KR20200037457A - Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법 - Google Patents

Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법 Download PDF

Info

Publication number
KR20200037457A
KR20200037457A KR1020207009472A KR20207009472A KR20200037457A KR 20200037457 A KR20200037457 A KR 20200037457A KR 1020207009472 A KR1020207009472 A KR 1020207009472A KR 20207009472 A KR20207009472 A KR 20207009472A KR 20200037457 A KR20200037457 A KR 20200037457A
Authority
KR
South Korea
Prior art keywords
peptide
cell
cells
cancer
peptides
Prior art date
Application number
KR1020207009472A
Other languages
English (en)
Other versions
KR102383710B1 (ko
Inventor
토니 바인쉥크
스테펜 발터
옌스 프리체
콜레테 송
하르프레트 싱
Original Assignee
이매틱스 바이오테크놀로지스 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1313987.8A external-priority patent/GB201313987D0/en
Priority claimed from GBGB1403297.3A external-priority patent/GB201403297D0/en
Application filed by 이매틱스 바이오테크놀로지스 게엠베하 filed Critical 이매틱스 바이오테크놀로지스 게엠베하
Priority to KR1020227010992A priority Critical patent/KR20220045085A/ko
Priority claimed from PCT/EP2014/066755 external-priority patent/WO2015018805A1/en
Publication of KR20200037457A publication Critical patent/KR20200037457A/ko
Application granted granted Critical
Publication of KR102383710B1 publication Critical patent/KR102383710B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • C12N9/6491Matrix metalloproteases [MMP's], e.g. interstitial collagenase (3.4.24.7); Stromelysins (3.4.24.17; 3.2.1.22); Matrilysin (3.4.24.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24065Macrophage elastase (3.4.24.65), i.e. metalloelastase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells

Abstract

본 발명은 면역요법 방법에서 사용을 위한 펩티드, 핵산 및 세포에 관한 것이다. 특히 본 발명은 암의 면역요법에 관한 것이다. 또한 본 발명은 항종양 면역 반응을 촉진시키는 백신 조성물의 활성 약학적 성분으로 작용하는 종양 관련 세포독성 T 세포(CTL) 펩티드 항원결정인자 단독 또는 기타 종양 관련 펩티드와의 병용에 관한 것이다. 본 발명은 항종양 면역 반응을 이끌어내는데 필요한 백신 조성물에 사용할 수 있는 인간 종양 세포의 HLA 유형 I 및 HLA 유형 II 분자로부터 유래하는 70가지 초과의 신규 펩티드 서열 및 이들의 변이체에 관한 것이다.

Description

NSCLC를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법{NOVEL IMMUNOTHERAPY AGAINST SEVERAL TUMORS, SUCH AS LUNG CANCER, INCLUDING NSCLC}
본 발명은 면역요법으로 사용하기 위한 펩티드, 핵산 및 세포에 관한 것이다. 특히 본 발명은 암의 면역요법에 관한 것이다. 본 발명은 또한 항종양 면역 반응을 촉진시키는 백신 조성물의 활성 약학적 성분으로 작용하는 종양 관련 세포독성 T 세포(CTL) 펩티드 항원결정인자를 단독 사용 또는 기타 종양 관련 펩티드와의 병용에 관한 것이다. 본 발명은 항종양 면역 반응을 이끌어내는데 필요한 백신 조성물에 사용할 수 있는 인간 종양 세포의 HLA 유형 I 및 HLA 유형 II 분자로부터 유래하는 67가지 신규 펩티드 서열 및 이들의 변이체에 관한 것이다.
폐암은 남성과 여성 모두에서 가장 큰 암-관련 사망의 원인이다. 세계적으로 폐암은 발병률 및 사망률에서 가장 흔한 암이다. 2008년의 경우 161만 건의 폐암이 새로 발생했으며 그에 의한 사망은 138만 명이었다. 유럽과 북미에서 그 비율이 가장 높다.
1987년 이후 매년 유방암으로 사망한 여성보다 폐암으로 사망한 여성이 더 많았다. 남성 사망률은 1991년에서 2003년 사이 매년 약 1.9%씩 크게 감소하였다. 여성 폐암 사망률은 수십 년 동안의 지속적인 증가 후 안정기에 접근하고 있다. 폐암 사망률의 이런 경향은 지난 30여 년간의 흡연율 감소를 반영한다.
미국 암 연구소(NCI)에 의하면, 2013년 미국에서 폐암 발생은 230,000건이고, 폐암에 의한 사망 건수는 160,000건으로 추정된다.
임상적으로 폐암은 치료 목적을 위해 소세포(13%, SCLC) 또는 비소세포(87%, NSCLC)로 분류된다. 예후는 일반적으로 불량하다. 폐암에 걸린 모든 사람 가운데 15%가 진단 후 5년 동안 생존한다. 진단 시점의 병기는 흔히 깊이 진행된 상태이다. 제시 당시, NSCLC 사례의 30 내지 40%가 IV 단계이고 SCLC의 60%가 IV 단계이다.
치료 방법은 유형(소세포 또는 비소세포) 및 암의 단계에 따라 결정되고 수술, 방사선 요법, 화학 요법 및 베바시주맙(아바스틴(AVASTIN: 등록상표)), 얼로티닙(타세바(TARCEVA: 등록상표)) 등 생물학적 표적 치료 등을 포함한다. 국소 암에서는 수술이 일반적인 선택이다. 최근의 연구에서는 초기 단계, 비소세포 폐암에서의 생존율은 수술에 따른 화학 요법으로 인해 개선된다는 것을 보여주었다. 질병이 발견되는 시간에 이미 확산되었기 때문에 방사선 요법과 화학 요법이 경우에 따라 수술과 함께 흔히 사용된다. 화학요법 단독 또는 방사선과의 병용은 소세포 폐암에서 사용되는 일반적인 치료 방법이고, 이 요법에서, 많은 환자들이 완화를 경험하며, 어떤 경우에서는 오래 지속될 수 있다
폐암의 1년 상대적 생존율은 1975 내지 1979년 사이의 37%에서 2002년의 42%로 약간 증가했고, 이것은 대부분 수술 기법과 병용된 요법의 개선 때문이다. 그러나, 모든 단계를 합한 5년 생존율은 겨우 16% 밖에 되지 않는다. 질병이 아직 국소적일때 발견된 경우에는 생존율이 49%이다. 하지만, 16%의 폐암만이 이 초기 단계에서 진단된다.
상기의 내용에도 불구하고, 폐암, 특히 비소세포 폐암(NSCLC), 위암 및 여러 표현형의 뇌암과 같은 암을 치료하기 위해, 심한 부작용을 초래할 수 있는 화학요법제 또는 기타 약물을 과도하게 사용하지 않음으로써 환자의 삶의 질을 개선시키는 효율적이고 안전한 새 치료 방법에 대한 필요가 남아있다.
본 발명은 환자의 면역계를 자극하고 비침습적으로 항종양제로 작용하는 펩티드를 사용한다.
본 발명의 제 1 양태에서, 본 발명은 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92의 군으로부터 선택된 아미노산 서열 또는 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92에 대해 적어도 80%, 바람직하게는 적어도 90% 상동성(바람직하게는 적어도 80% 또는 적어도 90% 동일한)인 이의 변이체 서열을 포함하는 펩티드 또는 이의 약학적으로 허용 가능한 염에 관한 것으로, 상기 변이체는 상기 펩티드와 T 세포 교차 반응을 유도하며, 상기 펩티드는 전장 폴리펩티드가 아니다.
본 발명은 또한 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92의 군으로부터 선택된 아미노산 서열 또는 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92에 대해 적어도 80%, 바람직하게는 적어도 90% 상동성(바람직하게는 적어도 80% 또는 적어도 90% 동일한)인 이의 변이체 서열을 포함하는 본 발명의 펩티드에 관한 것으로, 상기 펩티드 또는 이의 변이체가 갖는 전체 길이는 서열번호 1 내지 65, 서열번호 78 내지 서열번호 84, 및 서열번호 92에 대해 8 내지 100, 바람직하게는 8 내지 30, 가장 바람직하게는 8 내지 14개의 아미노산이고, 서열번호 76 및 77은 12 내지 100, 바람직하게는 12 내지 30, 가장 바람직하게는 12 내지 18개의 아미노산이다.
다음 표에는 본 발명에 따른 펩티드들과 각각의 서열번호, 및 이 펩티드들의 장래의 출처 단백질이 나와 있다. 표 1a, 1b 및 1c에 있는 모든 펩티드는 HLA A*02 대립형질과, 표 1d의 펩티드는 HLA-DR 대립형질과 각각 결합한다. 표 1c의 펩티드는 또한 위암 및/또는 교아종의 진단 및/또는 치료에 유용하다.
표 1d의 유형 II 펩티드는 또한 MMP12 또는 POSTN이 과발현 또는 과제시되는 위암과 기타 암들의 진단 및/또는 치료에 유용하다.
그러므로 본 발명은 특히 서열번호 76, 또는 서열번호 76과 적어도 80%, 바람직하게는 적어도 90% 상동성(바람직하게는 적어도 80% 또는 적어도 90% 동일한)인 이의 변이체에 따른 서열을 포함하는 본 발명의 펩티드에 관한 것으로, 상기 펩티드나 이의 변이체는 12 내지 100, 바람직하게는 12 내지 30, 가장 바람직하게는 12 내지 18개의 아미노산인 전체 길이를 갖는다. 본 발명은 특히 서열번호 76에 따른 서열로 구성되는 본 발명의 펩티드에 관한 것이다.
또한 본 발명은 특히 서열번호 77, 또는 서열번호 77과 적어도 80%, 바람직하게는 적어도 90% 상동성(바람직하게는 적어도 80% 또는 적어도 90% 동일한)인 이의 변이체에 따른 서열을 포함하는 본 발명의 펩티드에 관한 것으로, 상기 펩티드나 이의 변이체는 12 내지 100, 바람직하게는 12 내지 30, 가장 바람직하게는 12 내지 18개의 아미노산인 전체 길이를 갖는다. 본 발명은 특히 서열번호 77에 따른 서열로 구성되는 본 발명의 펩티드에 관한 것이다.
[표 1a]
본 발명의 펩티드
Figure pat00001
[표 1b]
본 발명의 추가 펩티드
Figure pat00002
[표 1c]
교아종 및/또는 위암에서도 과발현되는 추가 펩티드
Figure pat00003
[표 1d]
본 발명의 MHC 유형 II 펩티드
Figure pat00004
[표 1e]
다른 암에 더 풍부한 본 발명의 더욱 바람직한 펩티드
Figure pat00005
[표 1f]
다른 암에 더 풍부한 본 발명의 추가 펩티드
Figure pat00006
본 발명은 또한 인간 주 조직적합 복합체(MHC) 유형 I 또는 II의 분자와 결합하는 능력을 갖는 본 발명에 따른 펩티드에 관한 것이다.
본 발명은 또한 본 발명에 따른 펩티드에 관한 것으로, 상기 펩티드는 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92에 따른 아미노산 서열로 구성되거나 이로 본질적으로 구성된다.
본 발명은 또한 본 발명에 따른 펩티드에 관한 것으로 상기 펩티드는 변형되고/되거나 비펩티드 결합을 포함한다.
본 발명은 또한 본 발명에 따른 펩티드에 관한 것으로, 상기 펩티드는 융합 단백질의 일부이고, 특히 HLA-DR 항원-결합 항원-연관된 불변 쇄(Ii)에 융합되거나 또는 예를 들어 수지상 세포에 특이적인 항체와 같은 항체에(또는 그 서열 안으로) 융합된다.
본 발명은 또한 본 발명에 따른 펩티드를 인코딩하는 핵산에 관한 것이다.
본 발명은 또한 DNA, cDNA, PNA, RNA 또는 이들의 조합인 본 발명에 따른 핵산에 관한 것이다.
본 발명은 또한 본 발명에 따른 핵산을 발현할 수 있는 발현 벡터에 관한 것이다.
본 발명은 또한 의학에서의 사용을 위한 본 발명에 따른 펩티드, 본 발명에 따른 핵산, 또는 본 발명에 따른 발현 벡터에 관한 것이다.
본 발명은 또한 본 발명에 따른 항체, 및 이의 제조 방법에 관한 것이다.
본 발명은 또한 본 발명에 따른 T 세포 수용체(TCR), 특히 가용성 TCR(sTCR), 및 이들의 제조 방법에 관한 것이다.
본 발명은 또한 본 발명에 따른 핵산 또는 전에 설명한 발현 벡터를 포함하는 숙주 세포에 관한 것이다.
본 발명은 또한 항원 제시 세포인 본 발명에 따른 숙주 세포에 관한 것이다.
본 발명은 또한 본 발명에 따른 숙주 세포에 관한 것이고, 이때 항원 제시 세포는 수지상 세포이다.
본 발명은 또한 본 발명에 따른 펩티드 제조 방법에 관한 것으로, 그 방법은 본 발명에 따른 숙주 세포를 배양하는 단계, 및 숙주 세포 또는 그의 배양 배지로부터 펩티드를 단리하는 단계를 포함한다.
본 발명은 또한 시험관 내에서 세포 독성 T 림프구(CTL)를 항원-특이적 방식으로 상기 CTL을 활성화시키기에 충분한 시간 동안 적합한 항원 제시 세포의 표면에 발현된 인간 유형 I 또는 II MHC 분자가 로딩된 항원과 접촉시키는 것을 포함하는 활성화된 CTL의 시험관 내 제조 방법에 관한 것으로, 상기 항원은 본 발명에 따른 임의의 펩티드이다.
본 발명은 또한 본 발명에 따른 방법에 관한 것으로, 충분한 양의 항원을 항원 제시 세포와 접촉시킴으로써 항원이 적합한 항원 제시 세포의 표면에 발현된 유형 I 또는 II MHC 분자 위에 로딩된다.
본 발명은 또한 본 발명에 따른 방법에 관한 것으로, 항원 제시 세포가 서열번호 1 내지 92를 포함하는, 바람직하게는 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92를 포함하는 펩티드 또는 상기 변이체 아미노산 서열을 발현할 수 있는 발현 벡터를 포함한다.
본 발명은 또한 본 발명에 따른 아미노산 서열을 포함하는 폴리펩티드를 비정상적으로 발현하는 세포를 선택적으로 인식하는 본 발명에 따른 방법에 의해 제조된 활성화된 세포독성 T 림프구(CTL)에 관한 것이다.
본 발명은 또한 표적 세포가 본 발명에 따른 임의의 아미노산 서열을 포함하는 폴리펩티드를 비정상적으로 발현하는 환자에서 그 표적 세포를 죽이는 방법에 관한 것으로, 상기 방법은 본 발명에 따른 효과적인 수의 세포 독성 T 림프구(CTL)를 환자에게 투여하는 것을 포함한다.
본 발명은 또한 설명한 임의의 펩티드, 본 발명에 따른 핵산, 본 발명에 따른 발현 벡터, 본 발명에 따른 세포, 또는 본 발명에 따른 활성화된 세포 독성 T 림프구를 약제로서 또는 약제의 제조에서의 사용에 관한 것이다.
본 발명은 또한 본 발명에 따른 용도에 관한 것으로, 상기 약제는 백신이다.
본 발명은 또한 본 발명에 따른 용도에 관한 것으로, 상기 약제는 암에 대해 활성을 갖는다.
본 발명은 또한 본 발명에 따른 용도에 관한 것으로, 상기 암 세포는 폐암 세포, 위, 위장, 결장, 췌장 또는 신장 암 세포 및 교아종 세포이다.
본 발명은 또한 폐, 위, 위장, 결장, 췌장 또는 신장 암 및 교아종의 진단 및/또는 예후에 사용할 수 있는 본 발명에 따른 펩티드에 근거한 특정 마커 단백질 및 바이오마커에 관한 것이다.
뿐만 아니라, 본 발명은 암 치료를 위해 이러한 신규 표적들의 사용에 관한 것이다.
면역 반응의 자극은 숙주 면역계에서 항원의 존재를 이질적인 것으로 인식하는 것에 의존한다. 종양 연관 항원 존재의 발견은 숙주의 면역 반응이 종양 성장에 개입하는 가능성을 제시하였다. 현재 암 면역 치료에서 면역계의 체액성, 및 세포성 가지(arm)를 이용하는 다양한 기전이 탐색되고 있다
세포 면역 반응의 특정 요소는 종양 세포를 특이적으로 인식하고 파괴할 수 있다. 세포 독성 T 세포(CTL)의 종양 침투 세포 집단 또는 말초 혈액에서의 분리는 이런 세포들이 암에 대해 자연 면역 방어로서의 중요한 역할을 할 수 있다는 것을 시사한다. 시토졸에 자리잡은 단백질이나 결점 리보솜 산물(DRIPS)에서 유래한 통상 8 내지 10개의 아미노산 잔기를 갖는 주 조직적합 복합체(MHC) 포함 펩티드의 유형 I 분자를 인식하는 CD8 양성 T 세포(TCD8+)는 이 반응에서 특히 중요한 역할을 한다. 인간의 MHC 분자도 인간 백혈구-항원(HLA)으로 지정된다
MHC 분자는 두 유형로 나누어진다. MHC 유형 I 분자는 대부분의 핵을 갖는 세포에서 찾을 수 있다. MHC 분자는 알파 중쇄와 베타-2-마이크로글로불린(MHC 유형 I 수용체) 또는 알파와 베타 쇄(MHC 유형 II수용체)로 각각 구성되어 있다. 이들의 3차원 형태는 결합 홈을 형성하며, 이는 펩티드와의 비공유결합에 사용된다. MHC 유형 I은 대부분 내인 단백질, DRIP와 큰 펩티드의 단백질분해성 절단으로 인해 생성된 펩티드를 제시하고, MHC 유형 II 분자는 대부분 전문적인 항원 전달 세포(APC)에서 찾아 볼 수 있다. 이들은 주로 APC로부터 세포내 섭취 중 섭취된 외인 또는 막전 단백질의 펩티드를 제시하며, 이는 후에 처리된다. 펩티드와 MHC 유형 I 분자의 복합물은 적당한 T 세포 수용체(TCR)를 갖는 CD8-양성 세포 독성 T 림프구에 의해서 인식이 되는 반면, 펩티드와 MHC 유형 II 분자의 복합물은 적절한 TCR을 갖는 CD4 양성 도움 T 세포에 의해 인식된다. TCR, 펩티드 및 MHC가 화학양론적으로 1:1:1로 존재한다는 사실은 잘 알려져 있다.
CD4 양성 도움 T 세포는 CD8 양성 세포 독성 T 세포에 의한 효과적인 반응을 유도하고 지속하는데 중요한 역할을 한다. 종양 관련 항원(TAA)에서 유도된 CD4 양성 T 세포 항원결정인자의 식별은 항종양 면역 반응을 개시하기 위한 의약품의 개발에 아주 중요하다(Kobayashi et al., 2002; Qin et al., 2003; Gnjatic et al., 2003). 종양 부위에서, 도움 T 세포는, CTL 친화적 사이토킨 주위 환경을 지원하고(Mortara et al., 2006), 효과기 세포, 예를 들면 CTL, NK 세포, 대식 세포, 과립구를 유인한다(Hwang et al., 2007).
염증이 없는 경우, MHC 유형 II 분자의 발현은 주로 면역계의 세포, 특히 전문적 항원 제시 세포(APC)로 제한된다, 예를 들면, 단핵 세포, 단핵 세포 유도 세포, 대식 세포, 수지상 세포가 있다. 암 환자에게서 종양 세포는 놀랍게도 MHC 유형 II를 발현하는 것으로 알려졌다(Dengjel et al., 2006).
예를 들면, 쥐 같은 포유류 동물 모델에서 CTL 효과기 세포 없이도(즉, CD8 양성 T 림프구), CD4 양성 T 세포가 인터페론-감마(IFNγ의 분비에 의한 혈관신생의 저해를 통해 종양의 발현을 억제하는 데 충분하다는 것이 밝혀졌다.
또한, HLA 유형 II 분자에 의해 제시된 종양 관련 항원에서 펩티드를 인식하는 CD4 양성 T 세포가 항체(Ab) 반응을 유도하여 종양 진행을 방지할 수 있다는 것이 밝혀졌다.
HLA 유형 I 분자에 결합하는 종양 관련 펩티드와 달리, 지금까지 밝혀진 종양 관련 항원(TAA)의 유형 II 리간드는 소수에 불과하다.
HLA 유형 II 분자의 기본 구성 발현이 일반적으로 면역계의 세포로 제한되기 때문에, 유형 II 펩티드를 기본 종양에서 직접 분리하는 것은 가능하지 않다고 간주되었다. 그러나, 덴그옐(Dengjel) 등은 최근에 MHC 유형 II 항원결정인자를 종양에서 직접 분리하는데 성공하였다(WO 2007/028574, EP 1 760 088 B1;(Dengjel et al., 2006)).
종양 특이적 세포 독성 T 림프구, 즉 항원결정인자에 의해 인식되는 항원은 발현되고, 각각의 종양 세포에서 상향 조절된 동일한 기원의 변형되지 않은 세포와 비교할 때 효소, 수용체, 전사 인자 등의 모든 단백질 유형에서 유도된 분자일 수 있다.
두 반응 유형인 CD8 및 CD4 의존성은 항-종양 효과에 함께 추가적으로 기여하기 때문에, CD8+ CTL(리간드: MHC 유형 I 분자 + 펩티드 항원결정인자) 또는 CD4-양성 도움 T 세포(리간드: MHC 유형 II 분자 + 펩티드 항원결정인자)에 의해 인식되는 종양 관련 항원의 식별 및 특성화가 종양 백신의 개발에 중요하다.
또한 본 발명은 두 가지의 새롭고 매우 유용한 MHC 유형 II 펩티드(서열번호 76 및 77)에 관한 것이다. 이러한 펩티드는 MMP12 및 POSTN을 각각 과발현 및/또는 과제시하는 위암, NSCLC 및 기타 암의 진단 및/또는 치료에 특히 유용하다.
본 발명은 또한 서열번호 76 또는 77에 따른 독창적인 MHC 유형 II 펩티드의 소위 길이 변이체에 관한 것이다. 위에 언급한 바와 같이, 서열번호 76에 따른 펩티드는 아미노산 서열 INNYTPDMNREDVDYAIR(MMP12-펩티드)로 구성되며, 서열번호 77에 따른 펩티드는 아미노산 서열 TNGVIHVVDKLLYPADT(POSTN-002-펩티드)로 구성된다. 길이 변이체는 일반적으로 N- 및/또는 C-말단 연장된(아미노산 1 내지 5, 바람직하게는 1 내지 10) 또는 N- 및/또는 C-말단 단축된(1 내지 5개의 아미노산) 펩티드인데, 이는 여전히 MHC에 결합하여 여기서 설명한 세포 면역 반응을 유도할 수 있다. 최근 알려진 바와 같이, 유형 II 단백질에 결합하는 펩티드는 크기의 제약이 없으며 길이가 11 내지 30개인 아미노산이 결합되어 있을 수 있다. MHC 유형 II 분자에서 펩티드 결합 홈은 양쪽 끝이 모두 열려 있으며, 이는 비교적 길이가 긴 펩티드의 결합을 가능케 한다. "코어"인 9개 잔기의 긴 분절은 펩티드의 인식에 가장 크게 기여하지만, 인접 영역 또한 유형 II 대립 형질에 대한 펩티드의 특이성에 중요하다(예를 들어, 다음을 참고: 문헌[Meydan C, et al., Prediction of peptides binding to MHC class I and II alleles by temporal motif mining. BMC Bioinformatics. 2013; 14 Suppl 2: S13. Epub 2013 Jan 21]). 이러한 기술을 갖는 사람은 가용한 다수의 소프트웨어 툴(예를 들면, 위에서 설명한 대로)을 사용하여 결합 모티브를 파악할 수 있으므로, 길이 변이체의 창출을 위해 서열번호 76 또는 77에 따른 MHC 유형 II 펩티드의 연장 및/또는 결손 가능성을 파악할 수 있다.
펩티드가 세포 면역 반응을 촉발(유도)하려면 MHC 분자에 결합해야 한다. 이 프로세스는 MHC 분자의 대립형질, 및 해당 펩티드의 아미노산 서열의 특정한 다형성에 의존한다. MHC 유형 I-결합 펩티드는 대개 길이가 8 내지 12개인 아미노산 잔기이고 대개 해당 서열 내에 MHC 분자의 상응하는 결합 홈과 상호작용하는 2개의 유지되는 잔기("앵커")를 포함하고 있다. 이렇게 함으로써 각 MHC 대립형질은 어떤 펩티드가 결합 홈에 특이적으로 결합할 수 있는가를 결정하는 "결합 모티프"를 갖는다.
MHC 유형 I 의존 면역 반응에서, 펩티드는 종양 세포에 의해 발현되는 특정한 MHC 유형 I 분자와 결합할 수 있어야 하며 특이적인 T 세포 수용체(TCR)을 갖는 T 세포에 의해 인식될 수 있어야 한다.
종양 특이적 세포 독성 T 림프구에 의해 인식되는 항원, 즉 항원결정인자는 발현되는 효소, 수용체, 전사 인자 등 모든 단백질 유형에서 유도된 분자일 수 있고, 동일한 기원의 변형되지 않은 세포와 비교할 때 각각의 종양 세포에서 상향 조절된다.
종양 관련 항원의 현재 분류는 다음과 같은 주요 군을 포함한다:
a) 암-고환 항원: T 세포에 의해 인식될 수 있는 단리된 첫 번째 TAA는 이 종류에 속하며, 이는 그 멤버들의 발현이 조직학적으로 인간 종양과 다르며, 정상 조직 중에는 고환의 정모 세포/정원 세포에서만 있으며, 때로는 태반에도 있기 때문에 초기에 암-고환(CT) 항원이라고 불려졌다. 고환의 세포들이 유형 I 또는 II HLA 분자를 발현하지 않기 때문에, 이 항원들은 정상 세포에 있는 T 세포에 의해 인식될 수 없으므로 면역학적으로 종양-특이적라고 간주될 수 있다. CT 항원의 잘 알려진 예로는 MAGE과 멤버들 또는 NY_ESO_1이 있다.
b) 분화 항원들: 이 TAA는 종양과 종양이 생긴 정상 조직 사이에서 공유되고; 대부분은 흑색종과 정상 멜라닌세포에서 발견된다. 많은 멜라닌세포 혈통-관련 단백질은 멜라닌의 생합성에 관련되어 있으므로 종양 특이적 아니지만 암 면역치료에 널리 사용된다. 예로는, 흑색종을 위한 티로시나아제 및 멜란-A/MART-1, 전립선암을 위한 PSA가 있고 이에 국한되지 않는다.
c) 과발현된 TAA: TAA를 널리 발현시키는 유전자 인코딩은 일반적으로 낮은 발현 수준의 많은 정상 조직뿐만 아니라 조직학적으로 다른 종양 종류들에서 발견된다. 정상 조직에서 처리되고 잠재적으로 제시되는 많은 항원결정인자가 T 세포 인식의 한계치 수준보다 낮을 수 있고, 종양 세포에서 항원결정인자의 과발현은 이전에 생성된 내성을 중단함으로써 항암 반응을 일으킬 수 있다. TAA의 이 종류의 유력한 예로는 Her-2/neu, 서바이빈(Survivin), 텔로머레이스 또는 WT1이 있다.
d) 종양 특이적 항원: 이러한 고유 TAA는 정상 유전자의 돌연변이에서 발생한다(예컨대, β-카테닌, CDK4, 등). 이러한 분자 변화의 일부는 종양 형질전환 및/또는 진행과 관련되어 있다. 종양 특이적 항원은 일반적으로 정상 조직에 대한 자기 면역 반응의 위험성 없이 강한 면역 반응을 유도할 수 있다. 반면에, 대부분의 경우 TAA는 확인되고 일반적으로 많은 개별 종양에서 공유되지 않는 특정 종양에만 관련된다.
e) 비정상 번역 후 변형에서 발생하는 TAA: 이러한 TAA는 종양에서 특정하지도 않고 과발현되지도 않는 단백질에서 발생할 수 있지만 주로 종양에서 활성인 번역 후 과정에 의해 종양과 관련된다. 이 유형의 예는 종양 특이적일 수도 아닐 수도 있는 저하 동안의 단백질 스플라이싱과 같은 이벤트 또는 MUC1을 위한 종양의 새로운 항원결정인자로 이끄는 변경된 당화 패턴에서 발생한다.
f) 종양 바이러스 단백질: 이러한 TAA는 종양발생 과정에서 중요한 역할을 할 수 있는 바이러스 단백질이고, 그들이 이질적이기 때문에(인간 태생이 아닌), T 세포 반응을 일으킬 수 있다. 이런 단백질의 예로는 인간 유두종 유형 16 바이러스 단백질, 및 경부 암종에서 발현하는 E6과 E7이 있다.
