levels of circulatinginterleukin 6,interleukin 8,C-reactive protein,and risk of lung cancer.JNatl.Cancer Inst.103,1112-1122.
Piskac-Collier AL,Monroy C,Lopez MS,Cortes A,Etzel CJ,Greisinger AJ,Spitz MR,El-Zein RA(2011).Variants in folate pathway genes as modulators ofgenetic instability and lung cancer risk.Genes Chromosomes.Cancer 50,1-12.
Pontisso P,Calabrese F,Benvegnu L,Lise M,Belluco C,Ruvoletto MG,Marino M,Valente M,Nitti D,Gatta A,Fassina G(2004).Overexpression of squamouscell carcinoma antigen variants in hepatocellular carcinoma.Br.J Cancer 90,833-837.
Prades C,Arnould I,Annilo T,Shulenin S,Chen ZQ,Orosco L,Triunfol M,Devaud C,Maintoux-Larois C,Lafargue C,Lemoine C,Denefle P,Rosier M,Dean M(2002).The human ATP binding cassette gene ABCA13,located on chromosome7p12.3,encodes a 5058 amino acid protein with an extracellular domain encodedin part by a 4.8-kb conserved exon.Cytogenet.Genome Res 98,160-168.
Prasad P,Tiwari AK,Kumar KM,Ammini AC,Gupta A,Gupta R,Thelma BK(2010).Association analysis of ADPRT1,AKR1B1,RAGE,GFPT2 and PAI-1 genepolymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes.BMC.Med.Genet.11,52.
Puppin C,Fabbro D,Dima M,Di LC,Puxeddu E,Filetti S,Russo D,Damante G(2008).High periostin expression correlates with aggressiveness in papillarythyroid carcinomas.J Endocrinol.197,401-408.
Purdue MP,Johansson M,Zelenika D,Toro JR,Scelo G,Moore LE,Prokhortchouk E,Wu X,Kiemeney LA,Gaborieau V,Jacobs KB,Chow WH,Zaridze D,Matveev V,Lubinski J,Trubicka J,Szeszenia-Dabrowska N,Lissowska J,Rudnai P,Fabianova E,Bucur A,Bencko V,Foretova L,Janout V,Boffetta P,Colt JS,Davis FG,Schwartz KL,Banks RE,Selby PJ,Harnden P,Berg CD,Hsing AW,Grubb RL,III,BoeingH,Vineis P,Clavel-Chapelon F,Palli D,Tumino R,Krogh V,Panico S,Duell EJ,Quiros JR,Sanchez MJ,Navarro C,Ardanaz E,Dorronsoro M,Khaw KT,Allen NE,Bueno-de-Mesquita HB,Peeters PH,Trichopoulos D,Linseisen J,Ljungberg B,Overvad K,Tjonneland A,Romieu I,Riboli E,Mukeria A,Shangina O,Stevens VL,Thun MJ,DiverWR,Gapstur SM,Pharoah PD,Easton DF,Albanes D,Weinstein SJ,Virtamo J,Vatten L,Hveem K,Njolstad I,Tell GS,Stoltenberg C,Kumar R,Koppova K,Cussenot O,Benhamou S,Oosterwijk E,Vermeulen SH,Aben KK,van der Marel SL,Ye Y,Wood CG,PuX,Mazur AM,Boulygina ES,Chekanov NN,Foglio M,Lechner D,Gut I,Heath S,BlancheH,Hutchinson A,Thomas G,Wang Z,Yeager M,Fraumeni JF,Jr.,Skryabin KG,McKay JD,Rothman N,Chanock SJ,Lathrop M,Brennan P(2011).Genome-wide association studyofrenal cell carcinoma identifies two susceptibility loci on 2p21 and11q13.3.Nat Genet.43,60-65.
Puyol M,Martin A,Dubus P,Mulero F,Pizcueta P,Khan G,Guerra C,Santamaria D,Barbacid M(2010).A synthetic lethal interaction between K-Rasoncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lungcarcinoma.Cancer Cell 18,63-73.
Qu P,Du H,Wang X,Yan C(2009).Matrix metalloproteinase 12overexpression in lung epithelial cells plays a key role in emphysema to lungbronchioalveolar adenocarcinoma transition.Cancer Res 69,7252-7261.
Ramakrishna M,Williams LH,Boyle SE,Bearfoot JL,Sridhar A,Speed TP,Gorringe KL,Campbell IG(2010).Identification of candidate growth promotinggenes in ovarian cancer through integrated copy number and expressionanalysis.PLoS.ONE.5,e9983.
Rammensee HG,Bachmann J,Emmerich NP,Bachor OA,Stevanovic S(1999).SYFPEITHI:database for MHC ligands and peptide motifs.Immunogenetics 50,213-219.
Rammensee HG,Bachmann J,Stevanovic S(1997).MHC Ligands and PeptideMotifs.(Heidelberg,Germany:Springer-Verlag).
Rao B,Gao Y,Huang J,Gao X,Fu X,Huang M,Yao J,Wang J,Li W,Zhang J,LiuH,Wang L,Wang J(2011).Mutations of p53 and K-ras correlate TF expression inhuman colorectal carcinomas:TF downregulation as a marker of poorprognosis.Int.J Colorectal Dis.26,593-601.
Rappsilber J,Ryder U,Lamond AI,Mann M(2002).Large-scale proteomicanalysis of the human spliceosome.Genome Res.12,1231-1245.
Rauch J,O'Neill E,Mack B,Matthias C,Munz M,Kolch W,Gires O(2010).Heterogeneous nuclear ribonucleoprotein H blocks MST2-mediated apoptosis incancer cells by regulating A-Raf transcription.Cancer Res.70,1679-1688.
Rege TA,Hagood JS(2006a).Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration,apoptosis,adhesion,migration,cancer,and fibrosis.FASEB J 20,1045-1054.
Rege TA,Hagood JS(2006b).Thy-1,a versatile modulator of signalingaffecting cellular adhesion,proliferation,survival,and cytokine/growth factorresponses.Biochim.Biophys.Acta 1763,991-999.
Rettig WJ,Garin-Chesa P,Healey JH,Su SL,Ozer HL,Schwab M,Albino AP,Old LJ(1993).Regulation and heteromeric structure of the fibroblastactivation protein in normal and transformed cells of mesenchymal andneuroectodermal origin.Cancer Res 53,3327-3335.
Rettig WJ,Su SL,Fortunato SR,Scanlan MJ,Raj BK,Garin-Chesa P,HealeyJH,Old LJ(1994).Fibroblast activation protein:purification,epitope mappingand induction by growth factors.Int J Cancer 58,385-392.
Rini BI,Weinberg V,Fong L,Conry S,Hershberg RM,Small EJ(2006).Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells(provenge)plus bevacizumab in patients with serologicprogression of prostate cancer after definitive local therapy.Cancer 107,67-74.
Ripka S,Konig A,Buchholz M,Wagner M,Sipos B,Kloppel G,Downward J,Gress T,Michl P(2007).WNT5A--target of CUTL1 and potent modulator of tumorcell migration and invasion in pancreatic cancer.Carcinogenesis 28,1178-1187.
Rivera VT,Boudoukha S,Simon A,Souidi M,Cuvellier S,Pinna G,PolesskayaA(2013).Post-transcriptional regulation of cyclins D1,D3 and G1 andproliferation of human cancer cells depend on IMP-3 nuclearlocalization.Oncogene.
Rodningen OK,Borresen-Dale AL,Alsner J,Hastie T,Overgaard J(2008).Radiation-induced gene expression in human subcutaneous fibroblasts ispredictive of radiation-induced fibrosis.Radiother.Oncol 86,314-320.
Rodriguez CI,Stewart CL(2007).Disruption of the ubiquitin ligaseHERC4 causes defects in spermatozoon maturation and impairedfertility.Dev.Biol.312,501-508.
Roemer A,Schwettmann L,Jung M,Roigas J,Kristiansen G,Schnorr D,Loening SA,Jung K,Lichtinghagen R(2004a).Increased mRNA expression of ADAMsin renal cell carcinoma and their association with clinical outcome.OncolRep.11,529-536.
Roemer A,Schwettmann L,Jung M,Stephan C,Roigas J,Kristiansen G,Loening SA,Lichtinghagen R,Jung K(2004b).The membrane proteases adams andhepsin are differentially expressed in renal cell carcinoma.Are theypotential tumor markers?J Urol.172,2162-2166.
Rohde M,Daugaard M,Jensen MH,Helin K,Nylandsted J,Jaattela M(2005).Members of the heat-shock protein 70 family promote cancer cell growth bydistinct mechanisms.Genes Dev.19,570-582.
Romagnoli S,Fasoli E,Vaira V,Falleni M,Pellegrini C,Catania A,Roncalli M,Marchetti A,Santambrogio L,Coggi G,Bosari S(2009).Identificationof potential therapeutic targets in malignant mesothelioma using cell-cyclegene expression analysis.Am J Pathol.174,762-770.
Romero-Weaver AL,Wang HW,Steen HC,Scarzello AJ,Hall VL,Sheikh F,Donnelly RP,Gamero AM(2010).Resistance to IFN-alpha-induced apoptosis islinked to a loss of STAT2.Mol.Cancer Res.8,80-92.
Rosenberg SA,Lotze MT,Muul LM,Chang AE,Avis FP,Leitman S,Linehan WM,Robertson CN,Lee RE,Rubin JT,.(1987).A progress report on the treatment of157 patients with advanced cancer using lymphokine-activated killer cells andinterleukin-2 or high-dose interleukin-2 alone.N.Engl.J.Med.316,889-897.
Rosenberg SA,Packard BS,Aebersold PM,Solomon D,Topalian SL,Toy ST,Simon P,Lotze MT,Yang JC,Seipp CA,.(1988).Use of tumor-infiltratinglymphocytes and interleukin-2 in the immunotherapy of patients withmetastatic melanoma.Apreliminary report.N.Engl.J Med 319,1676-1680.
Ruan K,Bao S,Ouyang G(2009).The multifaceted role of periostin intumorigenesis.Cell Mol.Life Sci.66,2219-2230.
Ruiz dA,I,Scarselli M,Rosemond E,Gautam D,Jou W,Gavrilova O,Ebert PJ,Levitt P,Wess J(2010).RGS4 is a negative regulator of insulin release frompancreatic beta-cells in vitro and in vivo.Proc Natl.Acad.Sci.U.S.A 107,7999-8004.
Rusin M,Zientek H,Krzesniak M,Malusecka E,Zborek A,Krzyzowska-GrucaS,Butkiewicz D,Vaitiekunaite R,Lisowska K,Grzybowska E,Krawczyk Z(2004).Intronic polymorphism(1541-1542delGT)of the constitutive heat shock protein70 gene has functional significance and shows evidence of association withlung cancer risk.Mol.Carcinog.39,155-163.
Sagara N,Toda G,Hirai M,Terada M,Katoh M(1998).Molecular cloning,differential expression,and chromosomal localization of human frizzled-1,frizzled-2,and frizzled-7.Biochem.Biophys.Res.Commun.252,117-122.
Saiki RK,Gelfand DH,Stoffel S,Scharf SJ,Higuchi R,Horn GT,Mullis KB,Erlich HA(1988).Primer-directed enzymatic amplification of DNA with athermostable DNA polymerase.Science 239,487-491.
Sakuntabhai A,Ruiz-Perez V,Carter S,Jacobsen N,Burge S,Monk S,SmithM,Munro CS,O'Donovan M,Craddock N,Kucherlapati R,Rees JL,Owen M,Lathrop GM,Monaco AP,Strachan T,Hovnanian A(1999).Mutations in ATP2A2,encoding a Ca2+pump,cause Darier disease.Nat Genet.21,271-277.
Samanta S,Sharma VM,Khan A,Mercurio AM(2012).Regulation of IMP3 byEGFR signaling and repression by ERbeta:implications for triple-negativebreast cancer.Oncogene 31,4689-4697.
Sang QX(1998).Complex role of matrix metalloproteinases inangiogenesis.Cell Res 8,171-177.
Sarai N,Kagawa W,Fujikawa N,Saito K,Hikiba J,Tanaka K,Miyagawa K,Kurumizaka H,Yokoyama S(2008).Biochemical analysis of the N-terminal domainof human RAD54B.Nucleic Acids Res.36,5441-5450.
Satow R,Shitashige M,Kanai Y,Takeshita F,Ojima H,Jigami T,Honda K,Kosuge T,Ochiya T,Hirohashi S,Yamada T(2010).Combined functional genomesurvey of therapeutic targets for hepatocellular carcinoma.Clin Cancer Res16,2518-2528.
Scanlan MJ,Raj BK,Calvo B,Garin-Chesa P,Sanz-Moncasi MP,Healey JH,OldLJ,Rettig WJ(1994).Molecular cloning of fibroblast activation protein alpha,amember of the serine protease family selectively expressed in stromalfibroblasts of epithelial cancers.Proc Natl.Acad.Sci.U.S.A 91,5657-5661.
Schafer R,Sedehizade F,Welte T,Reiser G(2003).ATP-and UTP-activatedP2Y receptors differently regulate proliferation of human lung epithelialtumor cells.Am.J Physiol Lung Cell Mol.Physiol 285,L376-L385.
Schegg B,Hulsmeier AJ,Rutschmann C,Maag C,Hennet T(2009).Coreglycosylation of collagen is initiated by two beta(1-O)galactosyltransferases.Mol.Cell Biol.29,943-952.
Schuetz CS,Bonin M,Clare SE,Nieselt K,Sotlar K,Walter M,Fehm T,Solomayer E,Riess O,Wallwiener D,Kurek R,Neubauer HJ(2006).Progression-specific genes identified by expression profiling of matched ductalcarcinomas in situ and invasive breast tumors,combining laser capturemicrodissection and oligonucleotide microarray analysis.Cancer Res 66,5278-5286.
Scieglinska D,Piglowski W,Mazurek A,Malusecka E,Zebracka J,FilipczakP,Krawczyk Z(2008).The HspA2 protein localizes in nucleoli and centrosomes ofheat shocked cancer cells.J Cell Biochem.104,2193-2206.
Seifert W,Kuhnisch J,Maritzen T,Horn D,Haucke V,Hennies HC(2011).Cohen syndrome-associated protein,COH1,is a novel,giant Golgi matrix proteinrequired for Golgi integrity.J Biol.Chem.286,37665-37675.
Shaulian E(2010).AP-1--The Jun proteins:Oncogenes or tumorsuppressors in disguise?Cell Signal.22,894-899.
Shaulian E,Karin M(2002).AP-1 as a regulator of cell life anddeath.Nat Cell Biol.4,E131-E136.
Sherman-Baust CA,Weeraratna AT,Rangel LB,Pizer ES,Cho KR,Schwartz DR,Shock T,Morin PJ(2003).Remodeling of the extracellular matrix throughoverexpression of collagen VI contributes to cisplatin resistance in ovariancancer cells.Cancer Cell 3,377-386.
Shigeishi H,Fujimoto S,Hiraoka M,Ono S,Taki M,Ohta K,Higashikawa K,Kamata N(2009).Overexpression of the receptor for hyaluronan-mediatedmotility,correlates with expression of microtubule-associated protein inhuman oral squamous cell carcinomas.Int J Oncol 34,1565-1571.
Shimbo T,Tanemura A,Yamazaki T,Tamai K,Katayama I,Kaneda Y(2010).Serum anti-BPAG1 auto-antibody is a novel marker for humanmelanoma.PLoS.ONE.5,e10566.
Shyian M,Gryshkova V,Kostianets O,Gorshkov V,Gogolev Y,Goncharuk I,Nespryadko S,Vorobjova L,Filonenko V,Kiyamova R(2011).Quantitative analysisof SLC34A2 expression in different types of ovarian tumors.Exp.Oncol 33,94-98.
Siddiqui N,Borden KL(2012).mRNA export and cancer.Wiley.Interdiscip.Rev.RNA.3,13-25.
Simpson NE,Tryndyak VP,Beland FA,Pogribny IP(2012).An in vitroinvestigation of metabolically sensitive biomarkers in breast cancerprogression.Breast Cancer Res.Treat.133,959-968.
Singh-Jasuja H,Emmerich NP,Rammensee HG(2004).The Tubingen approach:identification,selection,and validation of tumor-associated HLApeptides forcancer therapy.Cancer Immunol.Immunother.53,187-195.
Siow DL,Wattenberg BW(2012).Mammalian ORMDL proteins mediate thefeedback response in ceramide biosynthesis.J Biol.Chem.287,40198-40204.
Slack FJ,Weidhaas JB(2008).MicroRNA in cancer prognosis.N.Engl.JMed.359,2720-2722.
Small EJ,Schellhammer PF,Higano CS,Redfern CH,Nemunaitis JJ,ValoneFH,Verjee SS,Jones LA,Hershberg RM(2006).Placebo-controlled phase III trialof immunologic therapy with sipuleucel-T(APC8015)in patients with metastatic,asymptomatic hormone refractory prostate cancer.J Clin Oncol.24,3089-3094.
Smith MJ,Culhane AC,Donovan M,Coffey JC,Barry BD,Kelly MA,Higgins DG,Wang JH,Kirwan WO,Cotter TG,Redmond HP(2009a).Analysis of differential geneexpression in colorectal cancer and stroma using fluorescence-activated cellsorting purification.Br.J Cancer 100,1452-1464.
Smith SC,Nicholson B,Nitz M,Frierson HF,Jr.,Smolkin M,Hampton G,El-Rifai W,Theodorescu D(2009b).Profiling bladder cancer organ site-specificmetastasis identifies LAMC2 as a novel biomarker of hematogenousdissemination.Am J Pathol.174,371-379.
Sohr S,Engeland K(2008).RHAMM is differentially expressed in the cellcycle and downregulated by the tumor suppressor p53.Cell Cycle 7,3448-3460.
Somers GR,Bradbury R,Trute L,Conigrave A,Venter DJ(1999).Expressionof the human P2Y6 nucleotide receptor in normal placenta and gestationaltrophoblastic disease.Lab Invest 79,131-139.
Srougi MC,Burridge K(2011).The nuclear guanine nucleotide exchangefactors Ect2 and Net1 regulate RhoB-mediated cell death after DNAdamage.PLoS.ONE.6,e17108.
Staehler M,Stenzl A,Dietrich PY,Eisen T,Haferkamp A,Beck J,Mayer A,Walter S,Singh-Jasuja H,Stief C(2007).A phase I study to evaluate safety,immunogenicity and anti-tumor activity of the multi-peptide vaccine IMA901 inrenal cell carcinoma patients(RCC).Journal of Clinical Oncology,2007 ASCOAnnual Meeting Proceedings Part I,Vol 25,No.18S(June 20 Supplement),2007:5098(Abstract).