종양 특이적 또는 관련 항원과 같은 세포 독성 T 림프구에 의해 단백질이 인식되고, 치료에 사용되려면, 특정한 전제 조건이 충족되어야 한다. 항원은 주로 종양 세포에 의해 발현되고 건강한 정상 조직에 의해서 발현되지 않거나 비교적 적은 양이 발현되거나, 다른 바람직한 구현에서는 펩티드는 건강한 정상 조직과 비교할 때 종양 세포에 의해 과제시되어야 한다. 더 바람직하게는, 각각의 항원이 하나의 유형의 종양에서뿐만 아니라 높은 농도로 나타나는 것이다(즉 세포마다 각각의 펩티드의 사본 수). 종양 특이적 및 종양 관련 항원은 종종 기능 때문에 예를 들어, 세포 주기 관리 또는 세포자멸(apoptosis)의 억제로 인해 정상 세포를 종양 세포로 변환하는데 관련된 단백질에서 직접적으로 유도된다. 또한, 형질전환을 직접적으로 일으키는 단백질의 하류 표적은 상향 조절될 수 있으므로 간접적으로 종양 관련될 수 있다. 이러한 간접적 종양 관련된 항원은 백신 접근법의 표적이 될 수도 있다(Singh-Jasuja et al., 2004). 두 경우 종양 관련 항원에서 유도된 이러한 펩티드("면역성 펩티드")는 시험관 내 또는 생체 내 T 세포 반응을 유도해야 하므로 항원결정인자가 항원의 아미노산 서열에 제시되는 것이 중요하다.
기본적으로, MHC 분자에 결합할 수 있는 모든 펩티드는 T 세포 항원결정인자로서 기능할 수 있다. 시험관 내 또는 생체 내 T 세포 반응 유도의 전제 조건은 상응하는 TCR이 있는 T 세포의 존재와 이 특정 항원결정인자에 대한 면역성 내성의 부재이다.
따라서, TAA는 종양 백신의 개발을 위한 출발점이다. TAA의 식별과 특성화의 방법은 환자 또는 건강한 대상자에서 분리할 수 있는 CTL의 사용에 기반하거나, 다른 전사 프로파일 또는 종양과 정상 조직 사이에 다른 펩티드 발현 패턴의 생성에 기반한다.
그러나, 종양 조직 또는 인간 종양 세포주에서 과발현되거나 이러한 조직 또는 세포주에서 임의적으로 발현된 유전자의 식별은 면역 치료에서 이런 유전자에서 전사된 항원의 이용에 대한 정확한 정보를 제공하지 않는다. 이것은 상응하는 TCR이 있는 T 세포가 제시되어야 하고 이 특정 항원결정인자에 대한 면역 내성이 없거나 최소화되어야 하기 때문에 이러한 항원의 항원결정인자의 개별 소집단만이 이러한 응용에 적합하기 때문이다. 따라서 본 발명의 매우 바람직한 구현에서, 기능성 및 증식성 T 세포가 발견될 수 있는 과발현된 펩티드 또는 임의적으로 제시한 펩티드만 선택하는 것은 중요하다. 이러한 기능성 T 세포는 특정 항원에 의해 자극되었을 때 클론이 증식되고 효과기 기능("효과기 T 세포")을 실행할 수 있는 T 세포로 정의된다.
본 발명에 따른 TCR 및 항체의 경우 기저 펩티드의 면역원성은 이차적인 것이다. 본 발명에 따른 TCR과 항체에서 그 제시가 결정 요인이다.
도움 T 세포는 항종양 면역에서 CTL 효과기 기능을 조절하는데 중요한 역할을 한다. TH1 유형의 도움 T 세포 반응을 개시하는 도움 T 세포 항원결정인자는 CD8 양성 킬러 T 세포의 기능을 지원하는데, 이러한 인자에는 세포 표면에 종양 관련 펩티드/MHC 복합체를 표시하는 종양 세포에 대한 세포 독성 기능이 포함된다. 이런 식으로 종양 관련 도움 T 세포 펩티드 항원결정인자는 단독으로 또는 다른 종양 관련 펩티드와 함께, 항종양 면역 반응을 자극하는 백신 조성의 활성 제약 원료로 사용될 수 있다.
본 발명에 따른 펩티드의 단백질에 대한 다음 설명에는 추가로 다른 암에 대한 사용이 공개된다.
ATP-결합 카세트, 아족 A(ABC1), 멤버 13(ABCA13)
인간에서 막투과 수송체의 ATP-결합 카세트(ABC) 패밀리는 적어도 48개의 유전자와 7개의 유전자 아족을 갖는다. 예측된 ABCA13 단백질은 5,058개의 아미노산 잔기로 구성되며 현재까지 설명된 가장 긴 ABC 단백질이다(Prades et al., 2002). 나이트(Knight) 등은 ABCA13 단백질이 생쥐와 인간의 태아 및 피질에 발현되며, 두 영역 모두 정신분열증과 양극성 장애와 관련 있는 것으로 판단하였다(Knight et al., 2009). ABCA13 유전자 지도는 염색체 7p12.3에 위치하는데, 이는 췌장에 영향을 미치는 유전적 질병(슈와크만-다이아몬드 증후군)을 포함하는 영역은 물론 T 세포 종양 침습 및 전이(INM7)에 연관된 위치이므로, 이러한 병리의 위치적 후보유전자이다(Prades et al., 2002).
기질 메탈로엘라스타제 12(대식세포 엘라스타제)(MMP12)
MMP12는 인간 메탈로엘라스타제(HME) 또는 대식세포 메탈로엘라스타제(MME)로도 알려져 있으며 엘라스틴 분해 능력이 있는 것으로 인식되는 아연 엔도펩티다제이다. 이 밖에도 광범위한 기질 범위를 가지며, 콜라겐, 피브로넥틴, 라미닌, 프로테오글리칸과 같은 다른 기질 단백질, 및 알파-1-안티트립신과 같은 비기질 단백질로 확장된다. 천식, 폐기종 및 만성 폐쇄성 폐질환(COPD)에서, MMP12는 폐포 파괴와 기도 재형성에 기여할 수 있다(Cataldo et al., 2003; Wallace et al., 2008). MMP12는 대식세포 이동에 연관된 것으로 나타났으며, 플라스미노겐으로부터 혈관 생성 억제 인자(안지오스타틴)를 생성할 수 있으므로, 혈관 생성의 억제에 기여한다(Chakraborti et al., 2003; Chandler et al., 1996; Sang, 1998). 다른 메탈로프로티나제와 같이, MMP12는 배아 형성과 같은 생리적 과정, 상처 치유 및 월경 주기(Chakraborti et al., 2003; Labied et al., 2009)는 물론 조직 파괴의 병리학적 과정에도 관여한다.
데이터는 몇 가지 사례에서 소수의 환자에 근거하지만, MMP12가 흔히 암에서 과발현된다는 충분한 문헌 증거가 있다(Denys et al., 2004; Hagemann et al., 2001; Ma et al., 2009; Vazquez-Ortiz et al., 2005; Ye et al., 2008). 하지만 임상적 매개변수와 예후에 미치는 MMP12 과발현의 영향에 대한 데이터는 논란의 여지가 있다. 이것이 기질 용해와 그에 따른 전이에 관여할 수 있는 반면, 혈관 생성 억제 인자의 생산을 통해 종양의 성장을 억제할 수도 있으며, 이는 혈관형성에 부정적인 영향을 미친다(Gorrin-Rivas et al., 2000; Gorrin Rivas et al., 1998; Kim et al., 2004).
폐암에서 MMP12 발현의 결과에는 논란의 여지가 있다. 염증 유발의 폐 재형성에서 상피 세포의 MMP12 과발현이 보고된 바 있다. MMP12 상향조절은 폐기종에서 폐암으로의 진행에 기여할 수 있다(Qu et al., 2009). 동물 연구에 의하면 간질이나 대식세포에 의한 MMP12 발현은 폐 종양 성장의 억제를 시사한다(Acuff et al., 2006; Houghton et al., 2006). 하지만 폐 종양에서 MMP12 과발현은 재발, 전이성 질병 및 전제 후 보다 짧은 무재발 생존 기간과 상관관계가 있다는 보고도 있다(Cho et al., 2004; Hofmann et al., 2005).
디스토닌(DST)
DST(BPAG1-e)는 부착 연접 플라크 단백질의 플라킨 단백질 패밀리의 멤버를 인코딩한다. BPAG1-e는 상피 세포에서 발현되는데 케라틴 함유 중간 필라멘트를 헤미데스모솜(HD)에 고정시킨다. HD는 중층 및 복합 상피에서 상피 간질 부착을 촉진하는 다중단백질 부착 복합체이다. HD 기능의 조정은 상처 치유와 암종 침입 시 각질 세포의 분화 및 이동과 같은 다양한 생물학적 프로세스에서 중대하며, 이 때 세포는 기질로부터 분리되어 운동성 표현형을 취득하게 된다(Litjens et al., 2006).
악성 흑색종은 가장 공격적인 유형의 종양에 속한다. BPAG1는 인간 흑색종 세포주(A375 및 G361), 및 정상 인간 멜라닌세포에서 발현된다. 흑색종 환자의 혈청에서 항-BPAG1 자동 항체의 수준은 건강한 자원 봉사자의 혈청의 수준보다 유의하게 더 높았다(p<0.01). 항-BPAG1 자동-항체는 흑색종의 진단을 위한 유망한 마커일 수 있다(Shimbo et al., 2010). DST는 유방암 침습과 연관되었다(Schuetz et al., 2006). BPAG1 유전자는 코인두 암종 NPC의 증식, 세포자멸, 침입 및 전이에 관여할 가능성이 있다(Fang et al., 2005).
기질-재구축 관련 5(MXRA5)
MXRA5는 아들리칸으로도 알려져 있으며 부착 프로테오글리칸을 인코딩하며 ECM 재구축 및 세포-세포 부착에 관여하는 유전자 군에 속한다(Rodningen et al., 2008). 암에서 MXRA5의 기능은 알려져 있지 않지만, MXRA5에서 체세포 돌연변이는 피부, 뇌, 폐 및 난소와 같은 다양한 조직으로부터 얻은 종양에서 확인된 바 있다. 아들리칸(MXRA5)에 대해 RT-PCR을 수행했으며, 마이크로어레이에서 정상 결장 조직과 비교해 결장암에서 과발현이 발견되었다(13개 직장결장 및 13개 정상 조직) (Zou et al., 2002). 최근 연구에서 MXRA5는 NSCLC에서 두 번째로 가장 빈번히 변이되는 유전자였다(첫 번째는 TP53)(Xiong et al., 2012).
사이클린-의존 키나아제 4(CDK4)/사이클린-의존 키나아제 6(CDK6)
CDK4는 Ser/Thr 단백질 키나아제 족의 구성원이다. 이는 단백질 키나아제 복합체의 촉매 하위 단위로서 세포 주기 G1기의 진행에 중요하다. 이 키나아제의 활성은 세포 주기 G1기에서 S기로의 전이가 제한되며 그 발현은 일차적으로 전사 수준에서 조절된다(Xiao et al., 2007). CDK4 및 CDK6 효소 및 그 조절 인자, 예를 들어 사이클린은 배아형성, 항상성 및 발암에서 중대한 역할을 수행한다(Graf et al., 2010).
폐암 조직에서 CDK4 단백질의 발현 수준은 정상 조직에 비해 유의하게 증가하였다(P < 0.001). CDK4 발현이 더 높은 환자들은 CDK4 발현이 낮은 환자보다 총 생존 기간이 뚜렷이 더 짧았다. 다변수 분석에 의하면 CDK4 발현의 수준은 폐암 환자의 생존율에 대한 독립적인 예후 지수임을 시사한다(P < 0.001). 뿐만 아니라 CDK4 발현의 억제는 세포 주기 조절인자 p21의 발현을 유의하게 상승시킨다(Wu et al., 2011a). 내인성 K-Ras 종양유전자를 발현하는 폐 세포에서, Cdk2 또는 Cdk6이 아닌 Cdk4의 제거는 즉각적인 노화 반응을 유도한다. 단일 Cdk4 대립형질을 발현하는 폐나 다른 K-Ras 발현 조직에서는 이러한 반응이 발생하지 않는다. 전산화 단층촬영 스캔으로 검출할 수 있는 진행성 종양에서의 Cdk4 대립형질의 표적화 또한 노화를 유도하고 종양 진행을 방지한다(Puyol et al., 2010).
이형 핵 리보핵산단백질 H1(H)(HNRNP H1)/이형 핵 리보핵산단백질 H2(H')(HNRNP H2)
이 유전자들은 흔히 발현되는 이형 핵 리보핵산단백질(hnRNP)의 서브패밀리에 속한다. hnRNP는 RNA 결합 단백질이고 이형 핵 RNA(hnRNA)와 복합체를 이룬다. 이 단백질들은 핵에서 pre-mRNA와 연관되며 pre-mRNA 처리, 및 mRNA 대사와 이송의 기타 양상에 영향을 주는 것으로 보인다.
hnRNP H 활성은 줄기 세포 패턴의 재활성화를 반영할 수 있는 스플라이싱 종양형성 스위치의 중심으로서 악성 신경아교종의 발병기전 및 진행에 관여하는 것으로 보이고 세포자멸 및 침입으로부터 회피 등 공격적인 종양 행위의 여러 주요 양상을 매개한다(Lefave et al., 2011). 작은 간섭 RNA(siRNA) 매개 hnRNP H 또는 A-Raf의 억제는 MST2 의존 세포자멸을 초래하였다. 반대로 hnRNP H 또는 A-Raf의 강제 발현은 에토포시드에 의해 유도된 세포자멸을 부분적으로 반격하였다(Rauch et al., 2010). hnRNP H/H'의 상향조절은 정상적으로 hnRNP H/H'의 낮은 세포질 수준을 발현하는 일부 조직에서 발견되며, 췌장의 선암종, 간세포 암종 및 위 암종이 그 예이다(Honore et al., 2004).
테트라트리코펩티드 반복서열, 알키린 반복서열 및 나선 코일 함유 2(TANC2)
TANC 패밀리는 TANC1 및 TANC2를 포함하며 2005년에 동정되었다(Han et al., 2010). TANC 패밀리 단백질은 수지상 돌기, 공간 학습 및 배아 발육 조절에 관여하며, 생쥐에서 TANC1 결핍은 해마의 돌기 밀도를 감소시키고 공간 학습 장애를 초래하는 반면 TANC2 결핍은 배아 치사를 유발한다. 반대로 배양된 뉴런에서 TANC1 및 TANC2의 과발현은 수지상 돌기 및 흥분 시냅스 밀도를 증가시킨다. TANC1 및 2 단백질은 주로 뇌에서 발현되며 여기서 단백질의 상당한 비율은 소포체막에 위치한다(Han et al., 2010).
링 핑거 단백질 213(RNF213)
RNF213은 C3HC4-유형 RING 핑거 도메인을 포함하는 단백질을 인코딩하며, 이는 2개의 아연 원자와 결합하는 특화된 유형의 Zn 핑거로서 단백질-단백질 상호작용의 매개에 관여하는 것으로 간주된다.
한 연구 군에서 모야모야 병에 대한 유전적 감수성에 있어서 RNF213의 관여를 시사하는 증거를 처음으로 제공하였다(Liu et al., 2011b). 또 다른 연구에서는 중국 한족 인구군에서 RNF213 유전자가 모야모야 병에 대한 감수성과 관련 있음을 보여주었다(Wu et al., 2012).
용질 운반자 패밀리 34(인산 나트륨) 멤버 2(SLC34A2)
SLC34A2는 pH 민감성 나트륨-의존 인산염 수송체이다. 충분히 분화된 종양에서 SLC34A2 유전자 발현의 상향조절은 난소 발암 과정의 세포 분화 과정을 반영할 수 있으며 난소암 진단 및 예후를 위한 잠재적 마커의 역할을 할 수 있다(Shyian et al., 2011). RT-PCR을 통해 유두 갑상선암에서 SLC34A2 발현의 증가가 확인되었다(Kim et al., 2010b). 정상 조직과 비교해서 유방암 조직들 사이에서 SLC34A2의 유전자 발현이 유의하게 증가된 사례도 있었다(Chen et al., 2010a).
SET 및 MYND 도메인 3(SMYD3)
히스톤 H3 라이신-4-특이적 메틸전이효소인 SMYD3의 상향조절은 결장직장 암종(CRC) 및 간세포 암종(HCC)의 증식에서 주요 역할을 하는 것으로 이전에 보고된 바 있다. 다른 연구에서는, 대다수의 유방암 조직들에서 SMYD3 발현이 또한 상승하는 것을 밝혀냈다. CRC 및 HCC와 유사하게, 이 유전자에 대한 작은 간섭 RNA에 의한 SMYD3의 억제(silencing)는 유방암 세포의 성장을 억제했으며, 이는 SMYD3 발현의 증가가 또한 유방암 세포의 증식에 필수적임을 시사한다(Hamamoto et al., 2006). RNA 간섭에 의한 SMYD3의 발현 억제(knockdown)는 c-Met 발현을 하향 조절하며 HGF에 의해 유도되는 세포 이동과 침입을 억제한다(Zou et al., 2009). SMYD3는 HeLa 세포 증식 및 이동/침입에 중대한 역할을 수행하며, 인간 자궁 암종에서 유용한 치료 표적이 될 수 있다(Wang et al., 2008b).
알도-케토 환원 효소족 1, 구성원 C1(AKR1C1)/알도-케토 환원 효소족 1, 구성원 C2(AKR1C2)
AKR1C1 및 AKR1C2의 차이는 7개의 아미노산 잔기일 뿐이다(Le et al., 2010). AKR1C1 및 AKR1C2는 안드로겐, 에스트로겐 및 프로게스테론의 활성과 더불어 상응하는 수용체의 사용 및 전사활성화를 조절한다(Penning et al., 2000; Steckelbroeck et al., 2004). 간 특이적인 AKR1C4를 제외한 AKR1C 효소들은 여러 정상 및 병든 조직에서 발현되므로, 폐, 유방, 전립선, 자궁내막 암, 골수성 백혈병 등과 같은 여러 질병과 관련된 바 있다(Brozic et al., 2011; Byrns et al., 2011). 시스플라틴에 대한 민감도는 상피 폐암 세포주(Chen et al., 2010b), 및 NSCLC 환자(Kuang et al., 2012; Stewart, 2010)에서 AKR1C 수준과 연관 있는 것으로 나타났다. 그러므로 AKR1C의 과발현은 인간 비소세포폐암(NSCLC)에서 불량한 예후와 화학요법 내성의 지표이다(Wang et al., 2007). AKR1C2의 과발현은 또한 전립선 암의 질병 진행과도 연관이 있다(Huang et al., 2010). RNAi에 의한 AKR1C2 발현의 감소는 생체 내 및 시험관 내에서 종양형성을 억제하는데, 이는 AKR1C2 siRNA가 간 발암을 차단하는 데 중대한 역할을 할 수 있음을 강력히 시사한다(Dong-Dong, 2007).
레티큘로칼빈 1, EF-핸드 칼슘 결합 도메인(RCN1)/레티큘로칼빈 3, EF-핸드 칼슘 결합 도메인(RCN3)
레티큘로칼빈 1은 ER의 내강에 위치한 칼슘-결합 단백질이다. 면역조직 화학 검사에 의하면 태아와 성인의 다양한 기관, 특히 내분비와 외분비 기관에서 RCN의 광범위한 분포를 잘 보여주었다. RCN의 과발현은 종양형성과 종양 침입 및 약물 내성에 기여할 수 있다(Fukuda et al., 2007). 레티큘로칼빈 1(RCN1)은 내피(EC) 및 전립선 암(PCa) 세포주의 세포 표면 관련 단백질이다. 세포 표면에서 RCN1 발현은 골수 내피 세포의 종양 괴사 요인 알파 치료에 의해 상향조절되었다(Cooper et al., 2008). RCN1은 결장직장 암종(CRC)에서 상향조절되며 암세포나 암세포 부근의 간질 세포에 위치하였다. 이는 CRC 마커의 신규 후보일 수 있다(Watanabe et al., 2008). RCN3는 분비 경로에 위치하는 여러 EF-핸드 Ca2+ 결합 단백질들이 CREC(Cab45/레티큘로칼빈/ERC45/칼류메닌) 패밀리의 멤버이다(Tsuji et al., 2006). 핍지신경교종(Oligodendroglioma)에서 RCN3은 잠재적으로 중요한 후보 유전자로서 제안된다. 하지만 RCN3의 기능에 대해서는 거의 알려진 바가 없다(Drucker et al., 2009).
인터루킨 8(IL8)
IL8은 염증 반응의 주요 매개체의 하나인 CXC 패밀리의 케모카인이다. 이 케모카인은 몇 가지 세포 유형에 의해 분비된다. 화학유인물질로서 작용하고 또한 잠재적 혈관형성 인자이다. IL8과 같은 CXC(ELR+) 케모카인은 혈관형성을 유도하므로 NSCLC과 같은 혈관형성 표현형을 갖는 암에서는 중요할 수 있다(Arenberg et al., 1997). 최근에 IL8로부터 유래한 종양이 순환 종양 세포의 유인물질로서 작용하여 보다 공격적인 종양 표현형을 가지는 원래 종양(유방암, 직장암, 흑색종 종양)으로 돌아가도록 하는 것으로 밝혀졌다(Kim et al., 2009). IL-8 수준은 진단 수 년 전의 폐암 위험과 연관이 있다. IL-8과 CRP의 조합은 추후 폐암을 예측하는 보다 강력한 바이오마커를 만든다(Pine et al., 2011). KRAS 또는 EGFR의 활성 돌연변이는 NSCLC에서 IL-8 발현을 상향조절하고; IL-8은 남성, 흡연자, 고령 NSCLC 환자, 흉곽이 관여된 NSCLC 및 KRAS-변이 선암종에서 고도로 발현되고; IL-8은 KRAS-유도 발암 NSCLC에서 세포 성장과 이동에 기여한다(Sunaga et al., 2012).
피리미딘 수용체 P2Y, G-단백질 연결, 6(P2RY6)
P2RY6는 G-단백질 연결 수용체 패밀리에 속한다. 이 패밀리에는 약리적 선택성이 다른 몇 가지 수용체 아형이 있으며, 이 선택성은 경우에 따라 다양한 아데노신과 우리딘 뉴클레오티드에 대해 중복된다. P2Y6 아형은 특히 태반에서 높은 수준으로 발현되는데, 이는 P2Y6가 태반 기능에서 중요한 역할을 수행함을 시사한다. 하지만 태반 내의 P2Y6 세포 국소화는 알려진 바 없다. P2Y6는 영양막 발육과 분화 및 신생물에서 중요한 역할을 수행한다(Somers et al., 1999). 폐 상피의 염증 반응에서 피리미딘-활성 P2Y 수용체가 중요한 역할을 하는 것으로 나타났다(Schafer et al., 2003).
HECT, UBA 및 WWE 도메인 1, E3 유비퀴틴 단백질 라이게이스(HUWE1)
HUWE1은 HECT E3 유비퀴틴 라이게이스 패밀리의 멤버를 인코딩한다. HECT 도메인은 C-말단에 존재하며 중간 유비퀴틴-티오에스테르 결합을 형성하는 활성 부위 시스테인을 함유한다.
ARF-BP1(HUWE1)은 ARF의 p53-비의존 및 p53-의존 종양 억제제 기능에 대한 중대한 매개체이다. 그러므로 ARF-BP1은 p53 상태에 관계없이 종양에서 치료 중재를 위한 가능한 표적이 될 수 있다(Chen et al., 2005a). ARF-BP1의 비활성화는 p53를 안정화시켰으며 세포자멸을 유도하였다(Chen et al., 2006). HUWE1(HectH9)은 여러 인간 종양에서 과발현되며 종양 세포의 아집단 증식에 필수적이다(Adhikary et al., 2005; Zhang et al., 2011a). 유방암에서 HUWE1은 관련 있는 예후 인자들, 및 임상적 결과와 유의한 상관관계가 있었다(Confalonieri et al., 2009).
베르시칸(VCAN)
VCAN은 아그레칸/베르시칸 프로테오글리칸족의 구성원이다. VCAN은 히알루로난, 테나스킨, 피불린-1, 피브로넥틴, CD44 및 L-셀렉틴, 피브릴린, 인테그린, 및 링크 단백질을 포함하는 세포외 기질에서 다수의 분자들과 연관 있는 것으로 알려져 있다(Zheng et al., 2004). VCAN은 다양한 조직에서 발현된다. 조직 발육의 초기 단계에서 고도로 발현되며, 그 발현은 조직 성숙 이후 감소한다. 발현은 또한 상처 치유와 종양 성장 중에 상승한다(Ghosh et al., 2010). VCAN의 인간 폐선암종(A549) 세포에 대한 RNA 간섭에 의한 발현 억제는 생체 내에서 종양 성장을 상당히 억제했으나 시험관 내에서는 그렇지 않았다(Creighton et al., 2005). VCAN은 p53의 직접 표적이다. VCAN의 높은 발현은 초기 전립선 암과 유방암의 종양주위 간질 조직에서도 발견되었으며, 이는 공격적인 종양 행위와 연관이 있다(Yoon et al., 2002).
드로셔, 리보뉴클레아제 유형 III(DROSHA)
드로셔는 RNAi 경로의 일환으로써 상보적 전령 RNA(mRNA)의 분할을 유도하기 위해 RNA-유도 침묵 복합체(RISC)와 상호작용으로써 광범위한 기타 유전자들을 조절하는 세포에 의해 자연적으로 발현되는 짧은 RNA 분자 또는 microRNA(miRNA)의 프로세싱 개시에 책임이 있는 유형 2 RNase III 효소이다. microRNA 분자는 pri-miRNA로 알려진 긴 RNA 초기 전사체로서 합성되며, 이는 드로셔에 의해 분할되어 pre-miRNA로 알려진 약 70개 길이의 염기 쌍으로 된 특정 줄기-루프 구조를 생성한다(Lee et al., 2003). 드로셔는 마이크로프로세서 복합체로 불리는 단백질 복합체의 일부로 존재하며, 이중 가닥 RNA 결합 단백질 파셔(또는 DGCR8) 또한 포함하는데(Denli et al., 2004), 이는 드로셔 활성도에 필수적이고 적합한 프로세싱에 요구되는 pri-miRNA의 단일가닥 단편들을 결합시킬 수 있다(Han et al., 2006). 인간 드로셔는 리보솜 RNA 전구체의 프로세싱에 관여하는 핵 dsRNA 리보뉴클레아제로서 동정된 2000년에 복제되었다(Wu et al., 2000). 드로셔는 최초로 동정되어 복제된 인간 RNase III 효소이다. miRNA의 프로세싱과 활성에 참여하는 다른 두 가지 인간 효소는 다이서 및 아르고나우트 단백질이다. 드로셔와 파셔 모두 pri-miRNA에서 pre-miRNA로의 프로세싱이 발생하는 세포 핵에 위치한다. 이후 후자의 분자는 세포질에서 RNase 다이서에 의해 성숙한 miRNA로 추가로 프로세싱된다(Lee et al., 2003). 드로셔 및 다른 miRNA 프로세싱 효소들은 암 예후에 중요할 수 있다(Slack and Weidhaas, 2008).
플렉스트린 상동영역 포함 패밀리 A(포스포이노시티드 결합 특이적) 멤버 8(PLEKHA8)
포스파티딜이노시톨-4-포스페이트 어댑터-2(FAPP2 = PLEKHA8)의 유전자는 수포 성숙화와 트랜스-골지에서의 형질막으로의 수송에 연관된 플렉스트린 상동성 도메인으로 세포질의 지질 전이효소를 인코딩한다(Cao et al., 2009). 대장 선암종 세포의 FAPP2를 표적으로 하는 리보자임을 대장 선암종에 도입시켜 Fas 작용제 항체의 존재 하에서 그 세포자멸을 유도하였다. 또한 FAPP2 siRNA가 도입된 신경아교종 및 유방 종양 세포는 세포자멸의 유의한 증가를 나타냈다(Tritz et al., 2009). 이후의 연구에서는 골기 복합체에서 글리코스핑리피드 대사에 관여한 지질 이전 단백질로서 FAPP2의 역할이 강조되었다(D'Angelo et al., 2012). 포스포이노시톨 4-포스페이트 어댑터 단백질-2(FAPP2)는 추가 동화 프로세싱을 위해 시스-골지에서 새로 합성되는 글루코실세라미드를 시토졸을 향해 위치한 글루코실세라미드 합성효소로부터 멀리 수송하기 위해 C-말단 도메인을 사용하여 글리코스핑고리피드(GSL) 생산의 주요 역할을 수행한다.(Kamlekar et al., 2013).
아세틸-CoA 카르복실리아제 알파(ACACA)
ACACA는 지방산 합성의 속도 결정 단계인 아세틸-CoA에서 말로일-CoA로의 카르복실화를 촉매하는 비오틴 함유 효소이다(Tong and Harwood, Jr., 2006). ACACA 상향 조절은 다수의 인간 암에서 인식된 바 있으며, 이는 암 세포의 신속한 성장과 증식의 요구 부합을 위해 지방형성을 촉진한다. 따라서 ACACA는 암 중재를 위한 잠재적 표적으로서 효과적일 수 있으며, 대사성 질병의 치료를 위해 개발된 억제제는 암 요법을 위해 잠재적인 치료제가 될 수 있다(Wang et al., 2010a). 두 연구에서 RNA의 간섭에 의한 ACACA의 억제는 FASN 유전자 발현의 억제 후 관찰되는 정도와 거의 같게 성장 억제를 초래하고 세포사를 유도하는 것으로 나타났다(Brusselmans et al., 2005; Chajes et al., 2006). ACACA의 알로스테릭 억제제인 TOFA(5-테트라데사이클록시-2-퓨론산)는 폐암 세포 NCI-H460 및 대장 암종 세포 HCT-8 및 HCT-15에 대해 세포독성이고 세포자멸을 유도한다(Wang et al., 2009a). ACACA의 또 다른 고도로 강력한 억제제인 소라펜 A는 대장암 세포에서 지방형성을 차단하고 지방산 산화를 강화시킨다. 암 세포는 증식을 중단하고 궁극적으로 죽는다(Beckers et al., 2007). 이러한 발견 내용은 말로닐-CoA 축적과는 별개로, 지방형성 억제 자체는 암 세포사를 초래할 수 있으며 또한 ACACA가 결국 항신생물 요법을 위한 표적일 수 있음을 시사한다(Brusselmans et al., 2005).
인테그린, 알파 11(ITGA11)
인테그린은 광범위한 세포와 발육 과정에서 중대한 역할을 수행하며, 세포 성장, 분화 및 생존은 물론 발암, 암 세포 침입 및 전이가 포함된다. 인테그린 알파 11(ITGA11/알파 11)은 간질 섬유모세포에 위치하며 비소세포 폐암(NSCLC)에서 보통 과발현된다. 알파 11 mRNA는 폐 선암종과 편평 세포 암종 모두에서 과발현되었다(Wang et al., 2002). 알파 11이 생체 내 NSCLC 세포의 성장을 촉진시키는 섬유모세포의 능력에 있어서 중요한 역할을 수행하며, 이러한 활성도는 IGF2 발현의 조절에 의해 부분적으로 매개됨이 보고된 바 있다(Zhu et al., 2007). NSCLC 환자의 임상병리학적 특성에 있어서, hMTH1, SPD, HABP 2, ITGA11, COL11A1 및 CK-19의 과발현은 병기와 유의하게 상관관계가 있었다(p<0.05). 그 밖에 hMTH1, SPD, ITGA11 및 COL11A1의 과발현은 림프절 전이 및 불량한 예후와 상관관계가 있었다(Chong et al., 2006).
콜라겐 유형 XII, 알파 1(COL12A1)
COL12A1 유전자는 FACIT(중단된 3중 헬릭스를 갖는 원섬유-관련된 콜라겐) 콜라겐 패밀리의 멤버인 유형 XII 콜라겐의 알파쇄를 인코딩한다. 유형 XII 콜라겐은 유형 I 콜라겐과 연관하여 발견되는 호모트리머이고, 이 연관은 콜라겐 I 피브릴과 주위 기질 사이의 상호작용을 변경시키는 것으로 사료된다(Oh et al., 1992). COL12A1은 피브릴과 기타 기질 성분 사이의 특정 분자 가교를 제공하는 기저막 조절에 관여할 수 있다(Thierry et al., 2004). COL12A1은 심장, 태반, 폐, 골격 근육 및 췌장(Dharmavaram et al., 1998), 및 관절 및 골단 연골 등 다양한 결합 조직(Gregory et al., 2001; Walchli et al., 1994; Watt et al., 1992)에서 발현된다. COL12A1은 미세위성 불안정성이 낮거나 없는 안정한 군과 비교할 때 미세위성 불안정성이 높은 종양에서 하향조절되었다(Ortega et al., 2010).
엘라스타아제, 중성구 발현(ELANE)
중성구 엘라스타아제(또는 백혈구 엘라스타아제)는 ELA2(엘라스타아제 2, 중성구)로도 알려져 있으며, 키모트립신과 같은 패밀리에서 세린 단백분해효소이고 광범위한 기질 특이성을 갖는다. 염증이 생기면 중성구에 의해 분비되어 세균과 숙주 조직을 파괴한다(Belaaouaj et al., 2000). 인간 중성구 엘라스타아제(ELANE)는 만성 폐쇄성 폐질환 진행의 주요 요인으로 최근에 비소세포 폐암 진행에 관여된 바 있다. 이는 몇 가지 수준으로 작용할 수 있는데, (i) 세포 내에서 예를 들어 연결체 분자 인슐린 수용체 기질-1(IRS-1)을 제거하거나, (ii) 세포 표면에서 CD40로서 수용체를 가수분해하거나, (iii) 세포 외 공간에서 엘라스틴 단편, 즉, 암세포의 침입성과 혈관 형성을 잠재적으로 촉진하는 모포엘라스토카인을 생성한다(Moroy et al., 2012). 중성구 엘라스타아제는 종양 세포 내에 엔도솜 구획에서 인슐린 수용체 기질-1(IRS-1)을 분해시켜 접근함으로써 인간과 생쥐의 폐 선암종 모두에서 종양 세포의 증식을 직접 유도하였다(Houghton et al., 2010).
세르핀 펩티다아제 억제제, 클레이드 B(난알부민), 멤버 3(SERPINB3)
편평 세포 암종 항원(SCCA)은 SERPINB3로도 불리며, 세린 프로테아제 억제제(세르핀) 고분자량 패밀리의 멤버이다(Suminami et al., 1991). 머리와 목 조직 및 기타 상피암에서 높은 농도가 보고된바 있다(Torre, 1998). SCCA는 종양 주위 조직에 비해 종양 조직에서 과발현되는 것으로 보고되었으며, 이는 HCC의 조직학적 검출을 위한 가능한 마커로서의 역할을 시사한다(Pontisso et al., 2004). 세르핀 B3/B4, 특히 세르핀 B4는 이상 상피 증식에서 중요한 역할을 하는 것으로 보인다. 세르핀 B3/B4의 평가는 특히 폐암에 대해 증가된 감수성을 갖는 환자에서 질병 진형의 예측에 대한 예후 가치를 가질 수 있다(Calabrese et al., 2012). 한편으로는 SCCA1(SERPINB3)은 리소좀 손상에 의해 유도되는 세포사를 억제하는 반면, 죽음 수용체 세포자멸 경로와 무관하게 카스파아제-8 활성화에 의해 ER 스트레스에 대해 세포를 감작화한다(Ullman et al., 2011). 일부 발견 내용에 의하면 SERPINB3은 표피 장벽 이상에 있어 중요한 역할을 한다. SERPINB3은 표피의 장벽 기능에 대한 중대한 결정인자일 수 있다(Katagiri et al., 2010).
키네신족 구성원 26B(KIF26B)
키네신은 진핵 세포에서 발견되는 모터 단백질 등급에 속하는 단백질이다. 키네신은 미세소관 섬유를 따라 이동하며 ATP 가수분해에 의해 힘을 받는다(따라서 키네신은 ATPases임). Kif26b는 키네신 패밀리 유전자로서 Sall1의 하류 표적이다(Nishinakamura et al., 2011). Kif26b는 요관아와 접촉하는 중간엽 세포의 부착을 조절하기 때문에 신장 발달에 필수적이다. 시험관 내 Kif26b의 과발현은 비근육 미오신과의 상호작용을 통해 세포 부착의 증가를 초래하였다(Terabayashi et al., 2012; Uchiyama et al., 2010).
강직증, 진행성 동족체(생쥐)(ANKH)
ANKH(진행성 강직증의 인간 동족체)는 세포막을 통한 무기 피로인산염(PPi)의 운반을 조절한다(Wang et al., 2008a). 일부 데이터는 시험관 내 및 생체 내에서 ANKH 발현 및 기능은 저산소 환경에서 억압되며 그 영향은 HIF-1에 의해 조절됨을 시사한다(Zaka et al., 2009). 인간 ANKH 유전자는 생체 내에서 조직-특이적 방식으로 발현되며, 가장 높은 수준의 mRNA 발현은 뇌, 심장 및 골격 근육에서 나타난다(Guo et al., 2001). ANKH 유전자에서 돌연변이는 보통염색체 우성 두개골간단형성 이상과 연관된 바 있다(Kornak et al., 2010). ANKH는 증폭이 없는 세포주에 비해 증폭을 갖는 경부암 세포주에서 유의하게 상향조절되었다(Kloth et al., 2007). 염색체 팔 5p 상 영역의 유전자 증폭은 소세포 폐암(SCLC)에서 빈번히 관찰되었으며, 이는 이 팔에 다수의 종양 유전자가 존재함을 내포하는 것이다. Coe 등은 통상의 선별에 의한 검출을 피한 미세결실의 동정, 및 신규의 추정 종양유전자로서 TRIO 및 ANKH의 동정을 설명하였다(Coe et al., 2005).
핵 RNA 이동 인자 1(NXF1)
인간 세포에서 mRNA 이동 인자 NXF1는 핵형질 내부, 및 핵공 복합체에 존재한다(Zhang et al., 2011b). 핵 내부의 전사 부위로부터 세포질 내 번역 부위로의 mRNA 이동은 진핵 유전자 발현에 있어서 필수적인 과정이다. 인간 세포에서 mRNA 이동 인자 NXF1(TAP로도 알려져 있음)은 mRNA, mRNA 어댑터 단백질 및 핵공 복합체의 페닐알라닌-글리신(FG) 중복 부위에 동시에 결합함으로써 mRNA 전사물을 핵 밖으로 수송한다(Kelly and Corbett, 2009). NXF1은 NPC를 통해 단백질 운반 대상, tRNA 및 microRNA를 이동하는 카리오페린과 어떠한 구조적 또는 기계적-유사함이 없는 멀티도메인 단백질이므로, 핵외 수송 인자들 가운데에서 고유하다. NXF1에 의한 mRNA 이동은 GTPase Ran과는 독립적으로 발생하는 과정이다(Gruter et al., 1998). mRNP의 핵외 수송은, mRNP와 결합하고 FG-뉴클레오포린과의 일시적인 상호작용에 의해 핵공의 중앙 채널을 통해 전위를 매개하는 NXF1과 같은 핵공의 중앙 채널을 통해 전위를 매개하는 이동 인자들에 의해 매개된다(NPC)(Wickramasinghe et al., 2010). mRNA는 NXF1/TAP가 관여하는 벌크 핵외 수송 경로 또는 염색체 영역 유지관리 1(CRM1)이 관여하는 보다 특화된 경로에 의해 수송될 수 있다(Siddiqui and Borden, 2012).
G-단백질 시그널링 4의 조절인자(RGS4)
RGS4는 GTPase 가속화 단백질로서 작용하여 μ- 및 δ- 아편유사제 수용체(각각 MOR 및 DOR) 시그널링을 조정한다. RGS4에서 아편유사제 작용제-유도 감소는 유비퀴틴-프로테아좀 경로를 거쳐 발생하며 모르핀-의존 상태에서 세포 항상성의 유지 관리에 기여할 수 있다(Wang and Traynor, 2011). RGS4는 베타-세포 기능의 조절에서 중요한 기능을 수행한다(Ruiz, I et al., 2010). 씨에(Xie) 등은 RGS4를 전이 케스케이드의 중요 단계인 유방암 이동 및 침입의 신규 억제제로서 제안하였다(Xie et al., 2009). RGS4는 갑상선 암종에서 과발현되었다. 갑상선암 세포에서 그 발현 수준의 효과적인 하향조절은 갑상선 암 세포의 생존력을 상당히 약화시켰으며, 이는 갑상선 발암에서 RGS4의 유의한 역할을 나타낸다(Nikolova et al., 2008). RGS4는 인간 췌장 종양 세포주에서 차등적으로 발현되었으며, 췌장 암종에서 국소 종양 침입 및 간 전이에 대한 마커 유전자가 될 수 있는 것으로 나타났다(Niedergethmann et al., 2007). RGS4 과발현은 G 단백질 매개 p38 MAPK 활성화를 임의적으로 억제하고 그에 따른 상피세포 증식, 이동 및 혈관 내피세포 성장 인자(VEGF)의 발현을 감소시켜 폐 상피 세포의 관형성(tubulation)을 지연 및 변형시켰다(Albig and Schiemann, 2005).
글루타민-과당-6-포스페이트 트랜스아미나아제 2(GFPT2)
GFPT2는 신경돌기의 외성장, 조기 뉴런 세포 발달, 뉴로펩티드 시그널링/합성 및 뉴런 수용체에 관여한다(Tondreau et al., 2008). GFPT2의 유전적 변이체는 제 2형 당뇨병 및 당뇨병성 신장질환과 연관이 있다(Zhang et al., 2004). 또한 GFPT2에서 SNP의 연관은 산화 경로의 조정에 관여하는 유전자가 당뇨병성 만성 신부전에 대한 주요 기여 요인일 수 있음을 시사한다(Prasad et al., 2010). GFPT2 유전자의 DNA 메틸화는 원발성 급성 림프성 백혈병(ALL) 시료에서 검증되었다. 다수의 CpG 섬의 메틸화를 보이는 환자는 총 생존 기간이 더 나빴다(Kuang et al., 2008). GFPT2는 글루타민 대사에 참여하고 중간엽 세포주에서 더 많이 발현되는 것으로 관찰되었다. 글루타민 대사는 종양 진행에서 중요한 역할을 수행할 수 있으며, 세포 대사 경로의 억제제는 후성적 요법의 형태일 수 있다(Simpson et al., 2012).
대뇌 내피 세포 부착 분자(CERCAM)
CERCAM은 내피 세포의 표면에 포함되며(Starzyk et al., 2000) 가족력 있는 특발성 척추측만증과 관련된 것으로 파악된 9q 상의 후보 영역인 염색체 9q34.11에 매핑된다(Miller et al., 2012). CEECAM1 유전자는 신경계, 및 침샘, 췌장, 간 및 태반과 같은 여러 분비 조직에서 널리 전사된다(Schegg et al., 2009). CERCAM 단백질은 ColGalT 효소인 GLT25D1 및 GLT25D2와 구조적으로 유사하다. 하지만 그 기능은 아직 알려져 있지 않더라도, 관련된 GLT25D1 단백질과 기능적으로 다르게 보이고, 그 단백질은 GLT25D1 및 GLT25D2 단백질과 같은 글리코실 트랜스퍼라아제로서 기능하지 않는다(Perrin-Tricaud et al., 2011).
UDP-N-아세틸-알파-D-갈락토스아민: 폴리펩티드 N-아세틸갈락토스아미닐-트랜스퍼라아제 2(GalNAc-T2)(GALNT2)
GALNT2는 골지 기관에서 뮤신-유형 O-글리코실화의 첫째 단계를 촉매한다. 이 효소들은 UDP-GalNAc로부터 표적 단백질에 있는 세린이나 트레오닌의 수산화기로 N-아세틸갈락토스아민(GalNAc)을 전이한다(Peng et al., 2010). GALNT2는 검사된 췌장, 대장, 위 및 유방으로부터 대부분 또는 모든 인간 선암종 세포주에 기본구성적으로, 및 낮은 수준으로서 발현되었다(Sutherlin et al., 1997). 연구 결과에 의하면, O-글리칸 및 GALNT 유전자들은 다양한 생물학적 기능 및 인간 질병 진행에서 중대한 역할을 수행한다. 상피 난소암(Terry et al., 2010) 및 관상 동맥 질병(Willer et al., 2008)의 위험은 GALNT2의 단일 뉴클레오티드 다형성과 연관되었다. 글리코실트랜스퍼라아제 활성도의 특정 변이에 의한 세포 표면 당단백질의 이상 글리코실화는 대개 암의 침입과 전이와 연관이 있다. GALNT2는 위 암종(Hua et al., 2012), 간세포 암종(HCC)(Wu et al., 2011b), 및 인간 악성 신경아교종(Liu et al., 2011a)에서 종양의 이동 및 침입에 관여한다.
이형 핵 리보핵 단백질 M(HNRNPM)
HNRNPM 유전자는 보편적으로 발현되는 이형 핵 리보핵 단백질(hnRNPs)의 서브패밀리에 속한다. HNRNPM은 스스로의 pre-mRNA 스플라이싱을 조절하거나(Hase et al., 2006) 섬유 세포 성장 인자 수용체 2의 대체 스플라이싱 조절에 영향을 줌으로써(Hovhannisyan and Carstens, 2007), pre-mRNA 스플라이싱에 영향을 미칠 수 있는 인간 hnRNP 복합체의 풍부한 성분이다. 시험관 내에서 정제 스플라이시오솜의 단백질체학적 분석에서, 스플라이시오솜 이전 H-복합체에서, 및 스플라이시오솜 조립체 전반에서 HNRNPM이 검출되었다(Rappsilber et al., 2002; Wahl et al., 2009). HNRNPM은 CDC5L/PLRG1 스플라이시오솜 하위복합체와의 상호작용을 통해 스플라이시오솜 기구에 관여한다(Lleres et al., 2010). 인간 암 세포에서, 일부 결과에 의하면 IMP-3 및 HNRNPM의 세포질 체류는 증식의 유의한 하락을 초래한다. 핵 IMP-3-HNRNPM 복합체는 CCND1, D3 및 G1의 효율적인 합성 및 인간 암 세포의 증식에 중요하다(Rivera et al., 2013).
바소뉴클린 1(BNC1)
바소뉴클린은 고도로 제약된 조직 분포를 갖는 아연 핑거 단백질이다(Tseng, 1998). 이제까지 바소뉴클린은 주로 중증 편평 상피(피부, 구강 내피, 식도, 질 및 각막)의 기저 각질 세포, 및 고환과 난소의 생식 발생 세포에서 검출된바 있다(Tseng and Green, 1994; Weiner and Green, 1998). 현재 바소뉴클린이 rRNA 유전자(rDNA)의 세포 유형 특이적 전사 인자라는 상당한 증거가 있다. 바소뉴클린의 아연 핑거는 rDNA 촉진자 내부에서 유전적으로 보전된 3개 부위와 상호작용한다(Iuchi and Green, 1999; Tseng et al., 1999). CpG 메틸화에 의한 후성적 조절은 종양형성은 물론 암 요법에 대한 반응에서 중요한 역할을 한다. BNC1는 방사선저항의 H1299 인간 비소 세포 폐암(NSCLC) 세포주에서 저메틸화되었다. H1299 세포에서 BNC1 mRNA 발현의 억제는 이 세포들의 이온화 방사능에 대한 저항 또한 감소시켰다(Kim et al., 2010a). BNC1의 이상 DNA 메틸화 또한 만성 림프병 백혈병(CLL) 시료에서 검출되었다(Tong et al., 2010). 신장 세포 암종(RCC)에서, BNC1의 메틸화는 종양 크기나 병기 또는 등급과 무관하게 더 불량한 예후와 연관이 있었다(Morris et al., 2010).
FK506 결합 단백질 10, 65 kDa(FKBP10)
FK506-결합 단백질 10(FKBP10)은 FKBP-유형 펩디딜-프롤일 시스/트랜스 이소머라아제 패밀리에 속한다. 이것은 세포질 그물에 위치하며 분자 샤페론으로 작용한다(Ishikawa et al., 2008; Patterson et al., 2000). FKBP10은 폐 발달에서 고도로 발현되며, 폐 손상 후 세포외 기질 단백질과 조율된 방식으로 재활성화될 수 있다(Patterson et al., 2005).
프리즐드 패밀리 수용체 1(FZD1), 프리즐드 패밀리 수용체 2(FZD2), 프리즐드 패밀리 수용체 7(FZD7)
FZD2, FZD1 및 FZD7 유전자는 모두 '프리즐드(frizzled)' 유전자족으로부터 유래하고; 이 유전자 패밀리 멤버는 Wnt 시그널링 단백질의 수용쇄 7-트랜스멤브레인 도메인 단백질을 인코딩한다.
FZD2 유전자의 발현은 발달적으로 조절되는 것처럼 보이고, 태아의 신장과 폐, 및 성인의 대장과 난소에서 높은 수준으로 발현된다(Sagara et al., 1998; Zhao et al., 1995).
FZD1 단백질은 단일 펩티드, N-말단 세포의 영역에서 시스테인-풍부 도메인, 7개 트랜스멤브레인 도메인 및 C-말단 PDZ 도메인-결함 모티프를 포함한다. FZD1 전사물은 폐는 물론 심장, 신장, 췌장, 전립선 및 난소 등 다양한 조직에서 발현된다(Sagara et al., 1998). 프리즐드 1 및 2 수용체의 발현은 유방암에서 상향 조절되는 것으로 나타났다(Milovanovic et al., 2004).
FZD7 단백질에는 N-말단 신호 서열, Fz 패밀리 멤버들로 이루어진 시스테인이 풍부한 세포외 도메인이 전형적인 10개의 시스테인 잔기, 7개의 잠재적 막횡단 도메인 및 PDZ 도메인 결합 모티프를 갖는 세포 내 C-말단 꼬리가 포함된다. FZD7 유전자 발현은 불량하게 분화된 인간 식도 암종에서 APC 기능을 하향조절하고 베타-카테닌 매개 신호를 강화시킬 수 있다(Sagara et al., 1998; Tanaka et al., 1998).
ATPase, Ca++ 수송, 심근, 신속 연축 1(ATP2A1), ATPase, Ca++, 수송, 심근, 신속 연축 2(ATP2A2)
두 유전자(ATP2A1 및 ATP2A2) 모두 SERCA Ca(2+)-ATPase를 인코딩한다. 근육세포질세망(SR)1/ER 칼슘 ATPase(SERCA)는 SR/ER 막을 통해 ATP 가수분해와 칼슘 운반을 결합시키는 칼슘 펌프이다(MacLennan et al., 1997). SERCA는 3개의 상동성 유전자, 즉 SERCA1(ATP2A1), SERCA2(ATP2A2), 및 SERCA3(Wu et al., 1995)에 의해 인코딩된다. 일부 새로운 증거에 의하면, SERCA는 세포자멸, 분화 및 세포 증식의 과정에 직접적인 영향을 미칠 수 있음을 보여준다(Chami et al., 2000; Ma et al., 1999; Sakuntabhai et al., 1999).
SERCA1을 인코딩하는 ATP2A1에서의 돌연변이는 일부 보통염색체 열성 형태의 브로디씨병을 유발하며, 이 병은 운동을 하는 동안 근육 이완 장애가 증가하는 것이 특징이다(Odermatt et al., 1996).
ATP2A2는 비정상 각화 및 극세포 분리가 특징인 희귀한 보통염색체 우성 유전 피부병인 다리에 병(Darier’s disease)과 연관된 ATPase이다(Huo et al., 2010). ATP2A2의 생식세포 변이는 폐 및 대장암에 취약하게 할 수 있으며, 손상된 ATP2A2 유전자는 발암에 관여할 수 있다(Korosec et al., 2006). 소세포 폐암(H1339) 및 선암종 폐암(HCC) 세포주에서, ER Ca2+-함량은 정상인의 기관지 상피에 비해 감소되었다. 감소된 Ca2+-함량은 ER에서 칼슘을 펌핑하는 SERCA2의 발현 감소와 상관관계가 있었다(Bergner et al., 2009). ATP2A2는 대장결장암 CRC 환자에 대한 잠재적인 예후 마커일 수 있다. 이것은 순환 종양 세포(CTC)에서 검출되었으며, 수술 후 재발은 유전자 발현과 유의하게 상관관계가 있었다(Huang et al., 2012).