Starzyk RM,Rosenow C,Frye J,Leismann M,Rodzinski E,Putney S,TuomanenEI(2000).Cerebral cell adhesion molecule:a novel leukocyte adhesiondeterminant on blood-brain barrier capillary endothelium.J Infect.Dis.181,181-187.
Steckelbroeck S,Jin Y,Gopishetty S,Oyesanmi B,Penning TM(2004).Humancytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductasesuperfamily display significant 3beta-hydroxysteroid dehydrogenase activity:implications for steroid hormone metabolism and action.J Biol.Chem.279,10784-10795.
Stewart DJ(2010).Tumor and host factors that may limit efficacy ofchemotherapy in non-small cell and small cell lung cancer.Crit Rev.OncolHematol.75,173-234.
Stuart JE,Lusis EA,Scheck AC,Coons SW,Lal A,Perry A,Gutmann DH(2010).Identification of Gene Markers Associated With Aggressive Meningioma byFiltering Across Multiple Sets of Gene Expression Arrays.JNeuropathol.Exp.Neurol.
Suminami Y,Kishi F,Sekiguchi K,Kato H(1991).Squamous cell carcinomaantigen is a new member of the serine protease inhibitors.Biochem.Biophys.Res.Commun.181,51-58.
Sunaga N,Imai H,Shimizu K,Shames DS,Kakegawa S,Girard L,Sato M,KairaK,Ishizuka T,Gazdar AF,Minna JD,Mori M(2012).Oncogenic KRAS-inducedinterleukin-8 overexpression promotes cell growth and migration andcontributes to aggressive phenotypes of non-small cell lung cancer.Int.JCancer 130,1733-1744.
Sutherlin ME,Nishimori I,Caffrey T,Bennett EP,Hassan H,Mandel U,MackD,Iwamura T,Clausen H,Hollingsworth MA(1997).Expression of three UDP-N-acetyl-alpha-D-galactosamine:polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines.Cancer Res.57,4744-4748.
Suvasini R,Shruti B,Thota B,Shinde SV,Friedmann-Morvinski D,Nawaz Z,Prasanna KV,Thennarasu K,Hegde AS,Arivazhagan A,Chandramouli BA,Santosh V,Somasundaram K(2011).Insulin growth factor-2 binding protein 3(IGF2BP3)is aglioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase(PI3K/MAPK)pathways by modulating IGF-2.JBiol.Chem.286,25882-25890.
Tai CJ,Shen SC,Lee WR,Liao CF,Deng WP,Chiou HY,Hsieh CI,Tung JN,ChenCS,Chiou JF,Li LT,Lin CY,Hsu CH,Jiang MC(2010).Increased cellular apoptosissusceptibility(CSE1L/CAS)protein expression promotes protrusion extension andenhances migration of MCF-7 breast cancer cells.Exp.Cell Res.316,2969-2981.
Takanami I,Abiko T,Koizumi S(2008).Expression of periostin inpatients with non-small cell lung cancer:correlation with angiogenesis andlymphangiogenesis.Int J Biol.Markers 23,182-186.
Tanaka S,Akiyoshi T,Mori M,Wands JR,Sugimachi K(1998).A novelfrizzled gene identified in human esophageal carcinoma mediates APC/beta-catenin signals.Proc.Natl.Acad.Sci.U.S.A 95,10164-10169.
Tanaka T,Ohkubo S,Tatsuno I,Prives C(2007).hCAS/CSE1L associates withchromatin and regulates expression of select p53 target genes.Cell 130,638-650.
Terabayashi T,Sakaguchi M,Shinmyozu K,Ohshima T,Johjima A,Ogura T,Miki H,Nishinakamura R(2012).Phosphorylation of Kif26b promotes itspolyubiquitination and subsequent proteasomal degradation during kidneydevelopment.PLoS.ONE.7,e39714.
Terry KL,Vitonis AF,Hernandez D,Lurie G,Song H,Ramus SJ,Titus-Ernstoff L,Carney ME,Wilkens LR,Gentry-Maharaj A,Menon U,Gayther SA,PharaohPD,Goodman MT,Cramer DW,Birrer MJ(2010).A polymorphism in the GALNT2 gene andovarian cancer risk in four population based case-control studies.Int.JMol.Epidemiol.Genet.1,272-277.
Thierry L,Geiser AS,Hansen A,Tesche F,Herken R,Miosge N(2004).Collagen types XII and XIV are present in basement membrane zones duringhuman embryonic development.J Mol.Histol.35,803-810.
Thorsen K,Sorensen KD,Brems-Eskildsen AS,Modin C,Gaustadnes M,HeinAM,Kruhoffer M,Laurberg S,Borre M,Wang K,Brunak S,Krainer AR,Torring N,Dyrskjot L,Andersen CL,ORntoft TF(2008).Alternative splicing in colon,bladder,andprostate cancer identified by exon array analysis.Mol.CellProteomics.7,1214-1224.
Thurner B,Haendle I,Roder C,Dieckmann D,Keikavoussi P,Jonuleit H,Bender A,Maczek C,Schreiner D,von den DP,Brocker EB,Steinman RM,Enk A,KampgenE,Schuler G(1999).Vaccination with mage-3A1 peptide-pulsed mature,monocyte-derived dendritic cells expands specific cytotoxic T cells and inducesregression of some metastases in advanced stage IV melanoma.J Exp.Med 190,1669-1678.
Timar J,Kasler M,Katai J,Soos M,Mathiasz D,Romany A,Patthy L,KovacsG,Jozsa A,Szilak L,Forrai T(2006).[Developments in cancer management byinnovative genomics.2006 report of the National Cancer Consortium].Magy.Onkol.50,349-359.
Tischler V,Fritzsche FR,Wild PJ,Stefan C,Seifert HH,Riener MO,Hermanns T,Mortezavi A,Gerhardt J,Schraml P,Jung K,Moch H,Soltermann A,Kristiansen G(2010).Periostin is up-regulated in high grade and high stageprostate cancer.BMC.Cancer 10,273.
Tompkins DH,Besnard V,Lange AW,Keiser AR,Wert SE,Bruno MD,Whitsett JA(2011).Sox2 activates cell proliferation and differentiation in therespiratory epithelium.Am J Respir.Cell Mol.Biol.45,101-110.
Tondreau T,Dejeneffe M,Meuleman N,Stamatopoulos B,Delforge A,MartiatP,Bron D,Lagneaux L(2008).Gene expression pattern of functional neuronalcells derived from human bone marrow mesenchymal stromal cells.BMC.Genomics9,166.
Tong L,Harwood HJ,Jr.(2006).Acetyl-coenzyme A carboxylases:versatiletargets for drug discovery.J Cell Biochem.99,1476-1488.
Tong WG,Wierda WG,Lin E,Kuang SQ,Bekele BN,Estrov Z,Wei Y,Yang H,Keating MJ,Garcia-Manero G(2010).Genome-wide DNA methylation profiling ofchronic lymphocytic leukemia allows identification of epigeneticallyrepressed molecular pathways with clinical impact.Epigenetics.5,499-508.
Torre GC(1998).SCC antigen in malignant and nonmalignant squamouslesions.Tumour.Biol.19,517-526.
Tritz R,Hickey MJ,Lin AH,Hadwiger P,Sah DW,Neuwelt EA,Mueller BM,Kruse CA(2009).FAPP2 gene downregulation increases tumor cell sensitivity toFas-induced apoptosis.Biochem.Biophys.Res.Commun.383,167-171.
Tsai JR,Chong IW,Chen YH,Yang MJ,Sheu CC,Chang HC,Hwang JJ,Hung JY,Lin SR(2007).Differential expression profile of MAGE family in non-small-celllung cancer.Lung Cancer 56,185-192.
Tseng H(1998).Basonuclin,a zinc finger protein associated withepithelial expansion and proliferation.Front Biosci.3,D985-D988.
Tseng H,Biegel JA,Brown RS(1999).Basonuclin is associated with theribosomal RNA genes on human keratinocyte mitotic chromosomes.J Cell Sci.112Pt 18,3039-3047.
Tseng H,Green H(1994).Association of basonuclin with ability ofkeratinocytes to multiply and with absence of terminal differentiation.J CellBiol.126,495-506.
Tsuji A,Kikuchi Y,Sato Y,Koide S,Yuasa K,Nagahama M,Matsuda Y(2006).Aproteomic approach reveals transient association of reticulocalbin-3,a novelmember of the CREC family,with the precursor of subtilisin-like proproteinconvertase,PACE4.Biochem.J 396,51-59.
Tsukamoto Y,Uchida T,Karnan S,Noguchi T,Nguyen LT,Tanigawa M,TakeuchiI,Matsuura K,Hijiya N,Nakada C,Kishida T,Kawahara K,Ito H,Murakami K,FujiokaT,Seto M,Moriyama M(2008).Genome-wide analysis of DNA copy number alterationsand gene expression in gastric cancer.J Pathol.216,471-482.
Twarock S,Tammi MI,Savani RC,Fischer JW(2010).Hyaluronan stabilizesfocal adhesions,filopodia,and the proliferative phenotype in esophagealsquamous carcinoma cells.J Biol.Chem.285,23276-23284.
Twells RC,Metzker ML,Brown SD,Cox R,Garey C,Hammond H,Hey PJ,Levy E,Nakagawa Y,Philips MS,Todd JA,Hess JF(2001).The sequence and genecharacterization of a 400-kb candidate region for IDDM4 on chromosome11q13.Genomics 72,231-242.
Tzankov A,Strasser U,Dirnhofer S,Menter T,Arber C,Jotterand M,Rovo A,Tichelli A,Stauder R,Gunthert U(2011).In situ RHAMM protein expression inacute myeloid leukemia blasts suggests poor overall survival.Ann Hematol.
Uchiyama Y,Sakaguchi M,Terabayashi T,Inenaga T,Inoue S,Kobayashi C,Oshima N,Kiyonari H,Nakagata N,Sato Y,Sekiguchi K,Miki H,Araki E,Fujimura S,Tanaka SS,Nishinakamura R(2010).Kif26b,a kinesin family gene,regulatesadhesion of the embryonic kidney mesenchyme.Proc.Natl.Acad.Sci.U.S.A 107,9240-9245.
Ullman E,Pan JA,Zong WX(2011).Squamous cell carcinoma antigen 1promotes caspase-8-mediated apoptosis in response to endoplasmic reticulumstress while inhibiting necrosis induced by lysosomal injury.Mol.CellBiol.31,2902-2919.
Utispan K,Thuwajit P,Abiko Y,Charngkaew K,Paupairoj A,Chau-in S,Thuwajit C(2010).Gene expression profiling of cholangiocarcinoma-derivedfibroblast reveals alterations related to tumor progression and indicatesperiostin as a poor prognostic marker.Mol.Cancer 9,13.
van AM,Schepens M,de BD,Janssen B,Merkx G,Geurts van KA(2000).Construction of a 350-kb sequence-ready 11q13 cosmid contig encompassing themarkers D11S4933 and D11S546:mapping of 11 genes and 3 tumor-associatedtranslocation breakpoints.Genomics 66,35-42.
Vargas-Roig LM,Gago FE,Tello O,Aznar JC,Ciocca DR(1998).Heat shockprotein expression and drug resistance in breast cancer patients treated withinduction chemotherapy.Int.J Cancer 79,468-475.
Vazquez-Ortiz G,Pina-Sanchez P,Vazquez K,Duenas A,Taja L,Mendoza P,Garcia JA,Salcedo M(2005).Overexpression of cathepsin F,matrixmetalloproteinases 11 and 12 in cervical cancer.BMC.Cancer 5,68.
Wahl MC,Will CL,Luhrmann R(2009).The spliceosome:design principles ofa dynamic RNP machine.Cell 136,701-718.Walchli C,Koch M,Chiquet M,OdermattBF,Trueb B(1994).Tissue-specific expression of the fibril-associatedcollagens XII and XIV.J Cell Sci.107(Pt 2),669-681.
Wallace AM,Sandford AJ,English JC,Burkett KM,Li H,Finley RJ,MullerNL,Coxson HO,Pare PD,Abboud RT(2008).Matrix metalloproteinase expression byhuman alveolar macrophages in relation to emphysema.COPD.5,13-23.
Walter S,Herrgen L,Schoor O,Jung G,Wernet D,Buhring HJ,Rammensee HG,Stevanovic S(2003).Cutting edge:predetermined avidity of human CD8 T cellsexpanded on calibrated MHC/anti-CD28-coated microspheres.J.Immunol.171,4974-4978.
Wang C,Rajput S,Watabe K,Liao DF,Cao D(2010a).Acetyl-CoA carboxylase-a as a novel target for cancer therapy.Front Biosci.(Schol.Ed)2,515-526.
Wang C,Xu C,Sun M,Luo D,Liao DF,Cao D(2009a).Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis.Biochem.Biophys.Res.Commun.385,302-306.
Wang HW,Lin CP,Chiu JH,Chow KC,Kuo KT,Lin CS,Wang LS(2007).Reversalof inflammation-associated dihydrodiol dehydrogenases(AKR1C1 and AKR1C2)overexpression and drug resistance in nonsmall cell lung cancer cells bywogonin and chrysin.Int.J Cancer 120,2019-2027.
Wang J,Tsui HW,Beier F,Pritzker KP,Inman RD,Tsui FW(2008a).The ANKHDeltaE490Mutation in Calcium Pyrophosphate Dihydrate Crystal DepositionDisease(CPPDD)affects tissue non-specific Alkaline Phosphatase(TNAP)activities.Open Rheumatol.J 2,23-30.
Wang KK,Liu N,Radulovich N,Wigle DA,Johnston MR,Shepherd FA,MindenMD,Tsao MS(2002).Novel candidate tumor marker genes for lungadenocarcinoma.Oncogene 21,7598-7604.
Wang Q,Traynor JR(2011).Opioid-induced down-regulation of RGS4:roleof ubiquitination and implications for receptor cross-talk.J Biol.Chem.286,7854-7864.
Wang SZ,Luo XG,Shen J,Zou JN,Lu YH,Xi T(2008b).Knockdown of SMYD3 byRNA interference inhibits cervical carcinoma cell growth and invasion invitro.BMB.Rep.41,294-299.
Wang WX,Zhang WJ,Peng ZL,Yang KX(2009b).[Expression and clinicalsignificance of CDC6 and hMSH2 in cervical carcinoma].Sichuan.Da.Xue.Xue.Bao.Yi.Xue.Ban.40,857-860.
Wang Y,Zhou F,Wu Y,Xu D,Li W,Liang S(2010b).The relationship betweenthree heat shock protein 70 gene polymorphisms and susceptibility to lungcancer.Clin Chem.Lab Med.48,1657-1663.
Warner SL,Stephens BJ,Nwokenkwo S,Hostetter G,Sugeng A,Hidalgo M,Trent JM,Han H,Von Hoff DD(2009).Validation of TPX2 as a potentialtherapeutic target in pancreatic cancer cells.Clin Cancer Res 15,6519-6528.
Watanabe M,Takemasa I,Kawaguchi N,Miyake M,Nishimura N,Matsubara T,Matsuo E,Sekimoto M,Nagai K,Matsuura N,Monden M,Nishimura O(2008).Anapplication of the 2-nitrobenzenesulfenyl method to proteomic profiling ofhuman colorectal carcinoma:A novel approach for biomarkerdiscovery.Proteomics.Clin Appl.2,925-935.
Watanabe T,Kobunai T,Yamamoto Y,Ikeuchi H,Matsuda K,Ishihara S,NozawaK,Iinuma H,Kanazawa T,Tanaka T,Yokoyama T,Konishi T,Eshima K,Ajioka Y,Hibi T,Watanabe M,Muto T,Nagawa H(2011).Predicting ulcerative colitis-associatedcolorectal cancer using reverse-transcription polymerase chain reactionanalysis.Clin Colorectal Cancer 10,134-141.
Watrin E,Legagneux V(2005).Contribution of hCAP-D2,a non-SMC subunitof condensin I,to chromosome and chromosomal protein dynamics duringmitosis.Mol.Cell Biol.25,740-750.
Watt SL,Lunstrum GP,McDonough AM,Keene DR,Burgeson RE,Morris NP(1992).Characterization of collagen types XII and XIV from fetal bovinecartilage.J Biol.Chem.267,20093-20099.
Wawrzynska L,Sakowicz A,Rudzinski P,Langfort R,Kurzyna M(2003).Theconversion of thyroxine to triiodothyronine in the lung:comparison ofactivity of type I iodothyronine 5'deiodinase in lung cancer with peripherallung tissues.Monaldi Arch.Chest Dis.59,140-145.
Weeraratna AT,Jiang Y,Hostetter G,Rosenblatt K,Duray P,Bittner M,Trent JM(2002).Wnt5a signaling directly affects cell motility and invasion ofmetastatic melanoma.Cancer Cell 1,279-288.
Weiner L,Green H(1998).Basonuclin as a cell marker in the formationand cycling of the murine hair follicle.Differentiation 63,263-272.
Weinschenk T,Gouttefangeas C,Schirle M,Obermayr F,Walter S,Schoor O,Kurek R,Loeser W,Bichler KH,Wernet D,Stevanovic S,Rammensee HG(2002).Integrated functional genomics approach for the design of patient-individualantitumor vaccines.Cancer Res.62,5818-5827.
Wickramasinghe VO,Stewart M,Laskey RA(2010).GANP enhances theefficiency of mRNA nuclear export in mammalian cells.Nucleus.1,393-396.
Wildeboer D,Naus S,my Sang QX,Bartsch JW,Pagenstecher A(2006).Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated inhuman primary brain tumors and their expression levels and activities areassociated with invasiveness.J Neuropathol.Exp.Neurol.65,516-527.
Willer CJ,Sanna S,Jackson AU,Scuteri A,Bonnycastle LL,Clarke R,HeathSC,Timpson NJ,Najjar SS,Stringham HM,Strait J,Duren WL,Maschio A,Busonero F,Mulas A,Albai G,Swift AJ,Morken MA,Narisu N,Bennett D,Parish S,Shen H,GalanP,Meneton P,Hercberg S,Zelenika D,Chen WM,Li Y,Scott LJ,Scheet PA,Sundvall J,Watanabe RM,Nagaraja R,Ebrahim S,Lawlor DA,Ben-Shlomo Y,Davey-Smith G,Shuldiner AR,Collins R,Bergman RN,Uda M,Tuomilehto J,Cao A,Collins FS,LakattaE,Lathrop GM,Boehnke M,Schlessinger D,Mohlke KL,Abecasis GR(2008).Newlyidentified loci that influence lipid concentrations and risk of coronaryartery disease.Nat Genet.40,161-169.