라미닌, 감마 2(LAMC2)
라미닌은 세포외 기질 글리코 단백질 패밀리이고, 기저막의 주요 비콜라겐 성분이다. 이것은 세포 부착, 분화, 이동, 시그널링, 신경돌기 외성장, 전이 등 다양한 생물학적 과정에 연루된 바 있다. LAMC2 유전자는 라미닌-5γ2 쇄를 인코딩하는데, 이 쇄는 기저막의 주요 성분의 하나인 라미닌-5(laminin-5)의 일부이다. LAMC2는 위암에서 촉진자 탈메틸화에 의해 빈번히 상향조절되었다(Kwon et al., 2011). LAMC2는 무혈관 흑색종 영역 대비 혈관 영양성 흑색종 영역에서 과발현되는 것으로 나타났다(Lugassy et al., 2009). LAMC2는 방광암 전이의 바이오마커이고, 그 발현 수준은 종양 등급과 연관이 있었다(Smith et al., 2009b). LAMB3 및 LAMC2 유전자는 32개 비SCLC 세포주 가운데 21개에서 공동발현되었지만(66%), 13개 SCLC 세포주 가운데 단 1개에서 발현되었다(8%). LAMB3 및 LAMC2 유전자들의 공동 발현은 검사한 4건의 원발성 비SCLC 세포 모두에서도 관찰되었으나 상응하는 비암성 폐 세포에서는 관찰되지 않았다(Manda et al., 2000).
열 충격 70kDa 단백질 2(HSPA2), 열 충격 70kDa 단백질 8(HSPA8)
HSPA2는 유방암(Mestiri et al., 2001), 자궁경부암(Garg et al., 2010a), 표재성 방광암(Garg et al., 2010b), 코인두 암종(Jalbout et al., 2003) 및 악성 종양(Chouchane et al., 1997)과 같은 인간 암의 하위조합에서 비정상적 수준으로 발현되는 잠재적 암-촉진 단백질로서 확인된 바 있다. HSPA2 유전자 활성의 일부 수준은 여러 인간 암으로부터 유래된 세포주에서도 관찰되었지만(Scieglinska et al., 2008), 암 세포에서 HSPA2 유전자의 억제는 성장 억제 및 암형성 가능성의 감소로 이어졌다(Rohde et al., 2005; Xia et al., 2008). 또한 HSPA2의 다형성은 폐암 진행의 위험 증가와 연관이 있다(Wang et al., 2010b). HSPA2의 과발현은 인간 유방암, 자궁경부암 및 표재성 방광암에서 증가된 세포 증식, 불량한 분화, 및 림프절 전이와 상관관계가 있다(Garg et al., 2010a; Garg et al., 2010b; Mestiri et al., 2001).
HSPA8 유전자는 열충격 단백질 70과 Hsc70의 구성원을 인코딩하는데, 열 유도성 및 기본구성적으로 발현되는 멤버를 모두 포함한다. HSPA8은 발생기의 폴리펩티드와 결합하여 적절한 단백질 폴딩을 촉진한다(Beckmann et al., 1990). Hsc70은 분자 샤프론으로서 기능하며 단백질 합성, 접힘, 조립, 세포 구획 사이의 수송 및 분해를 지지한다(Bukau and Horwich, 1998; Hartl and Hayer-Hartl, 2002). Hsc70은 비악성 유선 세포는 물론 유방암 세포에서 발현되며(Kao et al., 2003; Vargas-Roig et al., 1998) 항암제 저항성 암 세포에서 Hsp/hsc70의 과발현(Ciocca et al., 1992; Lazaris et al., 1997)은 이 단백질들의 가능한 임상적 마커에 관한 연구를 촉진한 바 있다(Ciocca and Calderwood, 2005). 세포 증식에서 카텝신 D를 과발현하는 암세포에서 종양 성장율이 더 높은 이유는 이처럼 분비된 hsc70 샤페론이 세포증식에서 잠재적인 역할을 하는 것으로 설명할 수 있다(Nirde et al., 2010). 또한 뤼신(Ruisin) 등은 이 유전자의 다형성과 폐암 위험성 간에 연관이 있음을 보고하였다(Rusin et al., 2004).
액포 단백질 분류 13 상동체 B(효모)(VPS13B)
VPS13B는 골지 복합체에 위치한 표재성 막 단백질로서 동정되었고 골지 복합체에서 시스-골지 기질 단백질 GM130과 중첩된다. 하위세포 국소화와 일관되는 것으로, RNAi를 사용하는 VPS13B 소실은 골지 리본의 소골기조(ministack)로의 분절화를 유발한다(Seifert et al., 2011). 콜레마이넨(Kolehmainen) 등(2003)은 VPS13B로도 알려진 COH1 유전자를 염색체 8q22의 코헨 증후군 결정적 부위 내에서 동정하였다(Kolehmainen et al., 2003). 유전자 VPS13B에서 기능소실 돌연변이는 보통염색체 열성 코헨 증후군을 유도한다(Seifert et al., 2011). VPS13B 및 기타 유전자들의 돌연변이는 위암 및 결장직장 암에서 미세부수체 불안정성으로 기술되었다(An et al., 2012).
CSE1 염색체 분리 1-유사(효모)(CSE1L)
세포 세포자멸 감수성(CSE1L) 유전자는 유사분열 방추 체크포인트는 물론 증식 및 세포자멸을 포함하는 다수의 세포 기전을 조절하는 것을 보여준 바 있다. CSE1L은 세포질과 세포핵에 모두 위치한다. 핵 CSE1L은 주요 종양 억제 단백질인 p53 단백질의 전사 활성도를 조절한다(Rao et al., 2011; Tanaka et al., 2007). 세포질 CSE1L은 미세관과 연관되고; 이 연관은 인바도포디아의 연장 자극과 종양 세포의 이동 촉진을 나타난 바 있다(Tai et al., 2010). CSE1L은 대부분의 암에서 고도로 발현되는데, 양성 및 음성 피부 멜라닌세포 병변(Boni et al., 1999), 자궁내막 암종(Peiro et al., 2001), 난소 암종(Brustmann, 2004), 유방암(Behrens et al., 2001), 표재성 방광 암종(Chang et al., 2012)이 포함되며, 그 발현은 암 진행과 상관관계가 있는 것으로 나타났다. CSE1L의 억제는 대장암에 대한 잠재적 치료 접근방법이 될 수 있다(Zhu et al., 2013).
디하이드로피리미디나아제-유사 4(DPYSL4)
디하이드로피리미디나아제-관련 단백질 4(DPYSL4)는 해마 뉴런 발달의 조절 인자로 알려져 있다. DPYSL4는 치아 배 형성 동안 치아 상피 세포의 성장 조절, 극화 및 분화에 관여한다(Yasukawa et al., 2013). 일부 연구에서는, 미세관의 중합 억제를 통한 신경돌기의 외성장 가능성의 완화에 대한 DPYSL4의 역할을 보여주었으며, 또한 신경세포사가 일어나기 전 핵 농축 동안 비멘틴과 연관이 있음을 새로 밝혀냈다(Aylsworth et al., 2009). p53 종양 억제 유전자는 매우 다양한 종양에서 빈번히 변이되는데, 유전자 무결성의 유지에서 중요한 역할을 수행한다. DPYSL4의 mRNA 및 단백질 발현 모두 p53-숙련 세포에서 항암제에 의해 특이적으로 유도되었다. DPYSL4는 DNA 손상에 반응하여 p53에 의해 제어되는 세포자멸 유도 인자이다(Kimura et al., 2011).
Sec61 감마 소단위(SEC61G)
SEC61γ는 소단위 SEC61α, β 및 γ로 구성된 이종삼량체 단백질 채널로서 SEC61 트랜스로콘의 멤버이다(Greenfield and High, 1999). SEC61 복합체는 발생기 폴리펩티드의 ER 내강으로의 전위는 물론 막통과 단백질의 ER 이중층으로의 통합에 필요한 막통과 구멍을 형성한다(Osborne et al., 2005). SEC61γ는 종양 세포 생존, 및 소포체 스트레스에 대한 세포 반응에 요구된다. 또한 이는 악성 세포에서 고도로 과발현되고 정상 세포에서는 거의 부재하다(Lu et al., 2009). SEC61γ 발현의 억제는 EGFR/AKT 생존 시그널링(Lu et al., 2009)의 세포자멸 및 사멸은 물론 종양 세포(Neidert et al., 2012)의 성장 억제를 초래하였다.
ORM1-유사 1(사카로마이세스 세레비지애( Saccharomyces cerevisiae ))(ORMDL1)
인간 유전자들(ORMDL1, ORMDL2 및 ORMDL3)은 성인 및 태아 조직에서 널리 발현된다. 이들은 세포질 그물에서 단백질 접힘에 관여할 가능성이 높은 ER에 고정된 막통과 단백질들을 인코딩한다. 게놈 서열 분석에 의해, 헤를비스트(Hjelmqvist) 등(2002)은 유전자 서열 분석으로 ORMDL1 유전자의 염색체 2q32.2를 매핑하였다(Hjelmqvist et al., 2002). ORMDL 단백질은 포유동물 세포에서 세라마이드 생합성의 일차 조절인자이다(Siow and Wattenberg, 2012). ORMDL1은 프리세닐린 1(PS1) 돌연변이와 연합하여 특이적으로 하향조절된다(Araki et al., 2008).
페카넥스-유사 3(초파리)(PCNXL3)
페카넥스-유사 단백질 3(PCNXL3)은 멀티패스 막 단백질이고; 이는 페카넥스 패밀리에 속한다.
PCNXL3 유전자는 염색체 영역 11q12.1-q13에 대해 매핑되었다. 신규 인간 종양-연관 변위 변곡점 세 개는 마커 D11S4933과 D11S546 사이의 염색체 11q13 영역에 위치하였다. 그러므로 PCNXL3은 11q13-연관된 질병 유전자일 수 있다(van et al., 2000).
소핵 리보핵산단백질 200 kDa(U5)(SNRNP200)
pre-mRNA 스플라이싱은 전사된 pre-mRNA 단편으로부터 인트론을 제거하는 특화된 RNA와 단백질 소단위의 복합쇄 스플라이시오솜에 의해 촉매된다. 이 스플라이시오솜은 소핵 RNA 단백질(snRNPs) U1, U2, U4, U5 및 U6, 및 약 80개의 보존된 단백질로 구성된다. SNRNP200은 스플라이시오솜의 촉매 활성화에 필수적인 단계인 U4/U6 듀플렉스의 풀림에 요구되는 유전자이다(Maeder et al., 2009). SNRNP200 발현은 심장, 뇌, 태반, 폐, 간, 골격 근육, 신장 및 췌장에서 검출되었다(Zhao et al., 2009). SNRNP200에서의 돌연변이는 최근 보통염색체 우성 색소성 망막염(adRP)과 연관 있는 것으로 발견되었다(Benaglio et al., 2011; Liu et al., 2012).
SAM 도메인, SH3 도메인 및 핵 위치 신호 1(SAMSN1)
SAMSN1은 SH3 및 SAM(멸균 인자 모티프) 도메인을 포함하는 추정 어댑터 및 골격 단백질의 신규 유전자 패밀리 멤버이다. SAMSN1은 조혈 조직, 근육, 심장, 뇌, 폐, 췌장, 상피 세포 및 골수종에서 발현된다. 내인성 SAMSN1 발현은 일차 B 세포에서 분화 및 증식-유도 자극이 있을 때 상향조절되는 것으로 나타났으며, 형질도입 실험은 B 세포의 혈장 세포로의 분화에서 SAMSN1의 자극 역할을 시사한다(Brandt et al., 2010). 급성 골수염 백혈병 및 다발 골수종 환자로부터의 세포주 및 일차 세포는 SAMSN1을 발현한다(Claudio et al., 2001). SAMSN1은 대세포 폐 암종 세포주 Calu-6에서 하향 조절되었다(Yamada et al., 2008). SAMSN1은 궤양성 대장성-연관 암에서 차등적으로 발현되었다(Watanabe et al., 2011).
신호 변환기 및 전사 활성제 2, 113 kDa(STAT2)
STAT2는 결장직장 및 피부 발암의 신규 기여자로서 유전자 발현 및 전염증성 매개체의 분비 증가를 위해 작용할 수 있는데, 이는 반대로 암유전자 STAT3 시그널링 경로를 활성화시켰다(Gamero et al., 2010). STAT2는 유형 I IFN-유도 세포자멸의 활성화에 있어서 중대한 매개체이다. 더욱 중요하게는, STAT2의 발현이나 핵 위치에 대한 결함은 유형 I IFN 면역요법의 효능을 감소시킬 수 있다(Romero-Weaver et al., 2010). 저등급 성상세포종에서 STAT2의 더 낮은 발현이 고등급 성상세포종과 비교 시 검출되었다. 그 결과는 교종양에서 STAT와 PPARγ 시그널링 사이에 존재하는 관계를 보여주었으며, 또한 이러한 종양의 성장 및 분화의 조절에서 STAT의 기대되는 중요한 역할을 지원한다(Ehrmann et al., 2008).
CCR4-NOT 전사 복합체, 소단위 1(CNOT1)
인간 CCR4-NOT 데아데닐라제 복합체는 적어도 9개의 효소 및 비효소 소단위들로 구성된다. CNOT1은 CCR4-NOT 복합체의 효소 활성도 전시에 있어서 중요한 역할을 하며, 따라서 mRNA 탈아데닐화 및 mRNA 붕괴의 제어에 중대하다. CNOT1 소실은 CCR4-NOT 복합체를 구조적으로, 및 기능적으로 저하시키며 mRNA의 안정화를 유도하는데, 이는 ER 스트레스-매개된 세포자멸을 유발하는 번역의 증가를 초래한다. 이토(Ito) 등은 CNOT1이 CCR4-NOT 데아데닐라아제의 활성도를 확보하여 세포 생존력에 기여한다고 결론을 지었다(Ito et al., 2011). 유방암 세포에서 내인성 CNOT1이나 기타 Ccr4-Not 소단위의 siRNA-매개 소실은 ERalpha 표적 유전자의 조절 해제(ERa 표적 유전자인 TTF1 및 c-Myc의 유도 증가)를 초래한다. 이러한 발견 내용은 암과 관계 있는 분자적 경로의 이해와 관련된 핵 수용체 시그널링의 전사 억제인자로서 인간 Ccr4-Not 복합체의 기능을 정의한다(Winkler et al., 2006).
세린 히드록시메틸트랜스퍼라아제 2(미토콘드리아성)(SHMT2)
SHMT2 유전자는 세린과 테트라히드로폴레이트에서 글리신 및 5,10-메틸렌 테트라히드로폴레이트로의 가역 반응을 촉매하는 피로독산 인산염 의존 효소의 미토콘드리아 형태를 인코딩한다. 인코딩된 생성물은 글리신 합성에 대해 일차적 책임이 있다. 폐암과 같은 다유전자 질병에서는, 유전자-유전자 상호 작용이 그 질병의 표현형 변이성 결정에 중요한 역할을 할 것으로 기대된다. MTHFR677, MTHFR1298 및 SHMT 다형성 사이의 상호작용은 폐암 환자에서 유전적 불안정성에 상당한 영향이 있을 수 있다. 세포유전적 변형과 관련하여 담배특이 발암물질인 4-(메틸니트로스아미노)-1-(3-피리딜)-1-부타논[NNK]에 노출된 폐암 환자의 림프구는 MTHFR 677, MTHFR 1298 및 SHMT 대립형질 변이체의 존재 하에 세포유전 손상의 빈도를 유의하게 증가시키는 것으로 나타났다(Piskac-Collier et al., 2011). 결장직장암 환자에 대한 5-FU 및 FOLFIRI 프로토콜의 효능에 있어서 SHMT 유전자의 다형성의 역할에 대한 약리유전학적 연구에서 총 생존기간 변화까지 초래하는 유의한 영향을 밝혀냈다(Timar et al., 2006).
JunB 전구-종양 유전자(JUNB)
JunB는 이중체 전사 인자의 AP-1(활성자 단백질-1)의 멤버이다. 전사 인자 AP-1은 세포 증식, 형질전환 및 죽음에 관여한다(Shaulian and Karin, 2002). JunB는 NF-κB 경로를 통해 조절될 수 있으며, HGF에 의해 유도되는 JunB의 상향조절은 MMP-9 발현을 통한 세포 증식 및 세포 분열의 조절에서 중요한 역할을 수행할 수 있다(Lee and Kim, 2012). JunB는 림프종 특히 호지킨 림프종에서 종양발생의 역할을 하는 것으로 보인다(Shaulian, 2010). JunB는 p16의 필수적인 상류 조절인자이고 TAC의 악성전환을 차단하는 세포 노화의 유지에 기여한다. 그러므로 JunB는 전립선 발암의 제어에 있어서 중요한 역할을 하는 것으로 보인다(Konishi et al., 2008). JunB는 종양 침입성을 촉진시키고 VHL-결함 ccRCC에서 혈관형성을 촉진시킨다(Kanno et al., 2012).
형질전환, 산성 이중나선 함유 단백질 3(TACC3)
TACC3는 ch-TOG(대장 및 간 종양 과발현된 유전자), 및 동원체 섬유에서 미세관을 교차연계시키는 클라트린과의 복합체에 존재한다. TACC3는 고환, 폐, 비장, 골수, 가슴샘 및 말초 혈액 백혈구 등의 특정 증식성 조직에서 발현된다. TACC3 발현은 일부 인간 종양 유형에서 변형된다. 세포 내에서 TACC3는 중심체와 방추 미세관 모두에 위치하지만 성상체 미세소관에는 존재하지 않는다(Hood and Royle, 2011). TACC3 발현은 p53 발현과 상관관계가 있었으며, TACC3 및 p53이 고도로 발현된 종양이 있는 환자의 경우 두 면역 염색에 대한 발현이 낮은 환자보다 예후가 유의하게 더 불량하였다(P = 0.006). 이는 TACC3의 증가가 증식적 이점을 NSCLC에 부여하고 종양 진행에 기여할 수 있으며 또한 TACC3 발현은 NSCLC에서 임상적 결과의 강력한 예후 지표임을 시사한다(Jung et al., 2006). Tacc3는 노치 신호전달(Notch signalling) 경로의 부정적인 조절인자일 수 있다(Bargo et al., 2010).
RAD54 호몰로그 B(사카로마이세스 세레비지애)(RAD54B)
DNA 복구 및 재조합 단백질인 RAD54B는 인간에서 RAD54B 유전자에 의해 인코딩되는 단백질이다. RAD54는 두 가닥 DNA에 결합하고, DNA 존재 하에 ATPase 활성을 나타낸다. 인간 RAD54B 단백질은 RAD54 단백질의 파라로그이고, 상동 재조합(HR)에서 중요한 역할을 한다. 상동 재조합은 DNA 이중쇄 절단(DSB)의 정확한 복구에 필수적이다(Sarai et al., 2008). 암에서 체세포 변이가 되는 것으로 알려진 유전자인 RAD54B의 발현 억제는 포유동물 세포에서 염색체 불안전성(CIN)을 유발한다(McManus et al., 2009). 유전자 발현이 상승된 RAD54B는 GBM 환자에서 보다 짧은 진행까지의 기간, 및 불량한 OS와 유의하게 연관이 있다(Grunda et al., 2010).
진핵 번역 연장 인자 2(EEF2)
EEF2는 GTP-결합 번역 연장 인자 패밀리 멤버를 인코딩한다. 이 단백질은 단백질 합성에 필수적인 인자이다. 또한 발생기 단백질 쇄의 리보좀 A-부위에서 P-부위로의 GTP-의존 전위를 촉진시킨다. EEF2는 폐 선암종(LADC)에서 고도로 발현되었지만 주위의 비종양 폐 조직에서는 그렇지 않았다. eEF2는 LADC에서 항-세포자멸 마커로 제안되는데, 이것은 eEF2 발현이 높은 환자들이 조기 종양 재발의 빈도가 유의하게 더 높았으며 예후가 유의하게 더 나빴기 때문이었다. eEF2 발현의 억제는 미토콘드리아 연장, 세포 자가탐식 및 시스플라틴 감수성을 증가시켰다. 그 밖에 eEF2는 LADC 세포에서 수모화(SUMOyation) 되었으며, eEF2 수모화는 약물 내성과 상관관계가 있었다(Chen et al., 2011a). EEF2는 암 치료에 매력적인 표적인데, 그 이유는 EEF2 억제가 단백질 합성의 신속한 정지, 세포자멸 유도 및 궁극적으로 세포사를 유발하기 때문이다. EEF2의 siRNA 유도 억제는 종양 세포의 특이적 세포독성을 초래하였다(Chen et al., 2011b; Wullner et al., 2008).
사이클린 A2(CCNA2)
CCNA2는 고도로 보존된 사이클린 패밀리에 속한다. 사이클린은 CDK 키나제의 조절인자로서 기능한다. 각기 다른 사이클린은 각 감수분별 사건의 시간 조율에 기여하는 뚜렷한 발현 및 분해 양상을 보여준다(Deshpande et al., 2005). 인간 사이클린 A2는 S기 진행 및 감수분열 진입의 주요 조절인자이다. CCNA2는 CDC2 또는 CDK2 키나아제에 결합하여 활성화시키므로 세포 주기 G1/S 및 G2/M 전이 모두를 촉진시킨다(Honda et al., 2012). 이 유전자의 돌연변이, 증폭 및 과발현은 세포 주기 진행을 변형시키고, 다양한 종양에서 빈번히 관찰되며 종양형성에 기여할 수 있다(Cooper et al., 2009; Kars et al., 2011; Kim et al., 2011; Tompkins et al., 2011). 또한 CCNA2 발현은 몇 가지 유형의 암에서 불량한 예후와 연관이 있으며(Yasmeen et al., 2003) 사이클린 A의 상승된 발현은 보다 짧은 생존 기간과 상관관계가 있었다고 기술된다(Dobashi et al., 1998).
신경상피 세포 형질전환 1(NET1) 41
NET1은 Rho 구아닌 뉴클레오티드 교환 인자 패밀리의 일부이다. 이 패밀리의 멤버들은 GDP에서 GTP로의 교환을 촉매함으로써 Rho 단백질을 활성화시킨다. NET1에 의해 인코딩되는 단백질은 세포 핵 내에서 RhoA와 상호작용하며, 이온화 방사 후 DNA 손상의 복구에 기여할 수 있다.
NET1 유전자(오피오이드 수용체가 아님)는 유방선암종 세포에서 발현되고 그 세포의 이동을 원활하게 할 수 있다(Ecimovic et al., 2011). NET1은 위암(GC) 조직에서 상향조절되어 이 질병의 침입성 표현형을 구동시킨다(Srougi and Burridge, 2011). NET1은 GC 진행의 주요 양상인 GC 세포 이동 및 침입에서 중요한 역할을 한다(Bennett et al., 2011). 인간 전립선 암에서 단기 내분비 요법 후 RhoC 및 NET1의 더 높은 발현은 RhoC 및 NET1이 내분비 요법 시 치료 표적이 될 수 있음을 시사한다(Kawata et al., 2012).
염색체 11 오픈 리딩 프레임 24(C11orf24)
C11orf24는 Twells 등에 의해 동정되었다(2001). C11orf24 유전자는 다른 유전자에 대한 어떠한 유사성이나 그 기능은 알려진 바 없다. 심장, 태반, 간, 췌장 및 대장의 노던 블록 분석에서 1.9-kb 전사물의 높은 발현이 검출되었다. 뇌, 폐, 골격 근육, 신장, 비장, 전립선, 고환, 난소 및 소장에서는 더 낮은 수준이 검출되었으며, 가슴샘과 백혈구에서는 매우 낮은 수준이 검출되었다(Twells et al., 2001). 단백질 길이가 449개의 아미노산인 C11orf24는 염색체 영역 11q13에 위치한다. 이 영역은 다수 암의 감수성 영역으로 기술된다(Gudmundsson et al., 2009; Purdue et al., 2011).
염색체 응축의 조절인자 1(RCC1)
염색체 응축의 조절인자 1(RCC1)은 Ran GTPase의 구아닌 뉴클레오티드 교환 인자이다. 염색질 상에서 RCC1에 의한 Ran-GTP의 국소적 생성은 핵-세포질 이동, 유사분열 방추사 형성 및 핵막 형성에 있어서 중대하다(Hitakomate et al., 2010). 일부 데이터에 의하면, RCC1, Mad2 및 서바이빈과 같은 유사분열 조절인자의 염색체 결합은 유사분열 진행에 필수적임을 시사한다(Ho et al., 2008). 옹(Wong) 등은 핵 RanGTP 수준이 세포자멸의 초기 단계 중에 감소되고 이는 RCC1의 염색체 상 부동화와 상관관계가 있음을 발견하였다. 따라서 이들은 RCC1이 카스파아제-활성화된 Mst1에 의해 생성된 히스톤 코드를 판독하여 핵에서 RanGTP의 수준을 감소시킴으로써 세포자멸을 개시한다고 제안한다(Wong et al., 2009).
흑색종 항원 패밀리 F, 1(MAGEF1)
MAGE(흑색종-연관 항원) 슈퍼패밀리의 잘 알려진 대부분 멤버들은 종양, 고환 및 태아 조직에서 발현되며, 이는 암/고환 발현 패턴(MAGE 아군 I)으로 기술되어 있다. MAGE 하위그룹 I의 펩티드는 펩티드와 DC 백신 접종에서 성공적으로 사용되어 왔다(Nestle et al., 1998; Marchand et al., 1999; Marchand et al., 1999; Marchand et al., 1995; Thurner et al., 1999). 이와는 반대로, MAGEF1과 같은 일부 MAGE 유전자들(MAGE 하위그룹 II)은 시험된 모든 성인과 태아의 조직에서, 및 난소, 유방, 경부, 흑색종 및 백혈병 등의 많은 종양 유형에서도 흔히 발현된다(Nestle et al., 1998; Marchand et al., 1999; Marchand et al., 1999; Marchand et al., 1995; Thurner et al., 1999). 그렇지만 MAGEF1의 과발현은 NSCLC에서 검출되고(Tsai et al., 2007) 대만의 코호트 연구에서 결장직장 암 환자의 79%에서 검출되었다(Chung et al., 2010).
비-SMC 콘덴신 I 복합체, 소단위 D2(NCAPD2)
콘덴신(Condensin)이란 유사분열 염색체의 구조적 성분으로 처음 동정된 이종오합체 복합체이다. NCAPD2는 유사분열 염색체 응축에 요구되는 인간 콘덴신 복합체의 필수 성분이다. NCAPD2 소실은 중기에서 염색체 정렬, 및 말기로의 진입 지연에 영향을 미친다(Watrin and Legagneux, 2005). 최근의 연관 및 연관성 연구에서는 염색체 12p13 유전자리를 알츠하이고 병(AD)에 걸리기 쉬운 유전적 변이체를 은닉시킬 수 있음을 암시하였다. 단일 마커 연관의 경우 NCAPD2에서 2개의 SNP(rs7311174 및 rs2072374)가 명목상 유의한 p값(각각 p = 0.0491 및 0.0116)을 나타냄을 밝혔다. 이러한 유전적 분석은 중국인들에서 염색체 12p13 유전자자리가 AD와 연관이 있다는 증거를 제공한다(Li et al., 2009).
염색체 12 오픈 리딩 프레임 44(C12orf44)
Mercer 등(2009)은 초파리 Atg13-상호작용 단백질의 오솔로그에 대한 데이터베이스를 검색하여 C12orf44로도 알려진 인간 ATG101을 동정하였다(Mercer et al., 2009). ATG101 유전자는 염색체 12q13.13로 매핑되었다. 도출한 218개 아미노산으로 구성된 단백질은 세포액의 친수성 단백질일 것으로 예측되었다(Hosokawa et al., 2009). 거대 자가포식은 세포질 단백질, 소기관 및 거대분자의 리소좀 매개 분해에 대한 이화과정이다. 리소좀과 융합되기 전 세포질 카고를 둘러싸고 격리시키는 이중막 세포인 자가포식소체의 형성에는 ATG101과 같은 ATG 단백질이 요구된다. ATG101(C12orf44)은 자가포식에 필수적이다(Mercer et al., 2009).
E3 유비퀴틴 단백질 라이게이스 4 포함 HECT 및 RLD 도메인(HERC4)
HERC4는 유비퀴틴 라이게이스의 HERC 패밀리에 속하며, 이 라이게이스는 모두 HECT 도메인 및 적어도 1개의 RCC1(MIM 179710)-유사 도메인(RLD)을 포함한다. 350개 아미노산 HECT 도메인은 기질로 전달되기 전에 유비퀴틴과 티오에스테르의 형성을 촉매할 것으로 예측되며, RLD는 작은 G 단백질에 필요한 구아닌 뉴클레오티드 교환 인자로 작용할 것으로 예측된다(Hochrainer et al., 2005). E3 유비퀴틴 라이게이스 Herc4는 모든 조직에서 흔히 발현되지만 고환에서 특히 정자형성 중에 가장 고도로 발현된다. Herc4 라이게이스는 정자가 완전한 기능을 하기 위한 적합한 성숙, 및 세포질 방울 제거에 필요하다(Rodriguez and Stewart, 2007).
인슐린-유사 성장 인자 2 mRNA 결합 단백질 3(IGF2BP3)
IGF2BP3은 인슐린-유사 성장 인자 2 mRNA 결합 단백질 패밀리의 멤버이고, mRNA 국소화, 전환 및 번역 제어에 관련된다. 이 단백질은 RNA 결합에 중요하며 RNA 합성 및 대사에 관여하는 것으로 알려져 있는 몇몇 KH(K-상동성) 도메인을 포함한다. 과발현은 주로 배아 발달 중에 발생하며 일부 종양에 대해 기술되어 있다. 따라서 IGF2BP3은 종양태아성 단백질로 간주된다(Liao et al., 2005). IGF2BP3은 IGFII 단백질 합성의 증진시키고 CD44 mRNA의 안정화를 통한 세포 침입을 유도하여 종양 세포 증식을 촉진시킬 수 있다(Findeis-Hosey and Xu, 2012). 또한 IGF2BP3의 발현은 다수의 인간의 신생물에 대한 연구가 진행되어 있으며 이동, 침입, 세포 생존 및 종양 전이를 매개한다는 증거가 늘고 있으며(Jeng et al., 2009; Kabbarah et al., 2010; Li et al., 2011; Liao et al., 2011; Lu et al., 2011; Hwang et al., 2012; Samanta et al., 2012) 혈관형성에도 관여한다고 볼 수 있다(Suvasini et al., 2011; Chen et al., 2012). 폐 선암종에서, IGF2BP3 발현은 중간이나 낮은 정도로 분화된 선암종에서 보다 높은 빈도로 검출될 수 있는데, 이는 공격적인 생물학적 거동과 연관이 있을 수 있다(Findeis-Hosey et al., 2010; Beljan et al., 2012; Findeis-Hosey and Xu, 2012).
세포 분열 주기 6 호몰로그(사카로마이세스 세레비지애)(CDC6)
CDC6 단백질은 DNA 복제의 조기 단계에서 조절인자로서 기능한다. 이 단백질은 세포 주기 G1 동안 세포 핵에 위치하지만 S기가 시작되면 세포질로 전위된다. 또한 CDC6은 고등 진핵 세포에서 ATR과의 상호작용을 통해 복제-체크포인트 활성을 조절하는 것으로 사료된다(Yoshida et al., 2010). CDC6은 DNA 복제에 필수적이고, 그 조절 이상은 발암에 관여한다. RNA 간섭(RNAi)에 의한 CDC6의 하향 조절은 세포 증식을 방지하고 세포자멸을 촉진한다는 것이 발견되었다(Lau et al., 2006). CDC6의 과발현은 몇몇 암에서 발견되었다. CDC6가 과발현되는 암의 유형에는 위암(Tsukamoto et al., 2008), 뇌암(Ohta et al., 2001), 구강 편평 세포 암종(Feng et al., 2008), 경부 암종(Wang et al., 2009b), 및 악성 중피종(Romagnoli et al., 2009)이 있다.
섬유모세포 활성화 단백질, 알파(FAP)
섬유모세포 활성화 단백질(FAP)은 세린 프로테아제 패밀리에 속하는 II형 내재성 막 당단백질이다. FAP 알파의 추정 세린 프로테아제 활성도와 그 생체 내 유도 양상은, 발달, 조직 복구 및 상피 발암 과정에서 섬유모세포의 성장이나 상피-중간엽 상호작용 조절 시 이 분자의 역할을 나타낼 수 있다(Scanlan et al., 1994). 대부분의 정상 성인의 조직과 양성 상피 종양에는 검출가능한 FAP 발현이 거의 없거나 전무하다는 것을 보여준다. 하지만 FAP 발현은 90%가 넘는 악성 유방, 직장결장, 폐, 피부 및 췌장 종양의 기질, 치유되는 상처의 섬유모세포, 연조직 육종 및 일부 태아 중간엽 세포에서 검출된다. FAP는 세포 부착과 이동 과정은 물론 ECM 성분의 신속한 분해를 통해 암의 성장과 전이에서 잠재적인 역할을 한다. 따라서 ECM을 침입하는 종양 세포, 및 혈관형성에 관여하는 상피 세포에는 존재하지만 동일한 유형의 비활성 세포에서는 발현되지 않는다(Dolznig et al., 2005; Kennedy et al., 2009; Rettig et al., 1993; Rettig et al., 1994; Scanlan et al., 1994; Zhang et al., 2010a).
윙리스 유형 MMTV 통합 부위 패밀리, 멤버 5A(WNT5A)
일반적으로 Wnt5a는 증식, 분화, 이동, 부착 및 극성과 같은 다양한 세포 기능을 조절한다(Kikuchi et al., 2012). 이것은 분화되지 않은 인간 배아 줄기 세포에서 발현된다(Katoh, 2008). WNT5A는 발암에서 그 역할이 여전히 모호한 비형질변환 WNT 패밀리 멤버로 분류된다. 이것은 일부 암(갑상선, 뇌, 유방 및 결장직장)에서는, 종양 억제제 활성도를 나타내지만, 폐, 위 및 전립선 암에서는 불규칙하게 상향조절된다(Li et al., 2010). 암유전자 WNT5A는 암 줄기 세포에서 자가 재생을 위해 정준 WNT 신호 전달, 및 종양-간질 경계면에서는 침입과 전이를 위해 비정준 WNT 신호전달을 각각 활성화한다(Katoh and Katoh, 2007). WNT5A의 발현은 다양한 종양 개체에 대해 설명된 바 있다. 예를 들어, Wnt5a의 비정상적 단백질 발현은 전립선 암의 28%에서 공격성을 촉진시키는 것으로 관찰되었다(Yamamoto et al., 2010). 또한 WNT5A 과발현은 난소암(Badiglian et al., 2009), 흑색종(Da Forno et al., 2008; Weeraratna et al., 2002), GBM(Yu et al., 2007), 폐암(Huang et al., 2005) 및 췌장암(Ripka et al., 2007)에서의 불량한 예후 및/또는 증가하는 종양 등급과 연관 있는 것으로 설명된다. HCC에서는 정준 Wnt 신호전달 경로가 종양 개시에, 및 비정준 신호전달이 종양 진행에 각각 기여하는 것으로 보인다(Yuzugullu et al., 2009).
TPX2, 미세관-연관, 호몰로그(제노푸스 래비스( Xenopus laevis ))(TPX2)
TPX2는 방추 조립 인자이다. 이것은 유사분열 방추, 및 세포자멸 시 미세관의 정상 조립에 요구된다. TPX2는 염색질 및/또는 동원체 의존 미세관 핵형성에 요구된다(Bird and Hyman, 2008; Moss et al., 2009). 새로 합성된 TPX2는 거의 모든 오로라 A 활성화, 및 단모세포 성숙화 시 생체 내 완전한 p53 합성과 인산화에 요구된다(Pascreau et al., 2009). TPX2는 수막종(Stuart et al., 2010), 후두의 편평 세포 암종(SCCL)(Cordes et al., 2010), 구강 편평 세포 암종(SCC)(Shigeishi et al., 2009), 간세포 암종(HCC) (Satow et al., 2010), 췌장 종양(Warner et al., 2009), 난소암(Ramakrishna et al., 2010), 폐의 편평 세포 암종(Lin et al., 2006; Ma et al., 2006) 등 많은 종양 유형에서 과발현되는 세포 주기-연관 단백질이다. 이것은 흔히 Aurora-A와 공동 과발현됨으로써 발암 성질을 갖는 신규 기능 단위를 형성한다(Asteriti et al., 2010). TPX2 발현은 폐암에서 예후 지표이다(Kadara et al., 2009).
히알루로난 매개 운동성 수용체(RHAMM)(HMMR)
히알루로난 매개 운동성 수용체 RHAMM(HMMR)은 세포 내는 물론 세포 막에서도 다른 기능을 수행한다. RHAMM은 히알루론산(HA)과 결합하여 HA 수송체 CD44와 상호작용하는 세포 표면으로 보내질 수 있다. 세포 운동성, 상처 치유 및 침입과 같은 과정은 RHAMM에 의해 조정된다(Sohr and Engeland, 2008). RHAMM(HYA 매개 운동성을 위한 수용체)은 히알루로난(HYA) 수용체의 하나이다(Gares and Pilarski, 2000). 암 세포 또한 HTA의 결합 부위(CD44, RHAMM 등)를 표시하며, HYA는 면역 세포 공격으로부터 암 세포를 보호한다. 혈청 HYA는 흔히 전이성 환자에서 증가한다(Delpech et al., 1997). 그 밖에 암세포 상에서 RHAMM(HMMR) 및 CD44와의 HYA 상호작용은 종양 진행 및 파종의 촉진에 중요한 것으로 제안된 바 있다(Li et al., 2000b). 또한 RHAMM은 몇몇 암 조직에서 과발현된다(Tzankov et al., 2011);(Kramer et al., 2010);(Twarock et al., 2010);(Shigeishi et al., 2009); (Zlobec et al., 2008);(Li et al., 2000a)).
ADAM 메탈로펩티다아제 도메인 8(ADAM8)
ADAM8은 ADAM(디스인테그린 및 메탈로프로테아제 도메인) 패밀리의 멤버이다. ADAM8을 포함하는 다수의 ADAM 종들은 인간 악성 종양에서 발현되는데, 성장 인자 활성과 인테그린 기능의 조절에 관여하여 세포 성장과 침입을 촉진시킨다(Mochizuki and Okada, 2007). ADAM8의 발현은 EGFR과 양의 상관관계가 있었다. 두 유전자 모두 세포질과 세포막에서 주로 발현되었다(Wu et al., 2008). ADAM8은 검사한 대다수의 폐암에서 충분히 발현되었다. ADAM8의 외인성 발현은 포유동물 세포의 이동 활동을 증가시켰으며, 이는 ADAM8은 폐암의 진행에서 유의한 역할을 할 수 있음을 나타낸다(Ishikawa et al., 2004). ADAM8은 폐암의 불량한 예후와 연관된 바 있다(Hernandez et al., 2010). ADAM8의 과발현은 보다 짧은 환자의 생존과 연관이 있었으며, RCC에서 원격 전이에 대한 양호한 예측인자였다(Roemer et al., 2004b; Roemer et al., 2004a). 그 밖에 ADAM8의 발현 수준과 프로테아제 활성은 신경아교종의 침입 활성과 상관관계가 있었으며, 이는 ADAM8이 뇌암에서 종양 침입에 유의한 역할을 할 수 있음을 나타낸다(Wildeboer et al., 2006).
콜라겐 알파-3(VI) 쇄 단백질(COL6A3)
COL6A3은 VI형 콜라겐의 세 알파 쇄 가운데 하나인 알파-3 쇄를 인코딩한다. 이러한 단백질 도메인은 세포의 기질 단백질과 결합하는 것으로 나타났으며, 이는 기질 성분을 구성 할 때 이러한 콜라겐의 중요성을 설명하는 상호작용이다.
콜라겐 VI의 과발현을 통한 세포외 기질의 재형성은 난소암 세포에서 시스-플라틴 내성에 기여한다. 콜라겐 VI의 존재는 난소암 예후 인자인 종양 등급과 상관관계가 있었다(Sherman-Baust et al., 2003). COL6A3은 결장 직장 종양(Smith et al., 2009a)과 침샘 종양(Leivo et al., 2005)에서 과발현되며, 위암에서는 차등 발현된다(Yang et al., 2007). COL6A3은 종양-특이적 스플라이스 변이체를 갖는 7개의 유전자 가운데 하나로서 동정되었다. 검증된 종양-특이적 스플라이싱 변형은 고도의 일관성이 있어, 정상 및 암 샘플의 명확한 구분을 가능케 하며 일부 사례에서는 다른 종양 병기의 구분도 가능하였다(Thorsen et al., 2008).
Thy-1 세포 표면 항원(THY1)
Thy-1(CD90)은 25 내지 37 kDa 글리코실포스파티닐이노시톨(GPI) 닻형 글리콜-단백질로서, T 세포, 가슴성 세포, 신경 세포, 상피 세포 및 섬유모 세포 등 많은 세포 유형에서 발현된다. Thy-1의 활성화는 T 세포 활성화를 촉진시킬 수 있다. Thy-1은 또한 세포 부착, 신경세포 외성장, 종양 성장, 종양 억제, 이동, 상처 치유 및 세포사 등 많은 비면역학적 생물학적 과정에 영향을 미친다. Thy-1은 세포-세포 및 세포-기질 상호작용의 중요한 조절인자이고, 신경 재생, 전이, 염증 및 섬유화에서 중요한 역할을 한다(Rege and Hagood, 2006b; Rege and Hagood, 2006a). 또한 Thy-1은 배아는 아니지만 성인의 혈관형성의 마커로 보인다. 성장 인자가 아닌 사이토카인에 의한 Thy-1의 상향조절은 성인 혈관 형성의 발병기전에 있어서 염증의 중요성을 나타낸다(Lee et al., 1998). 폐의 정상 조직이나 양성 종양 세포에 비해 폐암의 세포 핵에 위치한 Thy-1은 상당히 과발현되며, 이것은 NSCLC 환자의 예후와 관련된 인자 중 하나이다. 따라서 Thy-1은 폐암 병리에서 신규 잠복 음성 마커일 수 있다(Chen et al., 2005b). Thy-1은 다양한 종류의 줄기 세포(중간엽 줄기 세포, 간 줄기 세포("난원 세포")(Masson et al., 2006), 각질세포 주기 세포(Nakamura et al., 2006), 및 조혈간 세포(Yamazaki et al., 2009)의 대리 마커로서 간주할 수 있다.
탈요드화효소, 요드티로닌, II형(DIO2)
DIO2 유전자에 의해 인코딩되는 단백질은 요오드티로닌 탈요오드화효소 패밀리에 속한다. 이것은 갑상선에서 고도로 발현하며, 그레이브스병과 갑상선종 환자에서 갑상선 T3 생산의 상대적인 증가에 유의하게 기여할 수 있다(Meyer et al., 2008);(de Souza Meyer et al., 2005)). 그러한 유전자 발현 양상은 코인두 암종(NPC)의 상향 및 하향 진행 유형 사이에 상당한 차이가 있다. DIO2 유전자의 발현은 상향 진행 유형(두개저의 국소 성장 및 침입)보다 하향 진행 유형(하향 = 원격 전이)에서 더 높으며, 이는 NPC의 전이 가능성과 밀접한 관계가 있을 수 있다(Liang et al., 2008). DIO2 mRNA는 물론 DIO2 활성은 뇌 종양에서 발현된다(Murakami et al., 2000). 폐에서 D2 활성은 존재하며 말초 폐 및 폐암 조직에서 존재하며 유사하다(Wawrzynska et al., 2003).
페리오스틴, 골모세포 특이적 인자(POSTN)
POSTN은 파시클린 패밀리에 대한 유사성을 갖는 단백질을 인코딩하며 세포 생존과 혈관생성에 관여하는 유전자이고, 다양한 유형의 인간 암에서 종양 진행의 유망한 마커로서 출현하였다(Ruan et al., 2009).
페리오스틴 단백질이나 mRNA의 높은 발현은 대부분의 고형암에서 검출되었으며, 여기에는 유방(Zhang et al., 2010b), 대장(Kikuchi et al., 2008), 머리와 목(Kudo et al., 2006), 췌장(Kanno et al., 2008), 유두 갑상선(Puppin et al., 2008), 전립선(Tischler et al., 2010), 난소(Choi et al., 2010), 폐(Takanami et al., 2008) 및 간(Utispan et al., 2010)의 암종, 및 식도 편평 세포 암종(Kwon et al., 2009)이 포함된다. 페리오스틴은 폐암에서 비정상적으로 높게 발현되며, 혈관형성, 침입 및 전이와 상관관계가 있다(Takanami et al., 2008). A549 비소세포 폐암(NSCLC) 세포에서 페리오스틴의 억제는 종양 세포 성장을 억제하고 세포 침입을 감소시킨다(Wu et al., 2013).
SLIT1(슬릿 호몰로그 1(초파리)), SLIT2(슬릿 호몰로그 2(초파리))
SLIT(SLIT1, SLIT2 및 SLIT3)은 ROBO 수용체를 통한 신호 전달에 의한 발달 중 세포와 그 환경 사이의 위치적 상호 작용을 중개하는 분비 단백질들의 패밀리이다(Hinck, 2004). 하지만 SLIT(슬릿)/ROBO(로보) 신호전달은 발달에만 제한되지 않으며, 이러한 신호의 손실은 종양 진행 시 중요한 역할을 할 가능성이 있다. 슬릿 및 로보 모두 이들의 촉진자가 상피 암에서 빈번하게 과메틸화되기 때문에 종양 억압 유전자 후보로 고려된다(Narayan et al., 2006; Schmid et al., 2007; Latil et al., 2003). 약 50%의 인간 유방 종양 샘플에서 SLIT2 또는 SLIT3 유전자 발현이 억제된다(Sharma et al., 2007). SLIT2의 과메틸화는 NSCLC에서 빈번히 감지되었으며 다양한 임상 특징과 연관지어졌다(Suzuki et al., 2013).
TLX3(T 세포 백혈병 호메오박스 3)
TLX3(RNX 또는 HOX11L2로 알려짐)은 DNA-결합 핵 전사 인자를 인코딩하는 고아 호메오박스 유전자 패밀리에 속한다. HOX11 유전자 패밀리멤버는 고도로 보존된 호메오도메인에서 트레오닌-47 대체 시토신에 의해 특징된다(Dear et al., 1993). TLX3은 발달하는 숨뇌에서 고유하게 발현되며 일차 중개 내장 감각 신경세포, 및 특히 심혈관계 및 호흡계의 생리적 제어에 관여하는 뇌간의 대부분의 (노르)아드레날린 센터의 적합한 형성에 요구된다(Qian et al., 2001). TLX3은 정상 T 세포 분화에는 절대 관여된 적이 없었지만(Ferrando et al., 2004), 이 유전자의 발현은 T 세포 급성 림프구 백혈병에 걸린 아동의 20%, 성인의 13%로부터 얻은 백혈병 시료에서도 검출된 바 있다(Cave et al., 2004).
CEP192(중심체 단백질 192 kDa)
중심체는 방추 형성과 중심체 분리를 포함하는 다양한 세포 과정에서 중요한 역할을 한다. CEP192는 포유동물, 초파리 및 캐노르하브디티스 엘레강스(Caenorhabditis elegans)에서 중심체 생합성과 기능에 중대한 역할을 하는 중심체 단백질이다(Gomez-Ferreria et al., 2012). 이것은 미세관 핵형성 및 방추 조립체에 관여하는 감마 튜불린 링 복합체와 기타 단백질이 유사분열 시 작용하는 기반이 되는 골격의 형성을 촉진시킨다(Gomez-Ferreria et al., 2007).
ANKS1A(1A 포함 앙키린 반복 및 멸균 알파 모티프 도메인)
안키린 반복 및 SAM 도메인-포함 단백질 1A는 인체에서 ANKS1A 유전자에 의해 인코딩되는 단백질이다(Nagase et al., 1996). ANKS1A는 EGFR 및 PDGFR과 같은 수용체 티로신 키나아제의 표적 및 신호 전달물질로서 처음 설명된바 있으며(Pandey et al., 2002), 보다 최근에는 수용체 티로신 키나아제 EphA8의 상호작용 파트너로서 언급되었다(Shin et al., 2007). 최근의 연구에서 348명의 진행성 NSCLC 환자에서 단일염기 다형성(SNP) 유전형이 얻어졌다. 또한 예후와 관련된 가장 유력한 SNP 후보가 17개가 확인되었다. SNP는 ANKS1A 유전자의 유전자 영역에 위치하였다(Lee et al., 2013).
CEP250(센트로솜 단백질 250kDa)
CEP250 유전자는 세포 주기의 간기 동안 중심소체-중심소체의 응집에 요구되는 핵심 센트로솜 단백질을 인코딩한다(Mayor et al., 2002). 프라이(Fry) 등은 방사능 조사 잡종 분석(1998)에 의해 염색체 20의 20q11.2 부근에 위치한 중심체 영역에 대한 CEP250 유전자를 매핑하였다(Fry et al., 1998). Mayor 등(2002)은 인간 식도 육종 세포주에서 CEP250의 과발현이 커다란 중심체-연관 구조의 형성을 초래했음을 발견하였다. CEP250 과발현은 센트로솜 분리나 세포 분열을 간섭하지 않았지만, 세포 주기-조절 활성은 CEP250을 중심체로부터 해리시킴을 나타낸다(Mayor et al., 2002).
MDN1(MDN1, 미다신 호모로그(효소))
MDN1은 미다신 호모로그(효소)로서 인체에서 MDN1 유전자가 인코딩하는 단백질이다. 미다신은 모든 진핵세포 생물에서 약 600 kDa의 잘 보존된 단백질을 인코딩하는 싱글-카피 유전자로서 존재하며 이에 대한 데이터가 있다. 인간에서는 이 유전자는 6q15에 대해 매핑하고 5596개 잔기(632 kDa)의 예측된 단백질을 인코딩한다(Garbarino and Gibbons, 2002). 최근에 MDN1은 관강 B 아형 유방암에서 돌연변이되는 것으로 발견되었다. MDN1은 이러한 공격적인 아형의 발달과 호르몬 내성에 기여할 수 있다(Cornen et al., 2014).
OLFM1(올팩토메딘 1)
OLFM1은 노엘린-1로도 불리는데 올팩토메딘 도메인-함유 단백질 패밀리에 속하는 분비된 당단백질이고, 신경관에 의한 신경 능선 세포의 생산 조절에서 중요한 역할을 한다(Barembaum et al., 2000). 올팩토메딘은 원래 후각 신경세포의 화학감각 수상돌기를 둘러싸는 점막층의 주요 성분으로 동정되었다(Kulkarni et al., 2000). 올팩토메딘 1 단백질의 발현은 다른 조직학적 유형의 폐암이나 정상 폐 조직보다 폐 선암종에서 유의하게 더 높았다(Wu et al., 2010). 또한 OLFM1은 자궁내막암, 유잉 육종(Ewing's sarcoma) 및 신경모세포종에서 탈조절된다(Wong et al., 2007; Allander et al., 2002; Khan et al., 2001).
BUB1B(벤즈이미다졸 1 상동체 베타에 의해 억제되지 않은 발아(효모))
BUB1B는 BubR1으로도 불리는데, 자매 염색 분체를 함께 유지하는 응집 링의 세파라아제 매개 분할을 지휘하여 후기를 개시하는 유비퀴틴 E3 리가아제인 Cdc20 활성 후기 촉진 복합체(APC/CCdc20)에 결합하여 억제하는 핵심 유사분열 체크포인트 요소이다(Baker et al., 2004). BubR1은 세포 분열 체크포인트 활성을 통해, 및 염색체-방추 부착의 조절에 의해 적절한 염색체 분리에 기여한다(Malureanu et al., 2009; Lampson and Kapoor, 2005). 방추 체크포인트의 기능 이상은 여러 형태의 암에서 발견된 바 있다. BubR1의 돌연변이는 이수성, 종양 소인, 및 짧은 수명, 성장 및 정신 지체, 백내장 및 안면 형태 이상 등 몇몇 프로제로이드 소질이 나타나는 희귀한 인간 증후군인 모자이크 이수성(MVA)과 연관된 바 있다(Matsuura et al., 2006).
PI4KA(포스파티딜이노시톨 4-키나아제, 촉매성, 알파)
인간 세포에서는 4가지의 다른 포스파티딜이노시톨 4-키나아제(PI4K)가 발현된다. 이러한 동종효소들(PI4KA, PI4KB, PI4K2A 및 PI4K2B)은 세포막의 세포질 면에서 포스파티달이노시톨(PtdIns)의 인산화를 촉매하며, 포드파티딜이노시톨 4-포스페이트(PtdIns4P)의 생산을 초래한다(Minogue and Waugh, 2012). PI4KA는 주로 세포질 그물(ER)에서 발견된다. PI4KA 활성은 ER 출구 부위의 형성(Blumental-Perry et al., 2006), 및 형질 막에서 PtdIns4P의 농도(Balla et al., 2008)를 조절하는 것으로 보인다. 한 연구 단체에서는 PI4KA mRNA가 정상의 건강한 정상 조직보다 HCC에서 더 풍부함을 확인하였다. 이러한 HCC에서의 상향 조절은 불량한 분화 및 활성 증식율 모두가 유의한 상관관계를 나타냈다. 따라서 PI4KA는 HCC에 대해 확립된 예후 모델을 개선하는 새로운 분자 마커로 사용될 수 있다(Ilboudo et al., 2014).
AURKB(오로라 키나아제 B)
오로라 B 키나아제는 유사분열 방추를 중심체에 부착시키는 기능을 하는 단백질이다(Kim et al., 2011). AURKB는 동원체 근처의 미세관에 위치한다(Kunitoku et al., 2003). 오로라 키나아제는 다양한 종양 세포주에서 과발현되는데, 이는 이러한 키나아제가 종양형성에서 역할을 담당할 수 있으며 이미 암 진단 및 치료를 위한 잠재적 표적이 되었음을 시사한다(Fu et al., 2007). 최근에 NSCLC 환자에서 그 결과와 밀접하게 연관된 5개 유전자(TOP2A, AURKB, BRRN1, CDK1 및 FUS)의 유전자 발현 표지가 동정되었다. 이 결과는 AURKB와 같은 염색체 응축에 관여하는 유전자들은 줄기 유사 특성과 관련될 수 있으며 폐 선암종에서 생존을 예측할 수 있음을 시사한다(Perumal et al., 2012).