Winkler GS,Mulder KW,Bardwell VJ,Kalkhoven E,Timmers HT(2006).HumanCcr4-Not complex is a ligand-dependent repressor of nuclear receptor-mediatedtranscription.EMBO J 25,3089-3099.
Wong CH,Chan H,Ho CY,Lai SK,Chan KS,Koh CG,Li HY(2009).Apoptotichistone modification inhibits nuclear transport by regulating RCC1.Nat CellBiol.11,36-45.
Wu A,Wu B,Guo J,Luo W,Wu D,Yang H,Zhen Y,Yu X,Wang H,Zhou Y,Liu Z,Fang W,Yang Z(2011a).Elevated expression of CDK4 in lung cancer.JTransl.Med.9,38.
Wu GC,Hu HC,Shi MH(2008).[Expression and clinical significance of adisintegrin and metalloprotease 8(ADAM8)and epidermal growth factor receptor(EGFR)in non-small cell lung cancer].Ai.Zheng.27,874-878.
Wu H,Xu H,Miraglia LJ,Crooke ST(2000).Human RNase III is a 160-kDaprotein involved in preribosomal RNA processing.J Biol.Chem.275,36957-36965.
Wu KD,Lee WS,Wey J,Bungard D,Lytton J(1995).Localization andquantification of endoplasmic reticulum Ca(2+)-ATPase isoformtranscripts.Am.J Physiol 269,C775-C784.
Wu SQ,Lv YE,Lin BH,Luo LM,Lv SL,Bi AH,Jia YS(2013).Silencing ofperiostin inhibits nicotine-mediated tumor cell growth and epithelial-mesenchymal transition in lung cancer cells.Mol.Med.Rep.7,875-880.
Wu YM,Liu CH,Hu RH,Huang MJ,Lee JJ,Chen CH,Huang J,Lai HS,Lee PH,HsuWM,Huang HC,Huang MC(2011b).Mucin glycosylating enzyme GALNT2 regulates themalignant character of hepatocellular carcinoma by modifying the EGFreceptor.Cancer Res.71,7270-7279.
Wu Z,Jiang H,Zhang L,Xu X,Zhang X,Kang Z,Song D,Zhang J,Guan M,Gu Y(2012).Molecular analysis of RNF213 gene for moyamoya disease in the ChineseHan population.PLoS.ONE.7,e48179.
Wullner U,Neef I,Eller A,Kleines M,Tur MK,Barth S(2008).Cell-specificinduction of apoptosis by rationally designed bivalent aptamer-siRNAtranscripts silencing eukaryotic elongation factor 2.Curr.Cancer DrugTargets.8,554-565.
Xia LM,Tian DA,Zhang Q,Yan W,Wang B,Liu M,Li PY,Chen B(2008).[Inhibition of HSP70-2 expression by RNA interference induces apoptosis ofhuman hepatocellular carcinoma cells].Zhonghua Gan Zang.Bing.Za Zhi.16,678-682.
Xiao L,Rao JN,Zou T,Liu L,Marasa BS,Chen J,Turner DJ,Passaniti A,WangJY(2007).Induced JunD in intestinal epithelial cells represses CDK4transcription through its proximal promoter region following polyaminedepletion.Biochem.J 403,573-581.
Xie Y,WolffDW,Wei T,Wang B,Deng C,Kirui JK,Jiang H,Qin J,Abel PW,Tu Y(2009).Breast cancer migration and invasion depend on proteasome degradationof regulator of G-protein signaling 4.Cancer Res 69,5743-5751.
Xiong D,Li G,Li K,Xu Q,Pan Z,Ding F,Vedell P,Liu P,Cui P,Hua X,JiangH,Yin Y,Zhu Z,Li X,Zhang B,Ma D,Wang Y,You M(2012).Exome sequencingidentifies MXRA5 as a novel cancer gene frequently mutated in non-small celllung carcinoma from Chinese patients.Carcinogenesis 33,1797-1805.
Yamada H,Yanagisawa K,Tokumaru S,Taguchi A,Nimura Y,Osada H,Nagino M,Takahashi T(2008).Detailed characterization of a homozygously deleted regioncorresponding to a candidate tumor suppressor locus at 21q11-21 in human lungcancer.Genes Chromosomes.Cancer 47,810-818.
Yamamoto H,Oue N,Sato A,Hasegawa Y,Yamamoto H,Matsubara A,Yasui W,Kikuchi A(2010).Wnt5a signaling is involved in the aggressiveness of prostatecancer and expression of metalloproteinase.Oncogene 29,2036-2046.
Yamazaki H,Nishida H,Iwata S,Dang NH,Morimoto C(2009).CD90 and CD110correlate with cancer stem cell potentials in human T-acute lymphoblasticleukemia cells.Biochem.Biophys.Res Commun.383,172-177.
Yang S,Shin J,Park KH,Jeung HC,Rha SY,Noh SH,Yang WI,Chung HC(2007).Molecular basis of the differences between normal and tumor tissues ofgastric cancer.Biochim.Biophys.Acta 1772,1033-1040.
Yasmeen A,Berdel WE,Serve H,Muller-Tidow C(2003).E-and A-type cyclinsas markers for cancer diagnosis and prognosis.Expert.Rev.Mol.Diagn.3,617-633.
Yasukawa M,Ishida K,Yuge Y,Hanaoka M,Minami Y,Ogawa M,Sasaki T,SaitoM,Tsuji T(2013).Dpysl4 is involved in tooth germ morphogenesis through growthregulation,polarization and differentiation of dental epithelial cells.Int.JBiol.Sci.9,382-390.
Ye H,Yu T,Temam S,Ziober BL,Wang J,Schwartz JL,Mao L,Wong DT,Zhou X(2008).Transcriptomic dissection of tongue squamous cellcarcinoma.BMC.Genomics 9,69.
Yee C,Thompson JA,Byrd D,Riddell SR,Roche P,Celis E,Greenberg PD(2002).Adoptive T cell therapy using antigen-specific CD8+T cell clones forthe treatment of patients with metastatic melanoma:in vivo persistence,migration,and antitumor effect of transferred Tcells.Proc.Natl.Acad.Sci.U.S.A 99,16168-16173.
Yoon H,Liyanarachchi S,Wright FA,Davuluri R,Lockman JC,de la CA,Pellegata NS(2002).Gene expression profiling of isogenic cells with differentTP53 gene dosage reveals numerous genes that are affected by TP53 dosage andidentifies CSPG2 as a direct target of p53.Proc Natl.Acad.Sci.U.S.A 99,15632-15637.
Yoshida K,Sugimoto N,Iwahori S,Yugawa T,Narisawa-Saito M,Kiyono T,Fujita M(2010).CDC6 interaction with ATR regulates activation of areplication checkpoint in higher eukaryotic cells.J Cell Sci.123,225-235.
Yu JM,Jun ES,Jung JS,Suh SY,Han JY,Kim JY,Kim KW,Jung JS(2007).Roleof Wnt5a in the proliferation of human glioblastoma cells.Cancer Lett.257,172-181.
Yuzugullu H,Benhaj K,Ozturk N,Senturk S,Celik E,Toylu A,Tasdemir N,Yilmaz M,Erdal E,Akcali KC,Atabey N,Ozturk M(2009).Canonical Wnt signaling isantagonized by noncanonical Wnt5a in hepatocellular carcinomacells.Mol.Cancer 8,90.
Zaka R,Dion AS,Kusnierz A,Bohensky J,Srinivas V,Freeman T,Williams CJ(2009).Oxygen tension regulates the expression of ANK(progressive ankylosis)in an HIF-1-dependent manner in growth plate chondrocytes.J BoneMiner.Res.24,1869-1878.
Zaremba S,Barzaga E,Zhu M,Soares N,Tsang KY,Schlom J(1997).Identification of an enhancer agonist cytotoxic T lymphocyte peptide fromhuman carcinoembryonic antigen.Cancer Res.57,4570-4577.
Zhang H,Jia Y,Cooper JJ,Hale T,Zhang Z,Elbein SC(2004).Commonvariants in glutamine:fructose-6-phosphate amidotransferase 2(GFPT2)gene areassociated with type 2 diabetes,diabetic nephropathy,and increased GFPT2 mRNAlevels.J Clin Endocrinol.Metab 89,748-755.
Zhang J,Valianou M,Cheng JD(2010a).Identification andcharacterization of the promoter of fibroblast activation protein.FrontBiosci.(Elite.Ed)2,1154-1163.
Zhang X,Berger FG,Yang J,Lu X(2011a).USP4 inhibits p53 throughdeubiquitinating and stabilizing ARF-BP1.EMBO J 30,2177-2189.
Zhang Y,Zhang G,Li J,Tao Q,Tang W(2010b).The expression analysis ofperiostin in human breast cancer.J Surg Res 160,102-106.
Zhang ZC,Satterly N,Fontoura BM,Chook YM(2011b).Evolutionarydevelopment of redundant nuclear localization signals in the mRNA exportfactor NXF1.Mol.Biol.Cell 22,4657-4668.
Zhao C,Bellur DL,Lu S,Zhao F,Grassi MA,Bowne SJ,Sullivan LS,DaigerSP,Chen LJ,Pang CP,Zhao K,Staley JP,Larsson C(2009).Autosomal-dominantretinitis pigmentosa caused by a mutation in SNRNP200,a gene required forunwinding of U4/U6 snRNAs.Am.J Hum.Genet.85,617-627.
Zhao Z,Lee CC,Baldini A,Caskey CT(1995).A human homologue of theDrosophila polarity gene frizzled has been identified and mapped to17q21.1.Genomics 27,370-373.
Zheng PS,Wen J,Ang LC,Sheng W,Viloria-Petit A,Wang Y,Wu Y,Kerbel RS,Yang BB(2004).Versican/PG-M G3 domain promotes tumor growth andangiogenesis.FASEB J 18,754-756.
Zhu CQ,Popova SN,Brown ER,Barsyte-Lovejoy D,Navab R,Shih W,Li M,Lu M,Jurisica I,Penn LZ,Gullberg D,Tsao MS(2007).Integrin alpha 11 regulates IGF2expression in fibroblasts to enhance tumorigenicity of human non-small-celllung cancer cells.Proc.Natl.Acad.Sci.U.S.A 104,11754-11759.
Zhu JH,Hong DF,Song YM,Sun LF,Wang ZF,Wang JW(2013).Suppression ofCellular Apoptosis Susceptibility(CSE1L)Inhibits Proliferation and InducesApoptosis in Colorectal Cancer Cells.Asian Pac.J Cancer Prev.14,1017-1021.
Zlobec I,Terracciano L,Tornillo L,Gunthert U,Vuong T,Jass JR,Lugli A(2008).Role of RHAMM within the hierarchy of well-established prognosticfactors in colorectal cancer.Gut 57,1413-1419.
Zou JN,Wang SZ,Yang JS,Luo XG,Xie JH,Xi T(2009).Knockdown of SMYD3 byRNA interference down-regulates c-Met expression and inhibits cells migrationand invasion induced by HGF.Cancer Lett.280,78-85.
Zou TT,Selaru FM,Xu Y,Shustova V,Yin J,Mori Y,Shibata D,Sato F,WangS,Olaru A,Deacu E,Liu TC,Abraham JM,Meltzer SJ(2002).Application of cDNAmicroarrays to generate a molecular taxonomy capable of distinguishingbetween colon cancer and normal colon.Oncogene 21,4855-4862.
Allander SV,Illei PB,Chen Y,Antonescu CR,Bittner M,Ladanyi M,MeltzerPS(2002).Expression profiling of synovial sarcoma by cDNA microarrays:association of ERBB2,IGFBP2,and ELF3 with epithelial differentiation.Am.JPathol.161,1587-1595.
Baker DJ,Jeganathan KB,Cameron JD,Thompson M,Juneja S,Kopecka A,KumarR,Jenkins RB,de Groen PC,Roche P,van Deursen JM(2004).BubR1 insufficiencycauses early onset of aging-associated phenotypes and infertility in mice.NatGenet.36,744-749.
Balla A,Kim YJ,Varnai P,Szentpetery Z,Knight Z,Shokat KM,Balla T(2008).Maintenance of hormone-sensitive phosphoinositide pools in the plasmamembrane requires phosphatidylinositol 4-kinase IIIalpha.Mol.Biol.Cell 19,711-721.
Barembaum M,Moreno TA,LaBonne C,Sechrist J,Bronner-Fraser M(2000).Noelin-1 is a secreted glycoprotein involved in generation of the neuralcrest.Nat Cell Biol.2,219-225.
Bhogaraju S,Cajanek L,Fort C,Blisnick T,Weber K,Taschner M,Mizuno N,Lamla S,Bastin P,Nigg EA,Lorentzen E(2013).Molecular basis of tubulintransport within the cilium by IFT74 and IFT81.Science 341,1009-1012.
Blumental-Perry A,Haney CJ,Weixel KM,Watkins SC,Weisz OA,Aridor M(2006).Phosphatidylinositol 4-phosphate formation at ER exit sites regulatesER export.Dev.Cell 11,671-682.
Cantor JM,Ginsberg MH(2012).CD98 at the crossroads of adaptiveimmunity and cancer.J Cell Sci.125,1373-1382.
Cave H,Suciu S,Preudhomme C,Poppe B,Robert A,Uyttebroeck A,Malet M,Boutard P,Benoit Y,Mauvieux L,Lutz P,Mechinaud F,Grardel N,Mazingue F,DupontM,Margueritte G,Pages MP,Bertrand Y,Plouvier E,Brunie G,Bastard C,Plantaz D,Vande V,I,Hagemeijer A,Speleman F,Lessard M,Otten J,Vilmer E,Dastugue N(2004).Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32),of HOX11 expression,and of SIL-TAL fusion in childhood T-cellmalignancies:results of EORTC studies 58881 and 58951.Blood 103,442-450.
Chadwick BP,Obermayr F,Frischauf AM(1996).Nuclear cap binding proteinmaps close to the xeroderma pigmentosum complementation group A(XPA)locus inhuman and mouse.Genomics 35,632-633.
Cornen S,Guille A,Adelaide J,Addou-Klouche L,Finetti P,Saade MR,ManaiM,Carbuccia N,Bekhouche I,Letessier A,Raynaud S,Charafe-Jauffret E,JacquemierJ,Spicuglia S,de TH,Viens P,Bertucci F,Birnbaum D,Chaffanet M(2014).Candidateluminal B breast cancer genes identified by genome,gene expression and DNAmethylation profiling.PLoS.ONE.9,e81843.
Dear TN,Sanchez-Garcia I,Rabbitts TH(1993).The HOX11 gene encodes aDNA-binding nuclear transcription factor belonging to a distinct family ofhomeobox genes.Proc.Natl.Acad.Sci.U.S.A 90,4431-4435.
Deves R,Boyd CA(2000).Surface antigen CD98(4F2):not a single membraneprotein,but a family of proteins with multiple functions.J Membr.Biol.173,165-177.
Ferrando AA,Herblot S,Palomero T,Hansen M,Hoang T,Fox EA,Look AT(2004).Biallelic transcriptional activation of oncogenic transcriptionfactors in T-cell acute lymphoblastic leukemia.Blood 103,1909-1911.
Fry AM,Mayor T,Meraldi P,StierhofYD,Tanaka K,Nigg EA(1998).C-Nap1,anovel centrosomal coiled-coil protein and candidate substrate of the cellcycle-regulated protein kinase Nek2.J Cell Biol.141,1563-1574.
Fu J,Bian M,Jiang Q,Zhang C(2007).Roles of Aurora kinases in mitosisand tumorigenesis.Mol.Cancer Res.5,1-10.
Garbarino JE,Gibbons IR(2002).Expression and genomic analysis ofmidasin,a novel and highly conserved AAA protein distantly related todynein.BMC.Genomics 3,18.
Gomez-Ferreria MA,Bashkurov M,Mullin M,Gingras AC,Pelletier L(2012).CEP192 interacts physically and functionally with the K63-deubiquitinaseCYLD to promote mitotic spindle assembly.Cell Cycle 11,3555-3558.
Gomez-Ferreria MA,Rath U,Buster DW,Chanda SK,Caldwell JS,Rines DR,Sharp DJ(2007).Human Cep192 is required for mitotic centrosome and spindleassembly.Curr.Biol.17,1960-1966.
Hinck L(2004).The versatile roles of"axon guidance"cues in tissuemorphogenesis.Dev.Cell 7,783-793.
Ilboudo A,Nault JC,Dubois-Pot-Schneider H,Corlu A,Zucman-Rossi J,Samson M,Le SJ(2014).Overexpression of phosphatidylinositol 4-kinase typeIIIalpha is associated with undifferentiated status and poor prognosis ofhuman hepatocellular carcinoma.BMC.Cancer 14,7.
Kaira K,Oriuchi N,Imai H,Shimizu K,Yanagitani N,Sunaga N,Hisada T,Ishizuka T,Kanai Y,Nakajima T,Mori M(2009).Prognostic significance of L-typeamino acid transporter 1(LAT1)and 4F2 heavy chain(CD98)expression in stage Ipulmonary adenocarcinoma.Lung Cancer 66,120-126.
Kataoka N,Ohno M,Kangawa K,Tokoro Y,Shimura Y(1994).Cloning of acomplementary DNA encoding an 80 kilodalton nuclear cap bindingprotein.Nucleic Acids Res.22,3861-3865.
Khan J,Wei JS,Ringner M,Saal LH,Ladanyi M,Westermann F,Berthold F,Schwab M,Antonescu CR,Peterson C,Meltzer PS(2001).Classification anddiagnostic prediction of cancers using gene expression profiling andartificial neural networks.Nat Med.7,673-679.
Kim HJ,Cho JH,Quan H,Kim JR(2011).Down-regulation of Aurora B kinaseinduces cellular senescence in human fibroblasts and endothelial cellsthrough a p53-dependent pathway.FEBS Lett.585,3569-3576.
Kulkarni NH,Karavanich CA,Atchley WR,Anholt RR(2000).Characterizationand differential expression of a human gene family of olfactomedin-relatedproteins.Genet.Res.76,41-50.
Kunitoku N,Sasayama T,Marumoto T,Zhang D,Honda S,Kobayashi O,Hatakeyama K,Ushio Y,Saya H,Hirota T(2003).
CENP-A phosphorylation by Aurora-A in prophase is required forenrichment of Aurora-B at inner centromeres and for kinetochorefunction.Dev.Cell 5,853-864.
Lampson MA,Kapoor TM(2005).The human mitotic checkpoint protein BubR1regulates chromosome-spindle attachments.Nat Cell Biol.7,93-98.
Latil A,Chene L,Cochant-Priollet B,Mangin P,Fournier G,Berthon P,Cussenot O(2003).Quantification of expression of netrins,slits and theirreceptors in human prostate tumors.Int.J Cancer 103,306-315.