SLC3A2(용질 수송체 패밀리 3(이염기 및 중성 아미노산 수송의 활성인자), 멤버 2)
SLC3A2는 CD98(분화 98의 무리)로도 알려진 대형 중성 아미노산 운반체(LAT1)의 가벼운 소단위를 구성한다(Lemaitre et al., 2005). CD98 이형이합체는 ~40 kDa의 멀티 패스 경쇄와 이황화 결합된 80 내지 85 kDa 크기의 II형 싱글-패스 막통과 중쇄(CD98hc, 4F2 항원 중쇄 또는 FRP-1으로도 알려져 있음; 인간과 생쥐에서 각각 유전자 SLC3A2와 Slc3a2에 의해 인코딩됨)로 구성된다(Deves and Boyd, 2000). CD98hc는 인테그린 신호 전달의 증폭과 아미노산의 운반 기능을 수행하고, 두 기능 모두 세포 생존과 증식에 기여할 수 있다(Cantor and Ginsberg, 2012). 다수의 종양이 CD98hc(SLC3A2)를 발현하며, 이러한 발현은 B 세포 림프종에서의 불량한 예후와 상관관계가 있다. 또한 고형 종양에서 CD98hc 또는 CD98 경쇄의 발현을 조사한 거의 모든 연구에서, 그 발현이 진행성 또는 전이성 종양과 상관 관계가 있었다(Kaira et al., 2009).
IFT81(편모 내 운반 81 호모로그(클라미도모나스))
튜불린과 같은 섬모 전구체가 세포질에서 섬모 끝으로 편모내 운반(IFT)할 때 대부분의 진핵 세포에서 발현되는 머리털 같은 소기관인 섬모의 구성과 연관된다. IFT81의 발현 억제와 점 돌연변이를 이용한 구제 실험에서 인간 세포에서 섬모 발생에는 IFT81에 의한 튜불린 결합이 필요하다고 보여주었다(Bhogaraju et al., 2013). IFT81은 IFT74/72와 함께, 섬모 형성에 요구되는 IFT 입자를 구축하는 핵심 복합체를 형성한다(Lucker et al., 2005).
COG4(올리고머 골지 복합체 4의 성분)
COG 복합체는 COG1 내지 8로 명명되는 8개의 소단위로 구성되며(Ungar et al., 2002; Whyte and Munro, 2001), 이는 2개의 하위 복합체, COG1 내지 4(Lobe A) 및 COG5 내지 8(Lobe B)의 두 그룹으로 분류된다(Ungar et al., 2005). COG 복합체는 정주 골지 단백질(당화 효소 등)을 재활용하는 소포 계류에 기능을 수행한다(Pokrovskaya et al., 2011). COG4 유전자는 염색체 16q22.1에 대해 매핑된다(Reynders et al., 2009). 운가르(Ungar) 등(2002)은 COG4가 골지체의 구조와 기능에 중대하며 세포 내 막 수송에 영향을 미칠 수 있다고 결론을 내렸다(Ungar et al., 2002).
NCBP1(핵 캡 결합 단백질 소단위 1, 80 kDa)
핵 캡 결합 단백질 복합체는 RNA 중합효소 II의 5' 캡에 결합하는 RNA 결합 단백질이다. 가타오카(Kataoka) 등(1994)은 mRNA 스플라이싱 및 RNA 핵외 이동에 관여할 수 있는 HeLa 세포 핵 추출물에서 발견된 80 kDa 핵 캡 결합 단백질(NCBP1)을 인코딩하는 유전자의 복제를 설명하였다(Kataoka et al., 1994). 카드윅(Chadwick) 등(1996)은 체세포 하이브리드 패널로부터의 유전체 DNA 혼성화에 의해 NCBP1 유전자를 9q34.1로 매핑하였다(Chadwick et al., 1996).
NEFH(신경필라멘트, 무거운 폴리펩티드)
신경필라멘트 중쇄를 인코딩하는 NEFH는 신경세포의 세포 골격 신경필라멘트의 주요 성분의 하나이다. 신경팔라멘트 무거운 폴리펩티드(NEFH, 200 kD) 유전자 잔기는 염색체 띠 22q12.2에 정주하며, 신경섬유종중 2형(NF2) 패밀리에서 증상전 진단을 위한 DNA 마커로서 제안되었다. NEFH의 손실이나 하향조절은 대부분 인간의 자율 신경 종양이나 중추 신경세포종에서 보고된 바 있다(Mena et al., 2001; Segal et al., 1994). 그 밖에 인간 전립선암(Schleicher et al., 1997), 투명 세포 상피 종양(Tanaka et al., 2000), 및 소세포 폐암(Bobos et al., 2006)에서는 부재하거나 감소된 NEFH 발현이 관찰된 바 있다. 흥미롭게도 NEFH의 과발현이 정상 세포의 구조와 기능을 방해하고 세포사를 유도하였다(Szebenyi et al., 2002).
도 1a 내지 1d는 NSCLC898 원발성 종양 샘플에서의 제시를 나타내는 ABCA13-001의 질량 스펙트럼의 예를 도시한다. 도 1a) 나노ESI-LCMS는 NSCLC 샘플 898에서 용출된 펩티드 풀에서 실행되었다. m/z 543.8318 ± 0.001 Da, z = 2의 질량 크로마토그램은 정체 시간 86.36분에서 펩티드 피크를 보여준다. 도 1b) 질량 크로마토그램에서 86.36분의 검출된 피크가 MS 스펙트럼에서 m/z 543.8318의 신호임을 드러냈다. 도 1c) 주어진 정체 시간에서 나노ESI-LCMS 실험을 통해 기록한 선택된 전구체 m/z 543.8318의 충돌 유도 감쇠 질량 스펙트럼으로, NSCLC898 중량 샘플에서 ABCA13-001의 존재를 확인하였다. 도 1d) 합성 ABCA13-001 참고 펩티드의 분절 패턴을 기록하여 도 1c에 나와 있는 생성된 자연 TUMAP 분절 패턴과 비교하여 서열 확인을 하였다.
도 2는 정상 조직 및 21개 폐암 샘플에서 선택된 단백질의 mRNA 발현 프로필을 도시한다:
도 2a) ABCA13(Probeset ID: 1553605_a_at)
도 2b) MMP12(Probeset ID: 204580_at)
도 3은 선택된 HLA 유형 I 펩티드의 제시 프로필을 도시한다. 평균 샘플 제시는 물론 복제 변이를 보여주는 각 펩티드의 제시 프로필을 계산하였다. 이 프로필은 관심 대상의 종양 객체 샘플을 정상 조직 샘플의 기준에 병치한다.
도 3a) ABCA13-001
도 3b) DST-001
도 3c) MXRA5-001
도 4는 유형 I TUMAP의 생체 내 면역 면역원성에서 펩티드-특이적 결과의 예를 도시한다. 특이적 CD8+ T 세포를 두 가지 다른 형광색소에 연결된 HLA 다합체로써 염색하였다. 점 도표는 자극 펩티드(왼쪽 패널)과 해당하는 음성 대조 자극(오른쪽 패널)에 대한 MHC 다합체-이중-양성 모집단을 보여준다.
도 5는 조사한 HLA 일배체형에 대한 POSTN-002 및 MMP12-002의 결합 성질을 도시한다. 이 도면은 7개의 분석된 HLA-DR 일배체형에 대한 POSTN-002 및 MMP12-002에서 5의 결합 점수를 보여준다.
도 6은 37℃에서 24시간 후 HLA-POSTN-002 및 MMP12-002 복합체의 안정성을 도시한다. 이 도면은 상응하는 HLA 분자와 함께 37℃에서 24시간 후 완전한 HLA-POSTN-002 및 HLA-MMP12-002의 백분율을 보여준다.
도 7은 유형 II ICS 검정에서 CEA-006에 대한 백신-유도된 CD4 T 세포 반응의 예를 도시한다. 생체 내 감작 이후 환자 36-031의 PBMC를, CEA-006(위 패널) 및 모형(이제 패널)에 대한 CD4 T 세포 반응을 시점 풀 V8/EOS에서 분석하였다. 세포를 상응하는 펩티드로 자극한 다음 생존력, 항-CD3, 항-CD8, 항-CD4 및 작용기 마커(왼쪽에서 오른쪽으로: CD154, TNF-알파, IFN-감마, IL-2, IL-10)로 각각 염색하였다. 하나 이상의 작용기 분자에 대해 양성인 세포의 비율을 생존 가능 CD4 T 세포에 대해 분석하였다.
도 8은 다양한 유형 II 펩티드의 면역원성을 도시한다. 이 도면은 16명의 IMA950 펩티드 환자, 및 71명의 IMA910 펩티드 환자에게 ICS를 사용하여 검출된 5가지 다양한 유형 II 펩티드에 대한 면역 반응률을 도시한다.
별도로 설명되지 않은 이상 여기에서 사용되는 모든 용어는 아래와 같이 정의된다.
"펩티드"란 용어는 인접한 아미노산의 알파-아미노 기와 카르보닐 기 사이에서 일반적으로 펩티드 결합으로 서로 연결되는 아미노산 잔기의 서열을 가리킨다. 펩티드는 9개 아미노산의 길이가 바람직하지만 8개 아미노산으로 짧을 수도 있고 10, 11, 12, 13 또는 14개 만큼 길 수도 있으며, MHC 유형 II 펩티드의 경우 그 길이가 15, 16, 17, 18, 19 또는 20개 만큼 길 수 있다.
또한 "펩티드"라는 용어는 인접한 아미노산의 알파-아미노 기와 카르보닐 기 사이에서 일반적으로 펩티드 결합으로 서로 연결되는 아미노산 잔기의 서열에 의한 염을 포함한다. 바람직하게는 염은 약학적으로 허용가능한 염이다.
"펩티드"라는 용어는 "올리고펩티드"를 포함한다. 여기에서 "올리고펩티드"라는 용어는 인접한 아미노산의 알파-아미노 기와 카르보닐 기 사이에서 일반적으로 펩티드 결합으로 연결되는, 아미노산 잔기의 서열을 지정하는 데 사용된다. 본 발명에서 올리고펩티드의 길이는 정확한 항원결정인자 또는 항원결정인자들이 유지되는 이상 중요하지 않다. 올리고펩티드는 일반적으로 약 30개 아미노산 보다 길이가 짧고, 약 15개 아미노산 보다 길다.
"본 발명의 펩티드"란 용어는 위에서 정의된 바와 같이 염기 서열번호 1 내지 92에 따른 펩티드로 구성되거나 이를 포함하는 펩티드들을 포함한다.
"폴리펩티드"라는 용어는 인접한 아미노산의 알파-아미노 기와 카보닐 기 사이에서 일반적으로 펩티드 결합으로 서로 연결되는, 아미노산 잔기 서열을 지정하는 데 사용된다. 본 발명에서 폴리펩티드의 길이는 정확한 항원결정인자들이 유지되는 이상 중요하지 않다. 펩티드 또는 올리고 펩티드와 달리, 폴리펩티드는 약 30개 이상의 아미노산 잔기를 포함하는 분자를 말한다.
이런 분자의 펩티드, 올리고펩티드, 단백질, 또는 폴리뉴클레오티드 코딩은 면역 반응을 유도할 수 있으면 "면역성"(따라서 본 발명에서의 "면역원")이다. 본 발명의 경우, 면역성은 T 세포 반응을 유도하는 능력으로 보다 구체적으로 정의된다. 그러므로, "면역원"은 면역 반응을 유도할 수 있는 분자이고, 본 발명의 경우, T 세포 반응을 유도할 수 있는 분자이다. 다른 양태에서, 면역원은 펩티드, 펩티드와 MHC의 복합체, 올리고펩티드 및/또는 특정 항체나 항체에 대한 TCR을 높이는데 사용되는 단백질일 수 있다.
유형 I T 세포 "항원결정인자"는 적당한 친화력을 갖는 MHC/펩티드 혼합체에 결합하는 T 세포 수용체에 일치하는 T 세포에 의해 인식되는 삼자 혼합체(MHC 유형 I 알파 쇄, 베타-2-미세글로블린 및 펩티드)를 생성하는 유형 I 또는 II MHC 수용체에 결합하는 짧은 펩티드를 필요로 한다. MHC 유형 I 분자에 결합하는 펩티드는 일반적으로 길이가 8 내지 14개인 아미노산이고, 일반적으로 길이가 9개인 아미노산이다.
인간에는 MHC 유형 I 분자를 인코딩하는 세 개의 유전자 자리가 있다(인간의 MCH-분자는 또한 지정된 인간 백혈구 항원이다(HLA)): HLA-A, HLA-B, 및 HLA-C. HLA-A*01, HLA-A*02 및 HLA-A*07은 유전자 자리에서 발현할 수 있는 다른 MHC 유형 I 대립형질의 예이다.
[표 2]
HLA*A02 가장 흔한 HLA-DR 혈청형의 발현 빈도 F. 빈도는 모리(Mori) 등으로부터 채택된 미국 인구 내에서의 일배체형으로부터 추적되며 Gf (Mori et al., 1997) 하디-와인버그 공식 F=1-(1-Gf)2를 사용한다. A*02와 일부 HLA-DR 대립형질의 조합은 강화되거나 연관 불균형으로 인한 단일 빈도에서 예상되는 것보다 덜 빈번할 수 있다. 자세한 내용은 문헌을 참조한다(Chanock et al., 2004).
Figure pat00007
따라서, 치료와 진단 목적을 위해서 적절한 친화력으로 여러 다른 HLA 유형 수용체 II에 결합하는 펩티드는 매우 바람직하다. 몇 개의 다른 HLA 유형 II 분자에 결합하는 펩티드는 뒤섞인 결합체라고 불린다.
여기에서 사용되는 것처럼, DNA 배열에 대한 참조는 단일 가닥 및 이중 가닥 DNA를 포함한다. 그러므로, 특정 서열은 문맥에서 다르게 나타내지 않는 한, 그 서열의 단일 가닥 DNA, 보체가 있는 그런 서열의 양면(이중 가닥 DNA) 및 그런 서열의 보체를 의미한다. 용어 "코딩 영역"은 자연적인 게놈 환경에서 유전자의 발현 생성물을 자연스럽게 또는 정상적으로 코딩하는 유전자의 부분을 즉 생체 내 유전자 본래의 발현 생성물을 위한 코딩 영역을 의미한다.
코딩 영역은 비변이(정상적)이거나 변이 또는 변형된 유전자에 있을 수 있거나, 또는 DNA 서열, 또는 실험실에서 DNA 합성 분야에서 그 기술로 잘 알려진 방법을 사용해서 실험실에서 전적으로 합성된 유전자에 있을 수 있다.
"뉴클레오티드 서열"는 디옥시리보뉴클레오티드의 이중중합체를 말한다.
특정 펩티드, 올리고펩티드 또는 폴리펩티드에 대한 뉴클레오티드 서열 코딩은 자연적으로 발생하거나 합성 구축될 수도 있다. 일반적으로, 본 발명의 펩티드, 폴리펩티드 및 단백질을 인코딩하는 DNA 분절은 cDNA 단편들과 짧은 올리고 뉴클레오티드 연결기, 또는 올리고 뉴클레오티드서열에서 미생물이나 바이러스 오페론에서 유도된 규제 요소를 구성한 재조합 전사 단위에서 발현될 수 있는 합성 유전자를 제공하기 위해서 조립된다.
여기서 사용되는 "펩티드를 코딩(또는 인코딩)하는 뉴클레오티드"란 용어는 서열을 발현시키는 생물학적 체계와 호환가능한 인공(사람이 만든) 시작 및 정지 코돈을 포함하는 펩티드에 대한 뉴클레오티드 서열 코딩을 지칭한다.
용어 "발현 생성물"은 유전자의 자연 이행 제품인 폴리펩티드 또는 단백질 또는 유전적 코딩 퇴화로 인해 결과된 어떤 핵산 서열 코딩과 상응하며 따라서 같은 아미노산을 코딩한다.
코딩 서열을 말할 때, 용어 "단편"은 발현 제품이 완전한 코딩 영역의 발현 생성물과 같은 생물학적 기능이나 활동을 유지하는 완전한 코딩 영역보다 적은 부분의 DNA를 말한다.
용어 "DNA 분절"은 최소한 하나의 상당히 순수한 형태, 즉 내생 오염이 없고 분절과 표준 생화학 방법, 예를 들면, 복제 벡터를 사용하는 구성 요소 뉴클레오티드 서열의 식별, 조작 및 복구를 가능하게 하는 양 또는 농도의 분리되는 DNA에서 유도된 별도의 단편 또는 큰 DNA 구조체의 구성 요소로써의 DNA 중합체를 말한다. 그런 분절은 일반적으로 진핵 생물 유전자에 나타나는 내부 비-번역 서열, 또는 인트론에 의해 방해되지 않는 오픈 리딩 프레임의 형태로 제공된다. 비-번역 DNA의 서열은 동일 서열이 코딩 영역의 조작이나 발현을 방해하지 않는 오픈 리딩 프레임의 하단에 나타날 수 있다.
용어 "프라이머"는 하나의 표준 DNA와 짝을 이룰 수 있는 짧은 핵산 서열이고 DNA 폴리머라아제가 디옥시리보뉴클레오티드 쇄의 합성을 시작하는 3'-OH 말단을 제공한다.
용어 "프로모터"는 전사를 시작하기 위한 RNA 폴리머라아제의 결합에 관련된 DNA의 영역을 뜻한다.
용어 "격리"는 물질이 원래의 환경(예를 들면, 자연적으로 발생하는 경우에는 자연 환경)에서 제거되는 것을 뜻한다. 예를 들면, 자연 발생하는 살아 있는 동물에서 나타나는 폴리뉴클레오티드 또는 폴리펩티드는 분리되지 않지만, 자연계에서 공존하는 물질의 부분 또는 전체에서 단리된 동일 폴리뉴클레오티드 또는 폴리펩티드는 단리된다. 그런 폴리뉴클레오티드는 벡터의 일부이고 또는 그런 폴리뉴클레오티드 또는 폴리펩티드는 구성의 일부일 수 있으며, 그런 벡터 또는 구성이 자연 환경의 일부가 아닐 때 여전히 격리될 수 있다.
본 발명에서 밝혀지는 폴리뉴클레오티드, 재조합 또는 면역성의 폴리펩티드는 "정제" 형태일 수도 있다. 용어 "정제"는 완벽한 순도를 필요로 하지 않고; 오히려, 그것은 상대적인 정의로 만들어졌으며, 관련 분야에서 이해하는 용어로써 상당히 정제된 제제 또는 부분적으로 정제된 제제를 포함할 수 있다. 예를 들면, cDNA 라이브러리에서 단리된 각각의 클론은 일반적으로 전기 영동 동일성으로 정제된다. 시재료 또는 자연 물질의 최소한 1순위 크기의 정제는 바람직하게 2순위 또는 3순위, 더 바람직하게는 4순위 또는 5순위의 크기는 명시적으로 심사 숙고된다. 또한 바람직하게 중량이 순도 99.999% 이상, 또는 최소한 99.99% 이상 또는 99.9% 이상, 심지어는 99% 이상의 폴리펩티드는 명시적으로 심사 숙고된다.
본 발명에서 밝혀진 핵산과 폴리펩티드 발현 생성물은, 그런 핵산 및/또는 그런 폴리펩티드를 갖는 발현 벡터뿐만 아니라, "강화된 형태"일 수 있다. 여기에서 사용되는 것처럼, 용어 "강화"는 물질의 농도가 최소한 그것의 자연적 농도의(예를 들면) 최소한 약 2, 5, 10, 100, 또는 1000 배 정도이고, 유리하게 0.01 중량%, 바람직하게는 최소한 약 0.1 중량% 정도이다. 중량으로 약 0.5%, 1%, 5%, 10%, 및 20% 강화된 제제도 심사 숙고된다. 서열, 구성, 벡터, 클론, 및 본 발명의 다른 물질들은 유리하게 강화된 또는 격리된 형태가 될 수 있다.
용어 "활성 단편"은 예를 들면 토끼 또는 쥐, 및 인간을 포함한 포유류 같은 동물에게 단독으로 또는 적당한 보조제와 함께 투여했을 때 면역 반응(예를 들면, 면역 활성이 있는), 즉 인간과 같은 투여 받는 동물 내에서 T 세포 반응을 자극하는 형태의 면역 반응을 나타내는 단편을 의미한다. 또는, "활성 단편"은 시험관 내 T 세포 반응을 유도하는 데 사용될 수도 있다.
여기에서 사용되는, "부분", "분절", 및 "단편"이라는 용어는, 폴리펩티드와 관련하여 사용될 때, 더 큰 서열의 하위 집합을 형성하는 아미노산 잔기와 같은 잔기의 지속적인 서열을 말한다. 예를 들면, 만약에 폴리펩티드가 트립신이나 키모트립신 같은 일반적인 엔도펩티다아제 중 어떤 치료를 받는다면, 그런 치료로 인해 생기는 올리고펩티드는 시작하는 폴리펩티드의 부분, 분절 또는 단편을 나타낼 것이다. 폴리뉴클레오티드와 관련해서 사용될 때, 그런 용어들은 일반적인 엔도뉴클레아제 중 어떤 것과 함께 상기 폴리뉴클레오티드의 치료에 의해 생성된 생성물을 말한다.
본 발명에 따라, 서열을 말할 때 용어 "백분율 동일성" 또는 "백분율 일치"는 설명되거나 명시된 서열("기준 서열")에 비교될 서열의 정렬 후("비교 서열") 서열이 명시된 또는 설명된 서열에 비교되는 것을 말한다. 백분율 동일성은 아래 공식에 따라서 결정된다.
백분율 동일성 = 100 [1 -(C/R)]
여기서, C는 기준 서열과 비교 서열의 정렬의 길이에 비해 기준 서열과 비교 서열의 차이의 숫자이고,
(i) 비교 서열에서 상응하는 정렬된 염기 또는 아미노산이 없는 기준 서열에 각 염기 또는 아미노산,
(ii) 기준 서열의 각 차이, 및
(iii) 비교 서열의 정렬된 염기 또는 아미노산과 다른 기준 서열의 각 정렬된 염기 또는 아미노산, 차이를 구성하며,
(iiii) 상기 정렬은 정렬된 서열의 위치 1에서 시작해야 하고,
R은 비교 서열과의 정렬의 길이에 대한 기준 서열에서 염기 또는 아미노산의 숫자이고 기준 서열에 생긴 공백도 염기 또는 아미노산 개수로 계산된다.
위에서와 같이 계산된 비교 서열과 기준 서열 사이의 백분율 동일성이 특정 최소 백분율과 같거나 더 크면 위에서 계산된 백분율 동일성이 특정 백분율 동일성보다 작은 경우에 정렬이 있더라도 비교 서열은 기준 서열에 최소 백분율 동일성이 있다.
여기에서 밝혀진 본래(변형되지 않은) 펩티드는 달리 언급되지 않는 이상 다른, 아마도 선발적인, 펩티드 쇄 위치의 하나 이상의 잔기의 치환에 의해 변형될 수 있다.
바람직하게 이러한 치환은 아미노산 쇄의 말단에 위치한다. 그런 치환은, 예를 들면, 소수성 아미노산이 다른 소수성 아미노산으로 치환되는 것처럼, 보존적일 수 있다. 심지어 더 보존적인 것은 류신이 이소류신으로 치환되는 것과 같이, 같거나 비슷한 크기와 화학적 특성을 갖는 아미노산으로 치환되는 것이다. 자연적으로 발생하는 동종 단백질 종족에서의 서열 변화의 연구에서, 특정 아미노산의 치환은 다른 것들보다 더 자주 허용되고 있으며, 이들은 본래의 아미노산과 치환 사이에서 크기, 전하, 극성, 및 소수성이 비슷한 상관관계를 보이고, 이것은 "보존적 치환"을 정의하는데 기본이 된다.
여기서 보수적인 치환은 다음 다섯 개 그룹 중 하나의 교환으로 정의된다: 그룹 1 - 작은 지방성, 무극성의 또는 약간 극성의 잔기(Ala, Ser, Thr, Pro, Gly); 그룹 2 - 극성의, 음성 전하의 잔기와 그들의 아미드(Asp, Asn, Glu, Gln); 그룹 3 - 극성의, 양성 전하된 잔기(His, Arg, Lys); 그룹 4 - 큰, 지방성, 무극성 잔기(Met, Leu, Ile, Val, Cys); 및 그룹 5 - 큰, 방향족 잔기(Phe, Tyr, Trp).
덜 보존적인 치환은 알라닌을 이소류신 잔기로 치환하는 것처럼, 비슷한 성질이지만 크기가 어느 정도 다른 아미노산으로 치환하는 것을 포함한다. 아주 비보존적인 치환은 산성 아미노산을 극성의, 또는 심지어는 염기성 아미노산으로 치환하는 것을 포함할 수도 있다. 하지만 이런 "급진적인" 치환은 화학적 작용이 완전히 예측 불가능하고 급진적인 치환은 단순한 화학 원리에서 예측 가능하지 않지만 뜻밖에 발생할 수 있기 때문에 잠재적으로 효과가 없다고 일축할 수는 없다.
물론, 이런 치환은 일반적인 L-아미노산 이외의 구조와 관련될 수 있다. 그러므로, D-아미노산이 본 발명의 항원 펩티드에서 흔히 발견되지만 여기에서 아직 공개가 되지 않은 L-아미노산으로 치환될 수 있다. 또한, 비표준 R 기를 갖는 아미노산(즉, 자연 단백질의 일반적인 20개 아미노산에서 찾을 수 없는 R 기) 역시 본 발명에 따라 면역원과 면역성 폴리펩티드를 생산하기 위해서 치환될 수 있다.
만약 하나 이상의 위치에서 아래에서 정의된 것과 매우 비슷하거나 더 큰 항원 활성을 갖는 치환이 발견되면, 그런 치환의 조합은 조합된 치환이 펩티드의 항원성에 더해지거나 시너지 효과의 결과를 내는지 결정하기 위해 시험된다. 최대, 펩티드에서 네 가지 이상의 위치는 치환될 수 없다.
본 발명의 펩티드는 4개의 아미노산까지 연장할 수 있는데, 즉 1, 2, 3 및 4개의 아미노산이 4:0과 0:4 사이에서 임의의 조합으로 양쪽 어디로든 추가될 수 있다.
발명에 따른 연장의 조합은 표 3으로부터 기술할 수 있다.
[표 3]
Figure pat00008
연장을 위한 아미노산은 해당 단백질의 원래 서열의 펩티드나 기타 모든 아미노산일 수 있다. 연장은 펩티드의 안정성이나 용해성 강화를 위해 사용될 수 있다.