Lee Y,Yoon KA,Joo J,Lee D,Bae K,Han JY,Lee JS(2013).Prognosticimplications of genetic variants in advanced non-small cell lung cancer:agenome-wide association study.Carcinogenesis 34,307-313.
Lemaitre G,Gonnet F,Vaigot P,Gidrol X,Martin MT,Tortajada J,Waksman G(2005).CD98,a novel marker of transient amplifying humankeratinocytes.Proteomics.5,3637-3645.
Lucker BF,Behal RH,Qin H,Siron LC,Taggart WD,Rosenbaum JL,Cole DG(2005).Characterization of the intraflagellar transport complex B core:directinteraction of the IFT81 and IFT74/72 subunits.J Biol.Chem.280,27688-27696.
Malureanu LA,Jeganathan KB,Hamada M,Wasilewski L,Davenport J,vanDeursen JM(2009).BubR1 N terminus acts as a soluble inhibitor of cyclin Bdegradation by APC/C(Cdc20)in interphase.Dev.Cell 16,118-131.
Matsuura S,Matsumoto Y,Morishima K,Izumi H,Matsumoto H,Ito E,TsutsuiK,Kobayashi J,Tauchi H,Kajiwara Y,Hama S,Kurisu K,Tahara H,Oshimura M,KomatsuK,Ikeuchi T,Kajii T(2006).Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation(PCS)syndrome.Am.J Med.Genet.A 140,358-367.
Mayor T,Hacker U,Stierhof YD,Nigg EA(2002).The mechanism regulatingthe dissociation of the centrosomal protein C-Nap1 from mitotic spindlepoles.J Cell Sci.115,3275-3284.
Minogue S,Waugh MG(2012).The Phosphatidylinositol 4-Kinases:Don'tCall it a Comeback.Subcell.Biochem.58,1-24.
Nagase T,Seki N,Ishikawa K,Ohira M,Kawarabayasi Y,Ohara O,Tanaka A,Kotani H,Miyajima N,Nomura N(1996).Prediction of the coding sequences ofunidentified human genes.VI.The coding sequences of 80 new genes(KIAA0201-KIAA0280)deduced by analysis of cDNA clones from cell line KG-1 and brain.DNARes.3,321-354.
Narayan G,Goparaju C,Arias-Pulido H,Kaufmann AM,Schneider A,Durst M,Mansukhani M,Pothuri B,Murty VV(2006).Promoter hypermethylation-mediatedinactivation of multiple Slit-Robo pathway genes in cervical cancerprogression.Mol.Cancer 5,16.
Pandey A,Blagoev B,Kratchmarova I,Fernandez M,Nielsen M,KristiansenTZ,Ohara O,Podtelejnikov AV,Roche S,Lodish HF,Mann M(2002).Cloning of a novelphosphotyrosine binding domain containing molecule,Odin,involved in signalingby receptor tyrosine kinases.Oncogene 21,8029-8036.
Perumal D,Singh S,Yoder SJ,Bloom GC,Chellappan SP(2012).A novel fivegene signature derived from stem-like side population cells predicts overalland recurrence-free survival in NSCLC.PLoS.ONE.7,e43589.
Pokrovskaya ID,Willett R,Smith RD,Morelle W,Kudlyk T,Lupashin VV(2011).Conserved oligomeric Golgi complex specifically regulates themaintenance of Golgi glycosylation machinery.Glycobiology 21,1554-1569.
Qian Y,Fritzsch B,Shirasawa S,Chen CL,Choi Y,Ma Q(2001).Formation ofbrainstem(nor)adrenergic centers and first-order relay visceral sensoryneurons is dependent on homeodomain protein Rnx/Tlx3.Genes Dev.15,2533-2545.
Reynders E,Foulquier F,Leao TE,Quelhas D,Morelle W,Rabouille C,Annaert W,Matthijs G(2009).Golgi function and dysfunction in the first COG4-deficient CDG type II patient.Hum.Mol.Genet.18,3244-3256.
Schmid BC,Rezniczek GA,Fabjani G,Yoneda T,Leodolter S,Zeillinger R(2007).The neuronal guidance cue Slit2 induces targeted migration and mayplay a role in brain metastasis of breast cancer cells.Breast CancerRes.Treat.106,333-342.
Sharma G,Mirza S,Prasad CP,Srivastava A,Gupta SD,Ralhan R(2007).Promoter hypermethylation of p16INK4A,p14ARF,CyclinD2 and Slit2 in serum andtumor DNA from breast cancer patients.Life Sci.80,1873-1881.
Shin J,Gu C,Park E,Park S(2007).Identification of phosphotyrosinebinding domain-containing proteins as novel downstream targets of the EphA8signaling function.Mol.Cell Biol.27,8113-8126.
Suzuki M,Shiraishi K,Eguchi A,Ikeda K,Mori T,Yoshimoto K,Ohba Y,Yamada T,Ito T,Baba Y,Baba H(2013).
Aberrant methylation of LINE-1,SLIT2,MAL and IGFBP7 in non-small celllung cancer.Oncol Rep.29,1308-1314.
Ungar D,Oka T,Brittle EE,Vasile E,Lupashin VV,Chatterton JE,HeuserJE,Krieger M,Waters MG(2002).Characterization of a mammalian Golgi-localizedprotein complex,COG,that is required for normal Golgi morphology andfunction.J Cell Biol.157,405-415.
Ungar D,Oka T,Vasile E,Krieger M,Hughson FM(2005).Subunitarchitecture of the conserved oligomeric Golgi complex.J Biol.Chem.280,32729-32735.
Whyte JR,Munro S(2001).The Sec34/35 Golgi transport complex isrelated to the exocyst,defining a family of complexes involved in multiplesteps of membrane traffic.Dev.Cell 1,527-537.
Wong YF,Cheung TH,Lo KW,Yim SF,Siu NS,Chan SC,Ho TW,Wong KW,Yu MY,Wang VW,Li C,Gardner GJ,Bonome T,Johnson WB,Smith DI,Chung TK,Birrer MJ(2007).Identification of molecular markers and signaling pathway inendometrial cancer in Hong Kong Chinese women by genome-wide gene expressionprofiling.Oncogene 26,1971-1982.
Wu L,Chang W,Zhao J,Yu Y,Tan X,Su T,Zhao L,Huang S,Liu S,Cao G(2010).Development of autoantibody signatures as novel diagnostic biomarkers ofnon-small cell lung cancer.Clin Cancer Res.16,3760-3768.
Bobos M,Hytiroglou P,Kostopoulos I,Karkavelas G,Papadimitriou CS(2006).Immunohistochemical distinction between merkel cell carcinoma andsmall cell carcinoma of the lung.Am.J Dermatopathol.28,99-104.
Mena H,Morrison AL,Jones RV,Gyure KA(2001).Central neurocytomasexpress photoreceptor differentiation.Cancer 91,136-143.
Schleicher RL,Hunter SB,Zhang M,Zheng M,Tan W,Bandea CI,Fallon MT,Bostwick DG,Varma VA(1997).Neurofilament heavy chain-like messenger RNA andprotein are present in benign prostate and down-regulated in prostaticcarcinoma.Cancer Res.57,3532-3536.
Segal A,Carello S,Caterina P,Papadimitriou JM,Spagnolo DV(1994).Gastrointestinal autonomic nerve tumors:a clinicopathological,immunohistochemical and ultrastructural study of 10 cases.Pathology 26,439-447.
Szebenyi G,Smith GM,Li P,Brady ST(2002).Overexpression ofneurofilament H disrupts normal cell structure and function.JNeurosci.Res.68,185-198.
Tanaka Y,Ijiri R,Kato K,Kato Y,Misugi K,Nakatani Y,Hara M(2000).HMB-45/melan-A and smooth muscle actin-positive clear-cell epithelioid tumorarising in the ligamentum teres hepatis:additional example of clear cell'sugar'tumors.Am.J Surg.Pathol.24,1295-1299.
序列表
<110> 伊玛提克斯生物技术有限公司
<120> 针对多种肿瘤例如包括NSCLC的肺癌的新型免疫疗法
<130> I32387WO
<150> GB1313987.8
<151> 2013-08-05
<150> US61/862,213
<151> 2013-08-05
<150> GB1403297.3
<151> 2014-02-25
<160> 92
<170> PatentIn版本3.5
<210> 1
<211> 9
<212> PRT
<213> 智人(Homo sapiens)
<400> 1
Ile Leu Phe Glu Ile Asn Pro Lys Leu
1 5
<210> 2
<211> 9
<212> PRT
<213> 智人
<400> 2
Lys Ile Gln Glu Met Gln His Phe Leu
1 5
<210> 3
<211> 9
<212> PRT
<213> 智人
<400> 3
Ala Leu Asp Glu Asn Leu His Gln Leu
1 5
<210> 4
<211> 9
<212> PRT
<213> 智人
<400> 4
Asn Leu Ile Glu Lys Ser Ile Tyr Leu
1 5
<210> 5
<211> 9
<212> PRT
<213> 智人
<400> 5
Thr Leu Ser Ser Ile Lys Val Glu Val
1 5
<210> 6
<211> 9
<212> PRT
<213> 智人
<400> 6
Lys Leu Asp Glu Thr Asn Asn Thr Leu
1 5
<210> 7
<211> 9
<212> PRT
<213> 智人
<400> 7
Thr Leu Trp Tyr Arg Ala Pro Glu Val
1 5
<210> 8
<211> 9
<212> PRT
<213> 智人
<400> 8
Ser Met Ser Gly Tyr Asp Gln Val Leu
1 5
<210> 9
<211> 11
<212> PRT
<213> 智人
<400> 9
Ala Leu Met Asp Lys Glu Gly Leu Thr Ala Leu
1 5 10
<210> 10
<211> 9
<212> PRT
<213> 智人
<400> 10
Val Leu Ser Val Val Glu Val Thr Leu
1 5
<210> 11
<211> 12
<212> PRT
<213> 智人
<400> 11
Val Leu Leu Pro Val Glu Val Ala Thr His Tyr Leu
1 5 10
<210> 12
<211> 9
<212> PRT
<213> 智人
<400> 12
Ser Leu Ile Glu Asp Leu Ile Leu Leu
1 5
<210> 13
<211> 9
<212> PRT
<213> 智人
<400> 13
Tyr Leu Ile His Phe Pro Val Ser Val
1 5
<210> 14
<211> 9
<212> PRT
<213> 智人
<400> 14
Phe Gln Tyr Asp His Glu Ala Phe Leu
1 5
<210> 15
<211> 9
<212> PRT
<213> 智人
<400> 15
Lys Leu Ala Val Ala Leu Leu Ala Ala
1 5
<210> 16
<211> 10
<212> PRT
<213> 智人
<400> 16
Thr Val Ile Gly Phe Leu Leu Pro Phe Ala
1 5 10
<210> 17
<211> 14
<212> PRT
<213> 智人
<400> 17
Arg Leu Leu Gly Pro Ser Ala Ala Ala Asp Ile Leu Gln Leu
1 5 10
<210> 18
<211> 9
<212> PRT
<213> 智人
<400> 18
Thr Leu Tyr Pro His Thr Ser Gln Val
1 5
<210> 19
<211> 9
<212> PRT
<213> 智人
<400> 19
Ala Val Val Glu Phe Leu Thr Ser Val
1 5
<210> 20
<211> 9
<212> PRT
<213> 智人
<400> 20
Ala Leu Val Asp His Thr Pro Tyr Leu
1 5
<210> 21
<211> 9
<212> PRT
<213> 智人
<400> 21
Ala Ile Leu Asp Thr Leu Tyr Glu Val
1 5
<210> 22
<211> 9
<212> PRT
<213> 智人
<400> 22
Phe Leu Ile Pro Ile Tyr His Gln Val
1 5
<210> 23
<211> 9
<212> PRT
<213> 智人
<400> 23
Phe Leu His His Leu Glu Ile Glu Leu
1 5
<210> 24
<211> 9
<212> PRT
<213> 智人
<400> 24
Phe Leu Val Asp Gly Ser Trp Ser Val
1 5
<210> 25
<211> 10
<212> PRT
<213> 智人
<400> 25
Gly Leu Tyr Pro Asp Ala Phe Ala Pro Val
1 5 10
<210> 26
<211> 9
<212> PRT
<213> 智人
<400> 26
Lys Leu Phe Gly Glu Lys Thr Tyr Leu
1 5
<210> 27
<211> 9
<212> PRT
<213> 智人
<400> 27
Thr Val Ala Glu Val Ile Gln Ser Val
1 5
<210> 28
<211> 9
<212> PRT
<213> 智人
<400> 28
Ser Ile Ser Asp Val Ile Ala Gln Val
1 5
<210> 29
<211> 11
<212> PRT
<213> 智人
<400> 29
Arg Leu Glu Glu Asp Asp Gly Asp Val Ala Met
1 5 10
<210> 30
<211> 9
<212> PRT
<213> 智人
<400> 30
Lys Ile Tyr Asn Glu Phe Ile Ser Val
1 5
<210> 31
<211> 9
<212> PRT
<213> 智人
<400> 31
Ala Ile Asp Gly Asn Asn His Glu Val
1 5
<210> 32
<211> 9
<212> PRT
<213> 智人
<400> 32
Lys Leu Ser Trp Asp Leu Ile Tyr Leu
1 5
<210> 33
<211> 9
<212> PRT
<213> 智人
<400> 33
Ala Leu Leu Arg Thr Val Val Ser Val
1 5
<210> 34
<211> 9
<212> PRT
<213> 智人
<400> 34
Ala Leu Gly Ala Gly Ile Glu Arg Met
1 5
<210> 35
<211> 9
<212> PRT
<213> 智人
<400> 35
Val Leu Phe Pro Asn Leu Lys Thr Val
1 5
<210> 36
<211> 9
<212> PRT
<213> 智人
<400> 36
Thr Leu Val Ala Ile Val Val Gly Val
1 5
<210> 37
<211> 9
<212> PRT
<213> 智人
<400> 37
Val Leu Ala Pro Leu Phe Val Tyr Leu
1 5
<210> 38
<211> 9
<212> PRT
<213> 智人
<400> 38
Ser Leu His Phe Leu Ile Leu Tyr Val
1 5
<210> 39
<211> 9
<212> PRT
<213> 智人
<400> 39
Arg Leu Leu Asp Ser Val Ser Arg Leu
1 5
<210> 40
<211> 9
<212> PRT
<213> 智人
<400> 40
Gly Leu Thr Asp Asn Ile His Leu Val
1 5
<210> 41
<211> 12
<212> PRT
<213> 智人
<400> 41
Ser Ile Leu Thr Ile Glu Asp Gly Ile Phe Glu Val
1 5 10
<210> 42
<211> 9
<212> PRT
<213> 智人
<400> 42
Ser Leu Trp Gly Gly Asp Val Val Leu
1 5
<210> 43
<211> 10
<212> PRT
<213> 智人
<400> 43
Ala Leu Phe Pro His Leu Leu Gln Pro Val
1 5 10
<210> 44
<211> 9
<212> PRT
<213> 智人
<400> 44
Asn Leu Leu Ala Glu Ile His Gly Val
1 5
<210> 45
<211> 10
<212> PRT
<213> 智人
<400> 45
Ala Ile Met Gly Phe Ile Gly Phe Phe Val
1 5 10
<210> 46
<211> 9
<212> PRT
<213> 智人
<400> 46
Thr Leu Thr Asn Ile Ile His Asn Leu
1 5
<210> 47
<211> 9
<212> PRT
<213> 智人
<400> 47
Gly Val Leu Glu Asn Ile Phe Gly Val
1 5
<210> 48
<211> 9
<212> PRT
<213> 智人
<400> 48
Gly Leu Ile Glu Ile Ile Ser Asn Ala
1 5
<210> 49
<211> 9
<212> PRT
<213> 智人
<400> 49
Arg Leu Leu Ala Ala Glu Asn Phe Leu
1 5
<210> 50
<211> 11
<212> PRT
<213> 智人
<400> 50
Ser Leu Leu Pro Val Asp Ile Arg Gln Tyr Leu
1 5 10
<210> 51
<211> 9
<212> PRT
<213> 智人
<400> 51
Tyr Leu Ala Pro Phe Leu Arg Asn Val
1 5
<210> 52
<211> 9
<212> PRT
<213> 智人
<400> 52
Ala Leu Leu Glu Arg Gly Tyr Ser Leu
1 5
<210> 53
<211> 9
<212> PRT
<213> 智人
<400> 53
Tyr Leu Pro His Ala Pro Pro Phe Ala
1 5
<210> 54
<211> 10
<212> PRT
<213> 智人
<400> 54
Lys Leu Val Glu Phe Asp Phe Leu Gly Ala
1 5 10
<210> 55
<211> 9
<212> PRT
<213> 智人
<400> 55
Ser Leu Ala Asp Phe Met Gln Glu Val
1 5
<210> 56
<211> 9
<212> PRT
<213> 智人
<400> 56
Ser Leu Tyr Lys Gly Leu Leu Ser Val
1 5
<210> 57
<211> 11
<212> PRT
<213> 智人
<400> 57
Gly Leu Ala Glu Asp Ile Asp Lys Gly Glu Val
1 5 10
<210> 58
<211> 9
<212> PRT
<213> 智人
<400> 58
Ser Leu Ile Asp Ala Asp Pro Tyr Leu
1 5
<210> 59
<211> 9
<212> PRT
<213> 智人
<400> 59
Ile Leu Val Ser Trp Leu Pro Arg Leu
1 5
<210> 60
<211> 9
<212> PRT
<213> 智人
<400> 60
Val Val Asp Lys Thr Leu Leu Leu Val
1 5
<210> 61
<211> 9
<212> PRT
<213> 智人
<400> 61
Thr Leu Ile Ser Arg Leu Pro Ala Val
1 5
<210> 62
<211> 10
<212> PRT
<213> 智人
<400> 62
Ile Leu Phe Pro Asp Ile Ile Ala Arg Ala
1 5 10
<210> 63
<211> 11
<212> PRT
<213> 智人
<400> 63
Ser Leu Ala Gly Asp Val Ala Leu Gln Gln Leu
1 5 10
<210> 64
<211> 9
<212> PRT
<213> 智人
<400> 64
Ala Met Leu Ala Val Leu His Thr Val
1 5
<210> 65
<211> 9
<212> PRT
<213> 智人
<400> 65
Lys Val Leu Glu Ile Leu His Arg Val
1 5
<210> 66
<211> 9
<212> PRT
<213> 智人
<400> 66
Lys Ile Gln Glu Ile Leu Thr Gln Val
1 5
<210> 67
<211> 9
<212> PRT
<213> 智人
<400> 67
Ile Leu Gln Asp Arg Leu Asn Gln Val
1 5
<210> 68
<211> 9
<212> PRT
<213> 智人
<400> 68
Tyr Val Tyr Gln Asn Asn Ile Tyr Leu
1 5
<210> 69
<211> 9
<212> PRT
<213> 智人
<400> 69
Ala Met Ser Ser Lys Phe Phe Leu Val
1 5
<210> 70
<211> 9
<212> PRT
<213> 智人
<400> 70
Lys Ile Leu Glu Asp Val Val Gly Val
1 5
<210> 71
<211> 9
<212> PRT
<213> 智人
<400> 71
Lys Leu Leu Glu Tyr Ile Glu Glu Ile
1 5
<210> 72
<211> 9
<212> PRT
<213> 智人
<400> 72
Lys Leu Leu Thr Glu Val His Ala Ala
1 5
<210> 73
<211> 9
<212> PRT
<213> 智人
<400> 73
Phe Leu Leu Asp Gly Ser Ala Asn Val
1 5
<210> 74
<211> 11
<212> PRT
<213> 智人
<400> 74
Ser Leu Leu Ala Gln Asn Thr Ser Trp Leu Leu
1 5 10
<210> 75
<211> 9
<212> PRT
<213> 智人
<400> 75
Ala Leu Tyr Asp Ser Val Ile Leu Leu
1 5
<210> 76
<211> 18
<212> PRT
<213> 智人
<400> 76
Ile Asn Asn Tyr Thr Pro Asp Met Asn Arg Glu Asp Val Asp Tyr Ala
1 5 10 15
Ile Arg
<210> 77
<211> 17
<212> PRT
<213> 智人
<400> 77
Thr Asn Gly Val Ile His Val Val Asp Lys Leu Leu Tyr Pro Ala Asp
1 5 10 15
Thr
<210> 78
<211> 10
<212> PRT
<213> 智人
<400> 78
Ser Leu Tyr Asp Asn Gln Ile Thr Thr Val
1 5 10
<210> 79
<211> 10
<212> PRT
<213> 智人
<400> 79
Ser Leu Ala Pro Ala Gly Val Ile Arg Val
1 5 10
<210> 80
<211> 12
<212> PRT
<213> 智人
<400> 80
Ser Leu Phe Gly Asn Ser Gly Ile Leu Glu Asn Val
1 5 10
<210> 81
<211> 9
<212> PRT
<213> 智人
<400> 81
Ala Leu Tyr Gly Arg Leu Glu Val Val
1 5
<210> 82
<211> 9
<212> PRT
<213> 智人
<400> 82
Ala Leu Trp Glu Lys Asn Thr His Leu
1 5
<210> 83
<211> 10
<212> PRT
<213> 智人
<400> 83
Ala Leu Ala Asn Gln Lys Leu Tyr Ser Val
1 5 10
<210> 84
<211> 10
<212> PRT
<213> 智人
<400> 84
Ile Leu Met Gly Thr Glu Leu Thr Gln Val
1 5 10
<210> 85
<211> 9
<212> PRT
<213> 智人
<400> 85
Lys Ile Val Asp Phe Ser Tyr Ser Val
1 5
<210> 86
<211> 11
<212> PRT
<213> 智人
<400> 86
Ala Met Ala Thr Glu Ser Ile Leu His Phe Ala
1 5 10
<210> 87
<211> 11
<212> PRT
<213> 智人
<400> 87
Arg Val Leu Pro Pro Ser Ala Leu Gln Ser Val
1 5 10
<210> 88
<211> 11
<212> PRT
<213> 智人
<400> 88
Ser Leu Leu Glu Ser Asn Lys Asp Leu Leu Leu
1 5 10
<210> 89
<211> 9
<212> PRT
<213> 智人
<400> 89
Ala Leu Ala Ser Val Ile Lys Glu Leu
1 5
<210> 90
<211> 10
<212> PRT
<213> 智人
<400> 90
Ser Leu Val Ala Val Glu Leu Glu Lys Val
1 5 10
<210> 91
<211> 9
<212> PRT
<213> 智人
<400> 91
Ala Met Phe Glu Asn Phe Val Ser Val
1 5
<210> 92
<211> 9
<212> PRT
<213> 智人
<400> 92
His Leu Leu Glu Asp Ile Ala His Val
1 5

Claims (21)

1.一种肽,其选自:
a)氨基酸序列如SEQ ID No.:39所示的肽;
b)a)的包含非肽键的肽;以及
c)作为融合蛋白一部分的a)的肽,该融合蛋白具有HLA-DR抗原相关不变链(Ii)的80个N-端氨基酸。
2.一种核酸,其编码权利要求1a)或c)所述的肽。
3.根据权利要求2所述的核酸,其为DNA、cDNA、PNA、RNA或其组合。
4.一种表达载体,其能够表达权利要求2或3所述的核酸。
5.一种宿主细胞,其包含权利要求2或3所述的核酸或权利要求4所述的表达载体。
6.根据权利要求5所述的宿主细胞,其为抗原提呈细胞,例如树突状细胞。
7.一种药物组合物,含有权利要求1所述的肽,以及选自药学可接受的载体和/或赋形剂、免疫刺激或免疫调节物质中的至少一种其他成分。
8.一种制备权利要求1所述的肽的方法,该方法包括培养权利要求5-7中任一项所述的宿主细胞,以及将上述肽从该宿主细胞或其培养基中分离出。
9.一种体外制备活化的细胞毒性T淋巴细胞(CTL)或辅助T细胞(Th细胞)的方法,该方法包括将CTL或Th细胞与负载有抗原的人I类或II类MHC分子在体外接触足够的一段时间,这些MHC分子在合适的抗原提呈细胞表面表达,从而以抗原特异性方式激活CTL或Th细胞,其中所述抗原为权利要求1a)所述的肽。
10.根据权利要求9所述的方法,通过将足量的所述抗原与抗原提呈细胞相接触,从而将上述抗原载入I类或II类MHC分子,所述I类或II类MHC分子在合适的抗原提呈细胞表面表达。
11.根据权利要求9或10所述的方法,其中该抗原提呈细胞含有表达载体,该表达载体能够表达权利要求1a)或c)所述的肽。
12.一种活化的细胞毒性T淋巴细胞(CTL)或辅助T细胞(Th细胞),由权利要求9至11中任一项所述的方法所制备,该CTL或Th细胞会有选择地识别一种细胞,该细胞异常表达含有SEQ ID No.:39所示氨基酸序列的多肽。
13.一种体外制备对权利要求1所述的肽特异的TCR或sTCR或其片段的方法,该方法包括克隆权利要求12所述的活化的细胞毒性T淋巴细胞(CTL)或辅助T细胞(Th细胞)的可变域,以及在合适的宿主和/或表达系统中表达上述TCR或sTCR或其片段。
14.一种分离的结合剂,例如抗体或其片段、蛋白、核酸、肽、TCR或sTCR或其片段,其与权利要求1所述的肽、或权利要求1所述的肽与MHC分子的复合物特异性地结合。
15.一种分离的T细胞受体,其能够与HLA配体反应,所述HLA配体的氨基酸如SEQ IDNo.:39所示。
16.一种自体或同种异体的人细胞毒性T细胞(CTL)或辅助T细胞(Th细胞),其转染有权利要求15所述的T细胞受体。
17.权利要求1所述的肽、权利要求2或3所述的核酸、权利要求4所述的表达载体、权利要求5或6所述的宿主细胞、权利要求12所述的活化的细胞毒性T淋巴细胞(CTL)或辅助T细胞(Th细胞)、权利要求14所述的结合剂、权利要求15所述的T细胞受体、或权利要求16所述的自体或同种异体的人细胞毒性T细胞(CTL)或辅助T细胞(Th细胞)在制备用于治疗癌症的药物中的用途。
18.根据权利要求17所述的用途,其中所述药物为疫苗。
19.根据权利要求17所述的用途,其中癌症为非小细胞肺癌(NSCLC)、肺癌、胃癌和/或成胶质细胞瘤。
20.根据权利要求17所述的用途,其中所述药物用于人的输入细胞疗法。
21.一种药物组合物,其包含:
(a)选自以下的实体:
(a1)权利要求1所述的肽,
(a2)权利要求15所述的T细胞受体,
(a3)权利要求2或3所述的核酸,
(a4)权利要求4所述的表达载体
(a5)权利要求5或6所述的宿主细胞,
(a6)权利要求12所述的活化的细胞毒性T淋巴细胞(CTL)或辅助T细胞(Th细胞);
(b)药学上可接受的载体,以及任选地
(c)选自药学上可接受的赋形剂、缓冲剂、结合剂、爆炸剂、稀释剂、增味剂、润滑剂、和免疫刺激或免疫调节物质中的至少一种其他成分,其中免疫刺激或免疫调节物质为例如细胞因子、免疫调节剂、佐剂和具有免疫调节特性的治疗性物质。
CN201910287774.XA 2013-08-05 2014-08-04 针对多种肿瘤例如包括nsclc在内的肺癌的新型免疫疗法 Active CN110041402B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910287774.XA CN110041402B (zh) 2013-08-05 2014-08-04 针对多种肿瘤例如包括nsclc在内的肺癌的新型免疫疗法