용어 "T 세포 반응"은 특정 증식과 시험관 내 또는 생체 내에서 펩티드에 의해 유도되는 효과기 기능의 활성화를 뜻한다. MHC 유형 I 제한 CTL 에서는, 효과기 기능이 펩티드-펄스, 펩티드-전구 펄스 또는 자연적 펩티드 제시 표적 세포들의 세포 용해, 사이토킨의 분비, 바람직하게는 펩티드에 의해 유도되는 인터페론-감마, TNF-알파, 또는 IL-2, 효과기 분자의 분비, 바람직하게는 펩티드에 의해 유도되는 그랜자임 또는 퍼로핀 또는 탈과립일 수 있다.
바람직하게는, 서열번호 1 내지 92의 펩티드에 특이적인 CTL이 치환 펩티드에 대해 시험될 때, 치환 펩티드가 배경에 비해 세포 용해의 최대 증가의 절반을 달성할 때의 펩티드 농도는 약 1 mM 이하, 바람직하게 약 1 μM 이하, 더 바람직하게 약 1 nM 이하, 여전히 더 바람직하게 약 100 pM 이하, 가장 바람직하게 약 10 pM 이하이다. CTL에 의해 개별적으로 인식되는 치환 펩티드가 1개, 2개,그리고 3개 이상일 때 더 바람직하다.
따라서, 본 발명의 항원결정인자는 자연적으로 발생하는 종양 관련 또는 종양 특이적 항원결정인자와 동일하거나 또는 실질상 동일한 항원 활성을 갖는 한, 참조 펩티드와 비교 시 4개 이하의 다른 잔기를 갖는 항원결정인자를 포함할 수 있다.
면역 반응 자극은 자가 면역 구조가 외부 물질로 인식하는 항원의 존재에 의존한다. 종양 관련 항원 존재의 발견으로 종양 성장을 방해하는 데 숙주의 면역 시스템 사용 가능성이 제기되었다. 면역 시스템의 체액 및 세포 팔을 모두 활용하는 다양한 기전은 현재 암 면역 치료로 탐구된다.
세포 면역 반응의 특정 요소들은 종양 세포를 특이적으로 인식하고 파괴할 수 있다. 종양 침투 세포 군이나 말초 혈액에서 세포 독성 T 세포(CTL)의 분리는 이런 세포들이 암에 대해 자연 면역 방어로써의 중요한 역할을 할 수 있다는 것을 시사한다. 특히 세포질에 위치한 단백질이나 결손 리보솜 산물들(DRIPS)로부터 유래된 보통 8 내지 12개의 주 조직적합 복합체(MHC) 포함 펩티드의 유형 I 분자를 인식하는 CD8-양성 T 세포는 이 반응에서 중요한 역할을 한다. 인간의 MHC 분자도 인간 백혈구-항원(HLA)으로 지정된다.
MHC 유형 I 분자는 주로 내인성, 시토솔 또는 핵 단백질, DRIP 및 더 큰 펩티드의 단백질 가수분해 분할의 결과로 생성된 펩티드를 제시하는 핵이 있는 대부분의 세포에서 발견할 수 있다. 하지만 엔도솜 구획이나 외인성 공급원으로부터 유래된 펩티드 또한 MHC 유형 I 분자에서 흔히 발견된다. 이러한 비고전적 방식의 유형 I 제시를 문헌에서는 교차-제시라고 칭한다.
CD8 및 CD4에 의존하는 두 유형의 반응이 항종양 효과에 협동 및 상승 작용을 통해 기여하므로, CD8-양성 CTL(MHC 유형 I 분자) 또는 CD4-양성 CTL(MHC 유형 II 분자)에 의해 인식되는 종양-연관 항원들의 식별 및 특성화는 종양 백신의 개발에 중요하다. 그러므로 본 발명의 목적은 두 가지 유형의 MHC 복합체에 결합하는 펩티드를 포함하는 펩티드 조성을 제공하는 것이다.
암 치료와 관련된 심한 부작용과 비용을 고려할 때 보다 나은 예후 및 진단 방법이 절실히 필요하다. 따라서 일반 암과 특히 폐암을 위한 바이오 마커를 제시하는 다른 요인들을 파악할 필요가 있다. 또한 일반 암과 특히 폐암의 치료에 사용할 수 있는 인자들의 파악이 필요하다.
본 발명은 본 발명의 펩티드를 과도하게 또는 독점적으로 제시하는 암/종양, 바람직하게는 폐암, 보다 더 바람직하게는 비소세포 폐암종(NSCLC)에 유용한 펩티드를 제공한다. 이 펩티드는 질량 분석법에 의해 원발성 인간 폐암 샘플(실시예 1 및 도 1 참고) 상에서 HLA 분자에 의해 자연적으로 제시되는 것으로 나타났다.
펩티드가 유래하는 출처 유전자/단백질("전장 단백질" 또는 "기저 단백질"로도 지정됨)은 공급 유전자에 대한 고도의 종양 연관을 보여주는 정상 조직(NSCLC의 실시예 2, 및 도 2 참조)과 비교해서 비소세포 폐암종에서, 및 서열번호 66 내지 75의 위암 및 아교모세포종에서 고도로 과발현되는 것으로 나타났다. 또한 펩티드 자체는 종양 조직에서 강력히 과제시되지만 정상 조직에서는 그렇지 않다(실시예 3 및 도 3 참조).
HLA-결합된 펩티드는 면역계 특히 T 림프구/T 세포에 의해서 인식된다. T 세포들은 인식된 HLA/펩티드 복합체를 제시하는 세포, 예를 들면, 유도된 펩티드를 제시하는 폐암 세포를 파괴한다.
본 발명의 모든 펩티드는 T 세포 반응을 자극할 수 있고/있거나 과제시되는 것으로 나타났으므로, 본 발명에 따른 항체 및/또는 TCR, 특히 sTCR의 생산에 사용될 수 있다(실시예 4 및 도 4 참조). 또한 해당되는 MHC와 복합된 펩티드는 본 발명에 따른 항체 및/또는 TCR, 특히 sTCR의 생산에도 사용될 수 있다. 해당 방법들은 전문가에게 잘 알려져 있으며 해당 문헌에서도 찾을 수 있다. 그러므로, 본 발명의 펩티드는 환자의 종양 세포를 파괴할 수 있는 면역 반응을 생성하는데 유용하다. 환자의 면역 반응은 설명된 펩티드의 직접적인 투여 또는 면역성을 강화할 수 있는 제제(즉, 보조제)와 섞인 적당한 전구 물질(예를 들면, 연장된 펩티드, 단백질, 또는 이러한 펩티드를 인코딩하는 핵산)을 환자에게 투여하는 것으로 유도될 수 있다. 이런 치료적 백신에서 생긴 면역 반응은 본 발명의 표적 펩티드가 비교가능한 카피 수로 정상 조직에서는 제시되지 않고, 환자의 정상 세포에 대해 바람직하지 않은 자기 면역 반응의 위험을 방지하기 때문에 종양 세포에 아주 특이적이라고 기대할 수 있다.
약학 조성물은 유리 형태 또는 약학적으로 허용가능한 염의 형태로 된 펩티드로 구성된다. 여기서 사용되는 것처럼, "약학적으로 허용가능한 염"은 펩티드가 산 또는 제제의 염기 염을 만들며 변형되는 공개된 펩티드의 유도체를 말한다. 예를 들면, 산 염은 적당한 산과의 반응에 관여하는 자유 염기(일반적으로 중성-NH2 기가 있는 약물의 중성 형태)로부터 제조된다. 산 염을 제조할 때 적당한 산은 예를 들면, 염산, 브롬화수소산, 황산, 질산, 인산 등과 같은 무기산뿐만 아니라 초산, 프로피온산, 글리콜산, 피루브산, 수산, 말산, 말론산, 호박산, 말레산, 푸마르산, 주석산, 구연산, 벤조산, 계피산, 맨델릭산, 메탄술폰산, 에탄술폰산, p-톨루엔술폰산, 살리실산 등과 같은 유기산을 포함한다. 반대로, 펩티드에서 나타날 수 있는 산 잔기의 염기 염의 제조는 수산화 나트륨, 수산화 칼륨, 수산화 암모늄, 수산화 칼슘, 트리메틸아민 등과 같은 약학적으로 허용가능한 염기를 사용한다.
특히 바람직한 약학 조성물의 구현은 초산(아세트산염), 삼불화 초산 또는 염산(염화물)의 염과 같은 펩티드로 구성된다.
암 치료에 유용함에 덧붙여, 본 발명의 펩티드는 진단으로도 유용하다. 펩티드가 폐암 세포에서 생성되고 이런 펩티드가 정상 조직에서는 나타나지 않거나 더 낮은 수준으로 나타난다고 판단되었기 때문에 이런 펩티드는 암의 존재를 진단하는 데 사용될 수 있다.
조직 생체 검사에서 주장되는 펩티드의 존재는 암의 진단 시 병리학자를 도울 수 있다. 항체, 질량 분석, 또는 이 분야에 알려진 다른 방법을 통한 특정 펩티드의 탐지는 조직이 악성 또는 염증이 있는지 또는 일반적으로 병들어 있는지 병리학자에게 알려줄 수 있다. 펩티드의 기의 존재는 병든 조직의 분류 또는 하위 분류를 가능하게 한다.
병든 조직 표본에서 펩티드의 탐지는 특히 만약 T 림프구가 작용 기전에 참여하는 것으로 알려져 있거나 그렇다고 예상될 때, 면역계를 포함한 치료 혜택에 대한 판단을 내릴 수 있게 한다. MHC 발현의 손실은 감염된 악성 세포가 면역 감시를 벗어나는 데에서 잘 설명되는 기전이다. 이처럼 펩티드의 존재는 이 기전이 분석된 세포에서 악용되지 않는 것을 보여준다.
본 발명의 펩티드는 펩티드 또는 MHC 분자와 합성된 펩티드에 대한 T 세포 반응 또는 항체 반응 같은 펩티드에 대한 림프구 반응을 분석하는 데 사용될 수 있다. 이런 림프구 반응은 추가 치료 단계에서 결정을 내릴 때 예후 마커로 사용될 수 있다. 이런 반응은 또한 림프구 반응을 여러 방법으로, 예를 들면, 단백질 백신, 핵산, 자가 조직 물질, 림프구의 양자 면역 전송을 유도하는 것을 목표로 하는 면역치료의 대리 마커로 사용될 수 있다. 유전자 치료 설정에서, 펩티드에 대한 림프구 반응은 부작용의 평가에서 고려할 수 있다. 림프구 반응의 모니터링은 이식 요법의 후속 검사, 예를 들면, 이식의 감지 대 숙주 및 숙주 대 이식 질병을 위한 중요한 도구가 될 수도 있다.
본 발명의 펩티드는 MHC/펩티드 합성물에 대한 특정 항체를 생성하고 개발하는 데 사용될 수 있다. 이들은 병든 조직의 치료, 독성 물질 목표 또는 방사능 물질로 사용될 수 있다. 이런 항체의 또 다른 사용은 PET 같은 이미지 목적을 위해 병든 조직의 방사성 핵종을 표적으로 할 수도 있다. 이 사용은 작은 전이를 감지하거나 병든 조직의 크기와 정확한 위치를 결정하는데 도움이 될 수 있다.
그러므로 본 발명의 다른 양태는 HLA-제한 항원과 결합하는 인간 주 조직적합 복합체(MHC) 유형 I 또는 II와 특이적으로 결합하는 재조합 항체의 생산 방법을 제공하는 것으로, 이 방법은 상기 HLA-제한 항원과 결합하는 용해성 형태의 MHC 유형 I 또는 II 분자로써 상기 인간 주 조직적합 복합체(MHC) 유형 I 또는 II를 발현하는 세포를 구성하는 유전자 조작된 비인간 포유동물의 면역화; 상기 비인간 포유동물의 세포를 생산하는 항체로부터 mRNA 분자의 분리; 상기 mRNA 분자에 의해 인코딩된 단백질 분자를 표시하는 파지 디스플레이 라이브러리의 생산; 및 상기 파지 디스플레이 라이브러리로부터 적어도 하나의 파지의 분리를 포함하며 상기 적어도 하나의 파지는 상기 HLA-제한 항원과 복합되는 상기 인간 주 조직적합 복합체(MHC) 유형 I 또는 유형 II와 특이적으로 결합하는 상기 항체를 나타낸다.
본 발명의 다른 양태는 HLA 제한 항원과 결합하는 인간 주 조직적합 복합체(MHC) 유형 I 또는 II에 특이적으로 결합하는 항체를 제공하는 것으로 이 항체는 바람직하게는 다클론 항체, 단클론 항체, 양특이성 항체 및/또는 키메라 항체이다.
그리고 본 발명의 또 다른 양태는 HLA-제한 항원과 결합하는 인간 주 조직적합 복합체(MHC) 유형 I 또는 II에 특이적으로 결합하는 상기 항체를 생산하는 방법에 관한 것으로, 이 방법은 상기 HLA-제한 항원과 결합하는 용해성 형태의 MHC 유형 I 또는 II 분자로써 상기 인간 주 조직적합 복합체(MHC) 유형 I 또는 II를 발현하는 세포를 포함하는 유전자 조작된 비인간 포유동물의 면역화; 상기 비인간 포유동물의 세포를 생산하는 항체로부터 mRNA 분자의 분리; 상기 mRNA 분자에 의해 인코딩된 단백질 분자를 표시하는 파지 디스플레이 라이브러리의 생산; 및 상기 파지 디스플레이 라이브러리로부터 적어도 하나의 파지, 상기 적어도 하나의 파지는 상기 HLA-제한 항원과 결합하는 상기 주 조직적합 복합체(MHC) 유형 I 또는 II와 특이적으로 결합가능한 상기 항체를 나타낸다. 이러한 항체들과 단일 쇄 유형 I 주 조직적합 복합체를 생산하는 해당 방법들은 물론 이러한 항체의 생산용 도구들은 다음에 소개되어 있다: WO 03/068201, WO 2004/084798, WO 01/72768, WO 03/070752, 및 [Cohen CJ, Denkberg G, Lev A, Epel M, Reiter Y. Recombinant antibodies with MHC-restricted, peptide-specific, T-cell receptor-like specificity: new tools to study antigen presentation and TCR-peptide-MHC interactions. J Mol Recognit. 2003 Sep-Oct;16(5):324-32.]; [Denkberg G, Lev A, Eisenbach L, Benhar I, Reiter Y. Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen. J Immunol. 2003 Sep 1;171(5):2197-207]; 및 [Cohen CJ, Sarig O, Yamano Y, Tomaru U, Jacobson S, Reiter Y. Direct phenotypic analysis of human MHC class I antigen presentation: visualization, quantitation, and in situ detection of human viral epitopes using peptide-specific, MHC-restricted human recombinant antibodies. J Immunol. 2003 Apr 15; 170(8):4349-61], 이는 본 발명의 목적상 그 전체가 참조로서 모두 명시적으로 포함된다.
바람직하게는 항체는 20 나노몰 미만, 바람직하게는 10 나노몰 미만의 결합 친화력으로써 복합체와 결합하는데, 이는 본 발명의 맥락에 따라 "특이적"으로 간주된다.
본 발명의 다른 양태는 특이적 펩티드-MHC 복합체를 인지하는 용해성 T 세포 수용체의 생산 방법을 제공하는 것이다. 이러한 용해성 T 세포 수용체는 특이적 T 세포 클론으로부터 생성 가능하며, 그 친화력은 상보결정 부위를 표적으로 하는 돌연변이 유발성에 의해 증가될 수 있다. T 세포 수용체 선택의 목적에 따라, 파지 디스플레이를 사용할 수 있다(US 2010/0113300, [Liddy N, Bossi G, Adams KJ, Lissina A, Mahon TM, Hassan NJ, et al. Monoclonal TCR-redirected tumor cell killing. Nat Med 2012 Jun;18(6):980-987]). 파지 디스플레이 동안 T 세포 수용체의 안정화 목적에 따라, 및 약물로서의 실용적인 용도의 경우, 알파 및 베타 쇄로 연결될 수 있으며, 예를 들어 비정상적 이황화 결합, 기타 공유 결합(단일-쇄 T 세포 수용체) 또는 이합체화에 의해 연결된다([Boulter JM, Glick M, Todorov PT, Baston E, Sami M, Rizkallah P, et al. Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng 2003 Sep;16(9):707-711.]; [Card KF, Price-Schiavi SA, Liu B, Thomson E, Nieves E, Belmont H, et al. A soluble single-chain T-cell receptor IL-2 fusion protein retains MHC-restricted peptide specificity and IL-2 bioactivity. Cancer Immunol Immunother 2004 Apr;53(4):345-357]; 및 [Willcox BE, Gao GF, Wyer JR, O'Callaghan CA, Boulter JM, Jones EY, et al. Production of soluble alphabeta T-cell receptor heterodimers suitable for biophysical analysis of ligand binding. Protein Sci 1999 Nov; 8(11):2418-2423]). T 세포 수용체는 표적 세포에 대한 특정 기능의 실행을 목적으로 독소, 약물, 사이토카인(US 2013/0115191 참고), 항-CD3 도메인과 같은 작용기 세포를 모집하는 도메인 등과 연결될 수 있다. 또한 이것은 입양 전달에 사용되는 T 세포에서 발현될 수 있다.
추가 정보는 WO 2004/033685A1 및 WO 2004/074322A1에서 찾을 수 있다. sTCR의 조합은 WO 2012/056407A1에 설명되어 있다. 이 생산에 관한 추가 방법들은 WO 2013/057586A1에 공개되어 있다.
그 밖에 이들은 생검한 샘플에 근거하는 병리학자의 암 진단을 확인하는데 사용될 수 있다.
과제시된 펩티드를 선택하기 위해, 중간 샘플 제시는 물론 복제 변이를 보여주는 제시 프로필이 계산된다. 이 프로필은 관심 대상의 종양 객체 샘플을 정상 조직 샘플의 기준과 병치한다. 그런 다음, 이 프로필 각각은 전형적인 혼합효과 모형의 p-값을 계산하여 과도-제시 점수에 통합될 수 있으며(J. Pinheiro, D. Bates, S. DebRoy, Sarkar D., R Core team. nlme: Linear and Nonlinear Mixed Effects Models. 2008) 틀린 발견 비율에 의해 다중 검정을 조절한다(Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B(Methodological), Vol.57(No.1):289-300, 1995).
질량 분석에 의한 HLA 리간드의 동정 및 상대적 정량화를 위해, 충격동결된 조직 샘플에서 얻은 HLA 분자를 정제하고 HLA-연관 펩티드를 동정하였다. 동정한 펩티드는 분리하여 그 서열을 온라인 나노-전기분무-이온화(nanoESI) 액체 크로마토그래피-질량 분석(LC-MS) 실험에 의해 식별하였다. NSCLC 샘플로부터 기록된 자연적 TUMAP의 파편 패턴을 동일한 서열을 갖는 상응하는 합성 참조 펩티드의 파편 패턴과 비교하여, 얻어진 펩티드 서열을 확인하였다. 펩티드는 원발 종양의 HLA 분자의 리간드로서 직접 식별되기 때문에, 그 결과는 NSCLC 환자에서 얻어진 원발 종양 조직에 대해 식별된 펩티드의 자연적 프로세싱과 제시에 대한 직접적 증거를 제공한다.
독점적 발견 파이프라인 엑스프레지던트(XPRESIDENT: 등록상표) v2.1(예를 들어 전체가 여기에 포함되는 US 2013-0096016을 참고)은 몇 가지 다른 비암성 조직 및 기관에 비해 암 조직에 대한 HLA-제한 펩티드 수준의 직접적인 상대적 정량화를 기준으로 관련 있는 과제시된 펩티드 백신 후보의 식별과 선택을 허용한다. 이는 서열 식별, 스펙트럼 집락화, 이온 계수화, 정체 시간 정렬, 전하 상태 디컨볼루션 및 정상화에 필요한 알고리즘을 조합시킨 독점 데이터 분석 파이프라인에 의해 처리하여 획득한 LC-MS 데이터를 사용한 비표지 차등 정량화의 개발에 의해 성취되었다.
펩티드와 샘플 각각에 대한 오류 측정치 등 제시 수준이 확립되었다. 종양 조직에 독점적으로 제시된 펩티드, 및 종양에서 과제시된 펩티드 대비 비암성 조직 및 기관이 식별된 바 있다.
50개의 충격 동결된 NSCLC 종양 조직 샘플에서 얻어진 HLA-펩티드 복합체를 분리하며 LC-MS로 분석하였다.
원발성 NSCLC에 대한 제시가 확인된 원발성 NSCLC 종양 샘플에 대한 이러한 접근 방식을 통해 가용한 용도에 포함된 모든 TUMAP를 식별하였다.
다수의 NSCLC 종양 및 정상 조직에 대해 식별된 TUMAP를 비표지 LC-MS 데이터에 대한 이온-계수화를 사용하여 정량화하였다. 이 방법은 펩티드의 LC-MS 신호 영역이 샘플에 존재하는 비율과 상관관계가 있다고 추정된다. 다양한 LC-MS 실험에서 펩티드의 모든 정량적 신호들을 LS-MS 실험을 중심 경향에 근거하여 정상화하고 샘플 당 평균화하여 제시프로필이라 부르는 막대 도표에 통합시켰다. 이 제시 프로필은 단백질 데이터베이스 검색, 스펙트럼 군락화, 전하 상태 디컨벌루션(방전) 및 정체 시간 정렬 및 정상화와 같은 다른 분석 방법들을 통합시킨다.
그러므로 본 발명은 서열번호 1 내지 65, 서열번호 76 내지 84 및 서열번호 92로 구성되는 군으로부터 선택된 서열 또는 서열번호 1 내지 65, 서열번호 76 내지 84 및 서열번호 92와 적어도 90% 상동성인 이의 변이체 또는 상기 펩티드와 교차반응하는 T 세포를 유도하는 이의 변이체를 포함하는 펩티드에 관한 것으로 상기 펩티드는 전장 폴리펩티드가 아니다.
본 발명은 또한 서열번호 1 내지 65와 서열번호 76 내지 84 및 서열번호 92로 구성되는 군으로부터 선택된 서열 또는 서열번호 1 내지 65, 서열번호 76 내지 84와 적어도 90% 상동성인(바람직하게는 동일한) 이의 변이체를 포함하는 펩티드에 관한 것으로, 상기 펩티드나 변이체는 8 내지 100, 바람직하게는 8 내지 30, 가장 바람직하게는 8 내지 14개의 아미노산인 전장을 갖는다.
본 발명은 또한 인간 주 조직적합, 복합체(MHC) 유형 I 또는 II의 분자에 결합하는 능력이 있는 본 발명에 따른 펩티드에 관한 것이다.
본 발명은 또한 본 발명에 의한 펩티드에 관한 것으로 상기 펩티드는 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92에 따른 아미노산 서열로 구성되거나 필수적으로 구성된다.
본 발명은 또한 본 발명에 따른 펩티드에 관한 것으로 상기 펩티드는 변형되고/되거나 비펩티드 결합을 포함한다.
본 발명은 또한 본 발명에 따른 펩티드에 관한 것으로 상기 펩티드는 융합 단백질의 일부이고 특히 HLA-DR 항원-결합 항원-연관된 불변 쇄(Ii)에 융합되거나 또는 예를 들어 수지상 세포에 특이적인 항체와 같은 항체에(또는 그 서열 안으로) 융합된다.
본 발명은 또한 본 발명에 따른 펩티드를 인코딩하는 핵산에 관한 것이되, 상기 펩티드는 완전한 인간 단백질은 아니다.
본 발명은 또한 DNA, cDNA, PNA, RNA 또는 이들의 조합인 본 발명에 따른 핵산에 관한 것이다.
본 발명은 또한 본 발명에 따른 핵산을 발현할 수 있는 발현 벡터에 관한 것이다.
본 발명은 또한 본 발명에 따른 펩티드, 본 발명에 따른 핵산 또는 의학에서의 사용을 위한 본 발명에 따른 발현 벡터에 관한 것이다.
본 발명은 또한 본 발명에 따른 핵산을 또는 전에 설명한 발현 벡터를 포함하는 숙주 세포에 관한 것이다.
본 발명은 또한 항원 제시 세포인 본 발명에 따른 숙주 세포에 관한 것이다.
본 발명은 또한 본 발명에 따른 숙주 세포에 관한 것이고 항원 제시 세포는 수지상 세포이다.
본 발명은 또한 본 발명에 따른 펩티드 제조 방법에 관한 것으로, 상기 방법은 본 발명에 따른 숙주 세포의 배양과 숙주 세포 또는 그의 배양 배지로부터 펩티드의 분리를 포함한다.
본 발명은 또한 시험관 내에서 세포 독성 T 림프구(CTL)를 항원-특이적 방식으로 상기 CTL을 활성화시키기에 충분한 시간 동안 적합한 항원 제시 세포의 표면에 발현된 인간 유형 I 또는 II MHC 분자가 로딩된 항원과 접촉시키는 것을 포함하는 활성화된 CTL의 시험관 내 제조 방법에 관한 것으로, 상기 항원은 본 발명에 따른 임의의 펩티드이다.
본 발명은 또한 설명된 방법에 관한 것으로, 충분한 양의 항원을 항원제시 세포와 접촉시킴으로써 상기 항원이 적절한 항원제시 세포의 표면에 발현된 유형 I 또는 II MHC 분자에 로딩된다.
본 발명은 또한 본 발명에 따른 방법에 관한 것으로, 항원 제시 세포는 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92를 포함하는 상기 펩티드 또는 상기 변이체 아미노산 서열을 발현할 수 있는 발현 벡터로 구성된다.
본 발명은 또한 본 발명에 따른 방법에 의해 생산된 활성화 세포독성 T 림프구(CTL)에 관한 것으로, 이는 설명된 아미노산 서열을 포함하는 폴리펩티드를 비정상으로 발현하는 세포를 선택적으로 인식한다.
본 발명은 또한 본 발명에 따른 효과적인 숫자의 세포 독성 T 림프구(CTL)를 환자에게 투여하는 것을 포함하여, 본 발명에 따른 어떠한 아미노산 서열을 포함하는 폴리펩티드를 비정상적으로 발현하는 표적 세포를 환자에서 죽이는 방법에 관한 것이다.
본 발명은 또한 본 발명에 따른 모든 펩티드, 본 발명에 따른 핵산, 본 발명에 따른 발현 벡터, 본 발명에 따른 세포, 또는 본 발명에 따른 활성화된 세포 독성 T 림프구를 약제로서 또는 약제의 제조에서 사용에 관한 것이다.
본 발명은 또한 본 발명에 따른 용도에 관한 것으로, 상기 약제는 백신이다.
본 발명은 또한 본 발명에 따른 용도에 관한 것으로, 상기 약제는 암에 대해 활성을 갖는다.
본 발명은 또한 본 발명에 따른 용도에 관한 것으로, 상기 암 세포는 폐암 세포, 위, 위장, 결장, 췌장 또는 신장 세포이다.
본 발명은 또한 폐암의 예후에 사용할 수 있는 특정 마커 단백질 및 바이오마커에 관한 것이다.
또한 본 발명은 본 발명에 따라 설명한 암 치료를 위한 신규 표적의 사용에 관한 것이다.