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201361862213P 2013-08-05 2013-08-05
US61/862,213 2013-08-05
GBGB1313987.8A GB201313987D0 (en) 2013-08-05 2013-08-05 Novel immunotherapy against several tumors, such as lung cancer including NSCLC
GB1313987.8 2013-08-05
GBGB1403297.3A GB201403297D0 (en) 2014-02-25 2014-02-25 Novel immunotherapy against several tumors, such as lung cancer, including NSCLC
GB1403297.3 2014-02-25
CN201480035925.8A CN105377290B (zh) 2013-08-05 2014-08-04 用于治疗多种肿瘤(例如包括nsclc在内的肺癌)的新型免疫疗法
PCT/EP2014/066755 WO2015018805A1 (en) 2013-08-05 2014-08-04 Novel immunotherapy against several tumors, such as lung cancer, including nsclc
CN201910287774.XA CN110041402B (zh) 2013-08-05 2014-08-04 针对多种肿瘤例如包括nsclc在内的肺癌的新型免疫疗法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480035925.8A Division CN105377290B (zh) 2013-08-05 2014-08-04 用于治疗多种肿瘤(例如包括nsclc在内的肺癌)的新型免疫疗法

Publications (2)

Publication Number Publication Date
CN110041402A true CN110041402A (zh) 2019-07-23
CN110041402B CN110041402B (zh) 2024-04-16