용어 "항체" 또는 "항체들"은 여기에서 광범위한 의미로 사용되며, 다클론 및 단클론 항체를 둘 다 포함한다. 손상되지 않은 "온전한" 면역글로불린 항체 분자뿐만 아니라, 용어 "항체"에 포함되어 있는 것은 그런 면역글로불린 항체 분자와 본 발명에 따른 특성(예를 들면, 폐암 마커 폴리펩티드의 특정 결합, 높아진 수준의 폐암 마커 유전자를 발현하는 폐암 세포에 독성 전달, 및/또는 폐암 마커 폴리펩티드의 활성 억제)을 보이는 한 인간화된 버전의 면역글로불린 항체 분자들의 단편 또는 중합체이다.
가능한 한, 본 발명의 항체는 상용 공급처에서 구입해야 한다. 본 발명의 항체는 잘 알려진 방법을 통해서 만들 수도 있다. 이 분야의 기술자는 전장 폐암 마커 폴리펩티드 또는 그의 단편이 발명의 항체를 만드는 데 사용될 수 있다는 것을 이해할 것이다. 항체를 생성하는 데에 사용될 폴리펩티드는 자연적인 원천에서 부분적으로 또는 완전히 정제될 수 있으며, 또는 재조합 DNA 기술을 이용하여 만들 수도 있다.
예를 들면 ABCA13, MMP12, DST, MXRA5, CDK4, HNRNPH, TANC2, 1RNF213, SMYD3 및 SLC34A2, 또는 서열번호 1 내지 65, 서열번호 76 내지 84의 기타 모든 폴리펩티드, 및 서열번호 92 폴리펩티드 또는 그의 단편을 인코딩하는 cDNA는 재조합 단백질이 정제되고 본 발명에 따른 항체 생성에 사용되는 폐암 마커 폴리펩티드와 특이적으로 결합하는 단클론 또는 다클론 항체 제조에 사용된 후, 원핵 세포(예, 박테리아) 또는 진핵 세포(예, 효모, 곤충 또는 포유류 세포)에서 발현될 수 있다.
이 분야 전문가는 2개 이상의 다른 단클론 또는 다클론 항체의 조합의 생성은 의도하는 사용(예를 들면, ELISA, 면역조직화학, 생체 내 이미징, 면역 독소 요법)에 요구되는 특이성 및 친화성을 갖는 항체의 획득 가능성을 최대화함을 인식할 것이다. 이 항체들은 그 항체들이 사용되는 목적에 의거하여 알려진 방법에 의해 원하는 활성도에 대해 시험된다(예를 들면, ELISA, 면역조직화학, 면역요법 등; 항체의 생성과 시험에 관한 추가 지침은 다음을 참고한다(예를 들면, [Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1988, new 2nd edition 2013]). 예를 들어, 항체는 포르말린 고정 폐암이나 동결된 조직 절편의 ELISA 검정, 웨스턴 블롯, 면역조직화학 염색으로 시험할 수 있다. 치료 또는 생체 내 진단용 항체는 초기의 시험관 내 특성화 이후, 알려진 임상 시험 방법에 따라 시험한다.
"단클론 항체"라는 용어는 여기서 치환으로 균등질 항체 개체군에서 획득이 된 것을 말하는바, 이 개체군이 포함하는 각각의 항체는 자연적으로 일어날 수 있는 소수의 돌연변이체를 제외하고는 동일하다. 단클론 항체는 여기서 특히 중쇄 및/또는 경쇄의 한 부분이 특정한 종 또는 특정한 항체 유형 또는 서브유형에서 유도된 항체의 서열과 상응하거나 일치하고, 쇄의 나머지 부분은 다른 종 또는 다른 항체 유형 또는 서브유형에서 유도된 항체, 및 이러한 항체의 단편의 서열과 상응하거나 일치하고, 바람직한 길항적 활성을 보여주는 "키메릭(chimeric)" 항체를 포함한다(미국 특허 번호 4,816,567 전문이 참조로 여기에 포함됨).
본 발명의 단클론 항체는 하이브리도마 방법을 사용하여 제조할 수 있다. 하이브리도마 방법에서는, 생쥐 또는 다른 적당한 숙주 동물이 보통 면역제에 의해 면역되어, 면역제에 특이적으로 결합하는 항체를 생산하거나 이를 생산할 수 있는 능력을 갖는 림프구를 유도해 낸다. 다른 방법으로는, 림프구는 시험관 내에서 면역될 수도 있다.
단클론 항체는 미국 특허 번호 4,816,567에서 기술된 바 있는 재조합 DNA 방법으로 만들어 질 수도 있다. 본 발명의 단클론 항체를 인코딩하는 DNA는 손쉽게 격리되고 전통적인 방법을 사용하여 염기 서열 분석이 가능하다(예를 들면, 마우스 유래 항체의 중쇄 및 경쇄를 인코딩하는 유전자에 특정하게 결합할 수 있는 능력이 있는 올리고뉴클레오티드 탐침 사용에 의해).
시험관 내 방법 또한 일가 항체를 만드는 데에 적당하다. 항체의 단편, 특히 여기서는 Fab 단편을 생산하기 위한 항체 절편화는 이 분야에서 잘 알려진 상용 수기를 사용하여 진행할 수 있다. 예를 들면, 파파인을 사용하여 절편화가 이루어질 수 있다. 이 파파인 절편화의 예는 WO 94/29348(1994년 12월 22일 발행) 및 미국 특허 번호 4,342,566에 기술되어 있다. 항체의 파파인 절편화는 각각 하나의 항원 결합 위치 및 남은 Fe 단편을 포함한 Fab 단편의 동일한 2개의 항원 결합 단편을 생산한다. 펩신 치료는 2개의 항원 결합 위치를 갖고 여전히 교차 결합의 능력을 갖는 단편을 만든다.
항체 단편은 다른 서열과 붙어 있든 그렇지 않든 간에, 이 단편의 활성이 변경되지 않은 항체 또는 항체 단편에 비교할 때, 현저하게 바뀌거나 또는 손상되지 않는 한, 삽입, 삭제, 치환, 또는 기타 특정 영역 또는 특정 아미노산 잔기의 선택된 변경을 포함할 수도 있다. 이러한 변경은 이황화 결합 능력이 있는 아미노산의 제거/추가, 생물적 생명의 증가, 분비 특징의 변화 등의 추가적인 특성을 제공할 수 있다. 어떤 경우에도, 항체 단편은 결합성, 결합 도메인에서의 결합 조정 등의 생물작용 성질이 있어야 한다. 항체의 기능적인 또는 활동적인 범위는 단백질의 특정한 지역의 돌연변이 생성, 발현 및 발현된 폴리펩티드의 실험에 의해 확인될 수 있다. 이러한 방법은 이 분야의 기술자가 손쉽게 알 수 있는 기술이고 이는 항체 단편을 인코딩하는 핵산의 위치-특정 돌연변이 생성을 포함할 수 있다.
본 발명의 항체는 또한 인간화된 항체 또는 인간 항체를 포함할 수 있다. 인간화된 형태의 비인간(예, 쥐과 동물) 항체는 최소의 비인간 면역글로불린 항체에서 유도된 서열을 포함하는 키메릭 면역글로불린항체, 면역글로불린 쇄 또는 이들의 단편(Fv, Fab, Fab' 또는 다른 항체의 항원 결합의 결과)이다. 인간화된 항체는 상보성 결정 영역(CDR)의 잔기가 생쥐, 쥐 또는 토끼와 같은 비인간 종(공여 항체)의 CDR의 잔기로 교체된, 요구되는 특이성, 친화력 및 수용력이 있는 인간 면역글로불린(수용 항체)이다. 몇몇 예에서, 인간 면역글로불린의 Fv 구조(FR) 잔기가 상응하는 비인간 잔기로 교체된다. 인간화된 항체는 수용 항체 또는 유입된 CDR 또는 구조 서열의 어디에서도 찾을 수 없는 서열을 포함하기도 한다. 보통, 인간 항체는 변이성 도메인을 적어도 하나 또는 대부분 2개를 포함하며, 모든 또는 실질상 모든 CDR 범위는 비인간 면역글로불린에 상응하고 모든 또는 실질상 모든 구조 범위는 인간 면역글로불린 일치 서열이다. 인간화된 항체는 이상적으로 적어도 보통 인간 면역글로불린의 면역글로불린 불변 범위(Fc)의 한 부분 또한 포함할 것이다.
이 분야에서 비인간 항체를 인간화하는 방법은 잘 알려져 있다. 보통, 인간화된 항체는 하나 또는 그 이상의 아미노산 잔기가 비인간 근원에서 이에 도입된다. 이 비인간 아미노산 잔류들은 종종 "유입" 잔기라고 일컬어지며, 이는 대개 "유입" 변수 도메인에서 나온다. 인간화는 본질적으로 설치류의 CDR 또는 상응하는 인간 항체 서열의 CDR 서열을 인간의 것으로 교체하여 실행될 수 있다. 따라서, 이러한 "인간화된" 항체는 실질적으로 전체보다 적은 인간 변수 도메인이 상응하는 비인간 종의 서열로 교체가 된, 키메릭 항체(미국 특허 번호 4,816,567)이다. 실제적으로, 인간화된 항체는 보통 몇몇의 CDR 잔기 및 가능하게는 몇몇의 구조 잔기가 이 설치류의 유사한 영역의 잔기와 치환된 인간 항체이다.
면역되었을 때, 내인성 면역글로불린 생성이 없는 가운데 전체 인간 항체를 생산할 수 있는 유전자 변형 동물(예, 생쥐)이 사용될 수 있다. 예를 들면, 키메릭 및 생식 계열 돌연변이 생쥐의 항체의 중쇄 결합 영역 유전자 동형 결손은 내생 항체 생산의 완전한 억제 결과를 가져온다. 이러한 생식 계열 돌연변이 생쥐로의 인간 배선 면역글로불린 유전자 정렬 이식은 항원이 존재할 때 인간 항체 생산의 결과를 낳을 것이다. 인간 항체는 파지 디스플레이 라이브러리에서도 생산될 수 있다.
발명의 항체는 바람직하게는 약학적으로 허용가능한 담체에 의해서 피험자에게 투여된다. 보통, 제형을 등장 상태로 만들기 위해 적당 양의 약학적으로 허용가능한 염이 제형에 사용된다. 약학적으로 허용가능한 담체의 예로는, 링거 용액(Ringer's solution)과 포도당 용액이 있다. 이 용액의 pH는 약 5 내지 8이 바람직하고, 약 7 내지 7.5가 더 바람직하다. 추가 담체는 항체를 포함하는 세포간질이 막, 리포좀 또는 미세입자와 같은 형태로 되어 있는 항체를 포함하는 고형 소수성 중합체의 반투성 세포간질과 같은 서방성 제제를 포함한다. 예를 들어, 투여 방법 및 투여되는 항체의 농도에 따라 어떤 담체가 더 바람직한지는 이 분야의 기술자에게는 명백할 것이다.
항체는 피험자, 환자 또는 세포에 주사(예, 정맥내, 복강내, 피하, 근육내), 또는 주입과 같은 혈류로의 전달이 효율적으로 이루어 질 수 있는 다른 방법으로 투여될 수 있다. 항체는 국소뿐만이 아니라 전신의 치료 효과를 얻기 위해 종양 내 또는 종괴 부근의 경로로 투여될 수도 있다. 국소 또는 정맥내 주사가 바람직하다.
항체 투여의 효율적인 용량과 스케줄은 경험적으로 결정될 수 있으며, 이러한 결정을 내리는 것은 이 분야의 기술 중의 하나다. 이 분야 기술자는 투여되는 항체의 용량이 예를 들어 항체를 받는 대상, 투여 방법, 사용되는 특정한 항체의 종류 및 투여되는 다른 약들에 따라 달라진다는 것을 이해할 것이다. 단독으로 사용될 때 전형적인 항체의 일일 용량은 체중당 1 ㎍/kg 내지 100 mg/kg으로 다를 수 있으며, 위에 언급된 요인을 고려할 때 이보다 더 높을 수도 있다. 폐암의 치료를 위한 항체의 투여 후, 이 분야의 기술자들에게 알려진 다양한 방법으로 이 항체의 치료적 효율성을 평가할 수 있다. 예를 들면, 크기, 숫자, 및/또는 치료를 받고 있는 대상의 암의 분포 등이 종양 영상 기술을 이용하여 모니터될 수 있다. 항체의 투여가 없을 경우 발생할 수 있는 종양의 성장을 정지시켜, 종양을 축소시키거나 새로운 종양의 성장을 예방하는 치료의 목적으로 투여된 항체는 효과 있는 폐암의 치료라고 할 수 있다.
본 발명의 폐 종양 마커 ABCA13 및 MMP12가 폐암 세포에서 높게 발현되고 정상 세포에서는 극단적으로 낮게 발현되기 때문에, ABCA13 및 MMP12의 발현 또는 폴리펩티드 활성의 억제는 NSCLC 치료와 예방의 치료 방법에 통합될 수 있다.
안티센스 치료의 원리는 유전자 발현(전사 또는 번역을 통한) 서열 특정 억제가 세포내 유전자 DNA 또는 mRNA와 상보성 안티센스 종의 혼성화에 의하여 이루어질 수 있다는 가설에 기반을 둔다. 이러한 하이브리드 핵산 듀플렉스의 형성은 표적 종양 항원 코딩 유전자 DNA의 전사, 처리/운반/번역 및/또는 표적 종양 항원 mRNA의 안정성을 방해한다.
안티센스 핵산은 여러 가지 방법으로 전달될 수 있다. 예를 들면, 안티센스 올리고뉴클레오티드 또는 안티센스 RNA는 종양이 섭취할 수 있도록 대상에게 직접 투여(예, 정맥내 주입)될 수 있다. 다른 방법으로는 바이러스 또는 안티센스 RNA(또는 RNA 단편)를 코딩하는 플라스미드 벡터가 세포 안으로 투여될 수 있다. 안티센스 효과는 센스 서열에 의해서 유도될 수도 있으나, 표현형 변화의 정도의 변수가 높다. 효율적인 안티센스 치료로 유도되는 표현형 변화는 예를 들면 표적 mRNA 수준, 표적 단백질 수준 및/또는 표적 단백질 활성 수준의 변화로 평가가 이루어질 수 있다.
특정한 예로서, 폐종양 마커 기능의 안티센스 유전자 치료로의 억제는 안티센스 폐종양 마커 RNA의 직접적인 대상으로의 투여에 의해서 이루어질 수 있다. 안티센스 종양 마커 RNA는 어떤 기본적인 방법을 통해 생성되고 분리가 될 수 있지만, 이는 가장 빠르게 안티센스 종양 마커 cDNA를 이용하여 높은 효율성을 갖는 촉진자 조정 아래에서 세포 외 전사에 의해 얻어질 수 있다(예, T7 촉진자). 안티센스 종양 마커 RNA의 세포로의 투여는 아래에 설명한 직접 핵산 투여의 방법으로 이루어질 수 있다.
유전자 요법을 사용하는 ABCA13 및d MMP12 기능 억제의 대체 전략에는 항-ABCA13, MMP12 항체 또는 항-ABCA13, MMP12 항체의 부분에 대한 세포 내 발현이 관여한다. 예를 들어, ABCA13, MMP12 폴리펩티드에 특이적으로 결합하여 그 생물학적 활성을 억제하는 단클론 항체를 인코딩하는 유전자(또는 유전자 단편)는 핵산 발현 벡터 내에서 특이적(예를 들면, 조직- 또는 종양-특이적) 유전자 조절 서열의 전사적 제어 하에 배치된다. 그런 다음 이 벡터를 폐암 세포나 기타 세포가 취하도록 피험자에게 투여하는 경우, 항-ABCA13, MMP12 항체가 분비됨으로써 ABCA13, MMP12 폴리펩티드의 생물학적 활성이 차단된다. 바람직하게는 ABCA13, MMP12 폴리펩티드는 위암 세포의 세포 외 표면에 존재한다.
외인성 DNA의 대상의 세포로의 투입과 흡수 등 위에 기술된 방법(예, 유전자 전사와 감염)에서, 본 발명의 핵산은 네이키드 DNA 또는 벡터 형태의 핵산일 수 있으며, 이는 핵산을 세포로 전달하여 위 종양 마커 단백질 발현의 억제에 사용된다. 벡터는 아데노바이러스 벡터(콴텀 바이오테크놀로지스 인코포레이티드(Quantum Biotechnologies, Inc.), 캐나다 퀘벡주 라발 소재)와 같이 상용적으로 구입할 수 있다. 핵산 또는 벡터의 세포로서의 전달은 여러 가지의 기전으로 이루어진다. 하나의 예로서, 이 전달은 리포펙틴(LIPOFECTIN), 리포펙타민(LIPOFECTAMINE)(깁코(GIBCO)-25 BRL 인코포레이티드, 미국 메릴랜드주 가이너버그 소재), 슈퍼펙트(SUPERFECT)(퀴아겐 인코포레이티드(Qiagen, Inc.), 독일 힐든 소재) 및 트랜스펙탐(TRANSFECTAM)(프로메가 바이오테크 인코포레이티드(Promega Biotec, Inc.), 미국 위스콘신주 매디슨 소재)과 같이 상용적으로 구입가능한 리포솜 제제 또는 이 분야의 기준 방법에 의해서 개발된 다른 리포솜을 사용하여 가능하다. 추가적으로, 본 발명의 핵산 또는 벡터의 생체 내 전달은 제네트로닉스 인코포레이티드(Genetronics, Inc.; 미국 캘리포니아주 샌 디에고 소재)와 소노포레이션(SONOPORATION) 기계(이마알엑스 파마슈티칼 코포레이션(ImaRx Pharmaceutical Corp.), 미국 애리조나주 툭손 소재)를 사용한 전기 천공법으로 이루어질 수 있다.
하나의 예로서, 벡터 전달은 레트로바이러스 유전체를 포장할 수 있는 레트로바이러스 벡터 시스템과 같은 바이러스 시스템에 의해서 이루어질 수 있다. 재조합 레트로바이러스는 그 후 ABCA13, MMP12의 발현을 억제하는 안티센스 핵산을 감염된 세포로 전달하는 데 사용된다. 변형된 핵산의 포유류로의 주입의 정확한 방법은 물론 레트로바이러스 벡터의 사용에 국한되지 않는다. 아데노바이러스 벡터, 아데노-관련 바이러스 벡터(AAV), 렌티바이러스 벡터, 슈도유형 레트로바이러스 벡터 등을 포함한 다른 기술 또한 이러한 절차에 널리 사용된다. 리포솜 전달과 수용체-중재 및 다른 세포이물 흡수 기전을 포함한 물리적인 형질 도입 기술 또한 사용될 수 있다. 본 발명은 이러한 방법들 또는 다른 유전자 전달 방법과 결합하여 사용될 수 있다.
항체는 생체 내 진단 분석에 사용될 수도 있다. 보통, 항체는 방사성핵종으로 표지가 붙고(예, 111In, 99Tc, 14C, 131I, 3H, 32P 또는 35S) 면역 섬광 조형술을 사용하여 종양의 위치가 결정될 수 있다. 하나의 구현에서는, 이러한 항체 또는 단편은 2개 이상의 ABCA13, MMP12 표적의 세포 외 도메인에 결합을 하고 친화성 값(Kd)은 1x10 μM보다 낮다.
진단의 용도로 사용되는 항체는 여러 가지의 영상 방법으로 감지될 수 있는 적당한 탐침으로 표지될 수 있다. 탐침의 감지 방법은 형광, 광학, 공초점 및 전자 현미경, 자기 공명 단층 촬영 영상 및 분광기 형광 투시법, 전산화 단층 촬영과 양전자 방사 단층 촬영기를 포함하지만 이에 국한되지 않는 방법을 들 수 있다. 적당한 탐침은 플루오레세인, 로다민, 에오신과 다른 형광체, 방사성 동위 원소, 금, 가돌리늄과 다른 란탄계열 원소, 상자성체의 이온, 플루오르-18 및 다른 양전자 방출 방사성 핵종 등을 포함하지만, 이에 국한되지 않는다. 또한, 탐침은 2개 이상의 기능을 가질 수 있으며, 여기에 나열된 하나 이상의 방법으로 감지될 수 있다. 이러한 항체는 직접적으로 또는 간접적으로 나열된 탐침으로 표지될 수 있다. 이렇게 항체와 탐침을 연결하는 것으로는 이 분야에서 잘 알려진 것들 중에 탐침의 공유원자 연결, 탐침의 항체로의 편입 및 탐침의 결합을 위한 킬레이트 화합물의 공유원자 연결 등을 들 수 있다. 면역조직 화학을 위해서, 질병 조직 샘플은 신선하거나 냉동되었거나 또는 파라핀에 포매되어 포르말린과 같은 방부제로 고정되어 있을 수 있다. 고정되었거나 포매되어 있는 샘플을 포함하고 있는 조직 절편은 라벨된 1차 항체와 2차 항체와 접촉되며 여기서 원위치 ABCA13, MMP12 단백질 발현 감지를 위한 항체가 사용된다.
따라서 본 발명은 서열번호 1 내지 65, 서열번호 76 내지 84 및 서열번호 92로 구성되는 군으로부터 선택된 서열 또는 서열번호 1 내지 65, 서열번호 76 내지 84 및 서열번호 92와 적어도 90% 상동성인 이의 변이체 또는 상기 펩티드와 교차반응하는 T 세포를 유도하는 이의 변이체를 포함하는 펩티드를 제공한다.
본 발명의 펩티드는 인간 주 조직적합 복합체(MHC) 유형 I 및/또는 유형 II에 결합하는 능력을 갖는다.
본 발명에서, "상동"이라는 용어는 2개의 아미노산 서열, 즉, 펩티드 또는 폴리펩티드 서열 사이의 일치 정도를 일컫는다. 전술한 "상동"은 비교될 2개의 서열에 대한 최적 상태에서 2개의 서열을 나란히 정렬시킴으로써 결정된다. 이러한 서열 상동 관계는 예를 들면 클러스탈(Clustal)W 알고리즘을 이용하여 정렬을 만들어 계산할 수 있다. 일반적으로 사용가능한 서열 분석 소프트웨어, 더 구체적으로 벡터 NTI, GENETYX 또는 분석 기구 등은 공용 데이터베이스에서 제공된다.
이 분야에서는 특정한 펩티드의 변이체에 의해서 유도된 T 세포가 그 자신의 펩티드와 상호 반응할 수 있을지를 평가할 수 있을 것이다(Fong et al., 2001); (Zaremba et al., 1997; Colombetti et al., 2006; Appay et al., 2006).
주어진 아미노산의 "변이체"에 의해, 발명자들은 예를 들면, 1 또는 2개의 아미노산의 측쇄가 변경되어 그 펩티드가 여전히 서열번호 1 내지 서열번호 65, 및 서열번호 76 내지 서열번호 84 및 서열번호 92에서 주어진 아미노산의 서열을 갖는 펩티드가 결합하는 것과 치환과 같은 방법으로 HLA 분자와 결합할 수 있는 것을 일컫는다(예를 들면 그들을 자연적으로 발생하는 다른 아미노산 또는 다른 측쇄로 교체함을 말한다). 예를 들면, 펩티드 변형에 의해 이가 HLA-A*02 또는 DR와 같은 적당한 MHC 분자의 결합 홈과 상호 작용하는 능력을 적어도 유지하거나 증가시키고 이에 따라 이는 활성화된 CTL의 TCR과 결합할 수 있는 능력을 적어도 유지하거나 증가시키게 된다.
이 CTL은 그 결과로 본 발명의 한 양태에서 정의된 같은 혈족의 펩티드의 자연 아미노산 서열을 포함하는 폴리펩티드를 발현하는 세포와 상호 반응을 하고 그 세포들을 죽인다. 과학 문헌(Rammensee et al., 1997) 및 데이터베이스(Rammensee et al., 1999)에서 얻을 수 있듯이, HLA 결합 펩티드의 특정한 위치는 전형적으로 HLA 수용기의 결합 모티프에 맞는 핵심 고정 잔기이고 이는 결합 홈을 이루고 있는 폴리펩티드의 양극성, 전기 물리성, 소수성 및 공간적 특성에 의해 정의된다. 따라서 이 분야에서는 알려진 고정 잔기를 유지하는 동시에 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92에 정해진 아미노산을 변경함에 따라 이러한 변이체들이 MHC 유형 I 또는 II 분자와 결합할 수 있는 능력을 유지할 수 있는지를 알 수 있다. 이 본 발명의 변이체는 활성화된 CTL의 TCR과 결합할 수 있는 능력을 유지하고, 이는 그 결과로 본 발명의 양태에서 같은 혈족의 펩티드라고 정의된 자연 아미노산 서열을 포함하고 있는 폴리펩티드를 발현하는 세포와 상호반응을 하고 이들을 죽인다.
T 세포 수용체와 작용하는 데 전체적으로 기여를 하지 않는 아미노산 잔기들은 이와 결합함으로써 T 세포의 반응성에 큰 영향을 주지 않고 관련된 MHC와의 결합을 제거하지 않는 다른 아미노산과의 교체에 의해 변형될 수 있다. 따라서, 주어진 조건 외에도, 본 발명의 펩티드는 아미노산 서열 또는 그 한 부분 또는 주어진 변이체를 포함하는(발명자들이 올리고펩티드 또는 폴리펩티드를 포함한다고 일컫는) 어떠한 펩티드가 될 수도 있다.
[표 4]
다음 서열번호에 따른 펩티드의 변이체 및 모티프: 1, 2, 4, 5 및 7
Figure pat00009
Figure pat00010
Figure pat00011
Figure pat00012
더 긴 펩티드도 적합할 수 있다. 또한 대개 길이가 8 내지 11개인 아미노산이지만, MHC 유형 I 항원결정인자가 더 긴 펩티드로부터 처리되는 펩티드 또는 실제 항원결정인자를 포함하는 단백질에 의해 생성될 가능성도 있다. 실제 항원결정인자가 양측에 있는 장기는 처리 동안 실제 항원결정인자를 노출하는데 필요한 단백질 분해에 의한 분할에 상당한 영향을 주지 못하는 잔기이다.
따라서, 본 발명은 MHC 유형 I 항원결정인자의 펩티드와 변이체를 제공하며 여기서 펩티드 또는 변이체는 총 길이가 8 내지 100이고, 바람직하게는 8 내지 30이고, 가장 바람직하게는 8 내지 14이고, 즉 8, 9, 10, 11, 12, 13, 14개의 아미노산이다. 유형 II 결합 펩티드의 경우 그 길이는 15, 16, 17, 18, 19, 20, 21 또는 33개의 아미노산일 수 있다.
물론, 본 발명에 따른 펩티드 또는 변이체는 인간 주 조직적합 복합체(MHC) 유형 I 또는 II와 결합하는 능력을 갖는다. 펩티드나 변이체의 MHC에 대한 결합은 이 분야에서 알려진 방법에 의해 시험할 수 있다.
본 발명의 특히 바람직한 구현에서 그 펩티드는 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92에 따른 아미노산 서열로 구성되거나 이로 본질적으로 구성된다.
"필수적으로 구성되는"이란 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92의 어느 것 또는 이 변이체 외에도 본 발명에 따른 추가적인 N- 및 또는 C-말단에 위치하고 있는 아미노산이 MHC 분자 항원결정인자에 대한 항원결정인자로 작용