Family

ID=60955422

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201910287774.XA Active CN110041402B (zh) 2013-08-05 2014-08-04 针对多种肿瘤例如包括nsclc在内的肺癌的新型免疫疗法
CN201811283000.1A Active CN109748953B (zh) 2013-08-05 2014-08-04 用于治疗多种肿瘤(例如包括nsclc在内的肺癌)的新型免疫疗法
CN201910287775.4A Active CN110041403B (zh) 2013-08-05 2014-08-04 针对多种肿瘤例如包括nsclc在内的肺癌的新型免疫疗法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201811283000.1A Active CN109748953B (zh) 2013-08-05 2014-08-04 用于治疗多种肿瘤(例如包括nsclc在内的肺癌)的新型免疫疗法
CN201910287775.4A Active CN110041403B (zh) 2013-08-05 2014-08-04 针对多种肿瘤例如包括nsclc在内的肺癌的新型免疫疗法

Country Status (19)

Country Link
US (17) US20170320913A1 (zh)
JP (4) JP6646017B2 (zh)
KR (2) KR20220045085A (zh)
CN (3) CN110041402B (zh)
AU (1) AU2022201167A1 (zh)
CL (6) CL2018002279A1 (zh)
CY (2) CY1122453T1 (zh)
ES (1) ES2900004T3 (zh)
HR (2) HRP20211852T1 (zh)
HU (1) HUE057334T2 (zh)
IL (5) IL300761A (zh)
LT (1) LT3456339T (zh)
MX (3) MX2021001914A (zh)
MY (1) MY191939A (zh)
PH (3) PH12018501901A1 (zh)
PL (1) PL3456339T3 (zh)
PT (1) PT3456339T (zh)
RS (1) RS62602B1 (zh)
SI (1) SI3456339T1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881707A (zh) * 2021-10-25 2022-01-04 中国人民解放军军事科学院军事医学研究院 调控脐带间充质干细胞免疫抑制作用的产品、方法及用途

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
RS62602B1 (sr) 2013-08-05 2021-12-31 Immatics Biotechnologies Gmbh Nova imunoterapija za lečenje nekoliko tumora, kao što je rak pluća, uključujući nsclc
CA2935960C (en) 2014-01-08 2023-01-10 Bart Lipkens Acoustophoresis device with dual acoustophoretic chamber
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
SG11202003907WA (en) 2017-12-14 2020-05-28 Flodesign Sonics Inc Acoustic transducer drive and controller
CN112521484A (zh) * 2020-12-03 2021-03-19 佛山市第一人民医院(中山大学附属佛山医院) 结肠癌肿瘤特异tcr序列及其应用
CN112691195B (zh) * 2021-02-02 2023-03-14 黑龙江省科学院高技术研究院 Prpf8表达抑制剂在制备治疗肺癌的药物中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018633A2 (en) * 2002-08-20 2004-03-04 The Government Of The United States Of America As Represented By The Secretary, Department Of Healthand Human Services Abca13 nucleic acids and proteins, and uses thereof
WO2010099637A1 (zh) * 2009-03-05 2010-09-10 中国科学院微生物研究所 增殖抗原特异性t细胞的方法
CN102170900A (zh) * 2008-10-01 2011-08-31 伊玛提克斯生物技术有限公司 抗神经元和脑肿瘤等几种肿瘤的新型免疫疗法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8212000B2 (en) 1970-02-11 2012-07-03 Immatics Biotechnologies Gmbh Tumor-associated peptides binding promiscuously to human leukocyte antigen (HLA) class II molecules
AU2205499A (en) 1997-12-31 1999-07-19 Incyte Pharmaceuticals, Inc. Human regulatory proteins
US7094890B1 (en) 2000-03-10 2006-08-22 Novartis Ag Arthritis-associated protein
US7919467B2 (en) 2000-12-04 2011-04-05 Immunotope, Inc. Cytotoxic T-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
JP2005500059A (ja) 2001-08-13 2005-01-06 ダナ−ファーバー キャンサー インスティテュート インク. ペリオスチンに基づく診断アッセイ法
DE10225144A1 (de) 2002-05-29 2003-12-18 Immatics Biotechnologies Gmbh An MHC-Moleküle bindende Tumor-assoziierte Peptide
CN1852974A (zh) * 2003-06-09 2006-10-25 密歇根大学董事会 用于治疗和诊断癌症的组合物和方法
ATE511550T1 (de) * 2003-07-17 2011-06-15 Pacific Edge Biotechnology Ltd Marker zum nachweis von magenkrebs
EP1714157A2 (en) 2004-01-28 2006-10-25 Immatics Biotechnologies GmbH Method for identifying and quantifying of tumour-associated peptides
US20060019284A1 (en) 2004-06-30 2006-01-26 Fei Huang Identification of polynucleotides for predicting activity of compounds that interact with and/or modulate protein tyrosine kinases and/or protein tyrosine kinase pathways in lung cancer cells
EP1642905B1 (en) 2004-10-02 2009-01-21 Immatics Biotechnologies GmbH Immunogenic T-helper epitopes from human tumour antigens and immunotherapeutic methods using said epitopes
SI1760088T1 (sl) 2005-09-05 2008-06-30 Immatics Biotechnologies Gmbh S tumorjem povezani peptidi, ki se veže z različnimi molekulami humanega levkocitnega antigena (HLA) razreda II
EA200801865A1 (ru) 2006-02-22 2009-02-27 Филоджен Спа Опухолевые маркеры сосудов
US20080107668A1 (en) 2006-08-30 2008-05-08 Immunotope, Inc. Cytotoxic t-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
PL2338907T3 (pl) 2007-07-27 2016-03-31 Immatics Biotechnologies Gmbh Nowe immunogenne epitopy do immunoterapii
WO2009036246A2 (en) 2007-09-14 2009-03-19 Immunotope, Inc. Immunogens that induce cytotoxic t-lymphocytes and their use in prevention, treatment, and diagnosis of cancer
US8134459B2 (en) 2007-10-19 2012-03-13 Smiths Medical Asd, Inc. Wireless telecommunications system adaptable for patient monitoring
US20100310640A1 (en) 2007-11-01 2010-12-09 Knutson Keith L Hla-dr binding peptides and their uses
EP2250287B1 (en) 2008-02-19 2013-09-18 MDxHealth SA Detection and prognosis of lung cancer
AU2009221915A1 (en) 2008-03-03 2009-09-11 Dyax Corp. Metalloproteinase 12 binding proteins
CA2720563A1 (en) 2008-04-11 2009-10-15 China Synthetic Rubber Corporation Methods, agents and kits for the detection of cancer
TWI526219B (zh) 2008-06-19 2016-03-21 腫瘤療法 科學股份有限公司 Cdca1抗原決定位胜肽及含此胜肽的疫苗
WO2010037124A1 (en) * 2008-09-29 2010-04-01 The Trustees Of The University Of Pennsylvania Tumor vascular marker-targeted vaccines
WO2010045388A2 (en) 2008-10-14 2010-04-22 Dyax Corp. Use of mmp-9 and mmp-12 binding proteins for the treatment and prevention of systemic sclerosis
GB2477705B (en) 2008-11-17 2014-04-23 Veracyte Inc Methods and compositions of molecular profiling for disease diagnostics
US20110033516A1 (en) 2009-08-06 2011-02-10 Medical University Of South Carolina Methods and compositions for bone healing by periostin
US8281223B2 (en) 2009-08-07 2012-10-02 Via Technologies, Inc. Detection of fuse re-growth in a microprocessor
TWI485245B (zh) 2010-01-25 2015-05-21 Oncotherapy Science Inc 經修飾之melk胜肽及含此胜肽之疫苗
GB201004551D0 (en) 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh NOvel immunotherapy against several tumors including gastrointestinal and gastric cancer
GB201006360D0 (en) 2010-04-16 2010-06-02 Immatics Biotechnologies Gmbh Method for differentially quantifying naturally processed HLA-restricted peptides for cancer, autoimmune and infectious diseases immunotherapy development
GB201009222D0 (en) 2010-06-02 2010-07-21 Immatics Biotechnologies Gmbh Improved cancer therapy based on tumour associated antigens derived from cyclin D1
US9028810B2 (en) 2010-12-20 2015-05-12 Ajou University Industry—Academic Cooperations Foundatin Composition for inducing migration of neural stem cells containing periostin as effective ingredient
TWI819228B (zh) * 2013-08-05 2023-10-21 德商伊瑪提克斯生物科技有限公司 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(八)
RS62602B1 (sr) * 2013-08-05 2021-12-31 Immatics Biotechnologies Gmbh Nova imunoterapija za lečenje nekoliko tumora, kao što je rak pluća, uključujući nsclc
GB201513921D0 (en) * 2015-08-05 2015-09-23 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers
SG10202111399YA (en) * 2015-12-22 2021-11-29 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against breast cancer and other cancers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018633A2 (en) * 2002-08-20 2004-03-04 The Government Of The United States Of America As Represented By The Secretary, Department Of Healthand Human Services Abca13 nucleic acids and proteins, and uses thereof
CN102170900A (zh) * 2008-10-01 2011-08-31 伊玛提克斯生物技术有限公司 抗神经元和脑肿瘤等几种肿瘤的新型免疫疗法
WO2010099637A1 (zh) * 2009-03-05 2010-09-10 中国科学院微生物研究所 增殖抗原特异性t细胞的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HANS-STEFAN HOFMANN 等: "Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients", 《CLINICAL CANCER RESEARCH》 *
HANS-STEFAN HOFMANN 等: "Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients", 《CLINICAL CANCER RESEARCH》, 1 February 2005 (2005-02-01), pages 1086 - 1092 *
耿建 等: "靶向人端粒酶逆转录酶T细胞表位肽的治疗性癌症疫苗研究进展", 《医学研究生学报》 *
耿建 等: "靶向人端粒酶逆转录酶T细胞表位肽的治疗性癌症疫苗研究进展", 《医学研究生学报》, 20 November 2009 (2009-11-20), pages 89 - 93 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881707A (zh) * 2021-10-25 2022-01-04 中国人民解放军军事科学院军事医学研究院 调控脐带间充质干细胞免疫抑制作用的产品、方法及用途
CN113881707B (zh) * 2021-10-25 2023-07-14 中国人民解放军军事科学院军事医学研究院 调控脐带间充质干细胞免疫抑制作用的产品、方法及用途

Also Published As

Publication number Publication date
CL2021001794A1 (es) 2022-02-25
US10323065B1 (en) 2019-06-18
SI3456339T1 (sl) 2022-01-31
MX2021001914A (es) 2021-04-28
PH12020500433A1 (en) 2021-01-11
IL295031B2 (en) 2023-08-01
US20220064220A1 (en) 2022-03-03
US11939400B2 (en) 2024-03-26
US20200031870A1 (en) 2020-01-30
US20210253640A1 (en) 2021-08-19
US11866517B2 (en) 2024-01-09
CL2018002495A1 (es) 2018-10-26
PT3456339T (pt) 2021-12-09
US11814446B2 (en) 2023-11-14
US20190322703A1 (en) 2019-10-24
US10160786B1 (en) 2018-12-25
AU2022201167A1 (en) 2022-03-17
US20190177369A1 (en) 2019-06-13
US11859017B2 (en) 2024-01-02
CN110041402B (zh) 2024-04-16
JP2018038388A (ja) 2018-03-15
US20200031869A1 (en) 2020-01-30
IL295031B1 (en) 2023-04-01
US20200031868A1 (en) 2020-01-30
CY1124950T1 (el) 2023-01-05
JP2020010686A (ja) 2020-01-23
CN110041403B (zh) 2023-03-10
MY191939A (en) 2022-07-19
PL3456339T3 (pl) 2022-03-21
LT3456339T (lt) 2021-12-10
US10479818B2 (en) 2019-11-19
JP2022130482A (ja) 2022-09-06
US20220298207A1 (en) 2022-09-22
US20190002504A1 (en) 2019-01-03
US10316062B1 (en) 2019-06-11
US11939401B2 (en) 2024-03-26
JP7039044B2 (ja) 2022-03-22
ES2900004T3 (es) 2022-03-15
MX2018010565A (es) 2021-11-16
US20200017551A1 (en) 2020-01-16
US11161879B2 (en) 2021-11-02
HRP20211852T1 (hr) 2022-03-18
US10316063B1 (en) 2019-06-11
IL300761A (en) 2023-04-01
JP7094572B2 (ja) 2022-07-04
CN109748953B (zh) 2022-09-02
IL280565B (en) 2022-09-01
US20190169233A1 (en) 2019-06-06
JP6646017B2 (ja) 2020-02-14
KR102383710B1 (ko) 2022-04-08
KR20200037457A (ko) 2020-04-08
MX2019011621A (es) 2019-12-05
JP2020072717A (ja) 2020-05-14
US10487116B2 (en) 2019-11-26
CN110041403A (zh) 2019-07-23
CY1122453T1 (el) 2021-01-27
PH12021551208A1 (en) 2022-02-14
IL269753B (en) 2021-03-25
US10793602B2 (en) 2020-10-06
KR20220045085A (ko) 2022-04-12
US20200031867A1 (en) 2020-01-30
RS62602B1 (sr) 2021-12-31
PH12018501901A1 (en) 2019-04-15
IL262509B (en) 2022-02-01
CL2018002494A1 (es) 2018-10-26
US11161880B2 (en) 2021-11-02
IL262509A (en) 2018-12-31
US20190177368A1 (en) 2019-06-13
CL2018002458A1 (es) 2018-10-12
US20190218254A1 (en) 2019-07-18
IL269753A (en) 2019-11-28
US11161877B2 (en) 2021-11-02
CL2018002493A1 (es) 2018-11-09
CN109748953A (zh) 2019-05-14
US20220281917A1 (en) 2022-09-08
US20220194984A1 (en) 2022-06-23
US11161878B2 (en) 2021-11-02
HUE057334T2 (hu) 2022-05-28
US20170320913A1 (en) 2017-11-09
IL280565A (en) 2021-03-25
IL295031A (en) 2022-09-01
CL2018002279A1 (es) 2018-09-14
HRP20192262T1 (hr) 2020-03-06

Similar Documents

Publication Publication Date Title
AU2020220038B2 (en) Novel immunotherapy against several tumors, such as lung cancer, including nsclc
CN110041403B (zh) 针对多种肿瘤例如包括nsclc在内的肺癌的新型免疫疗法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant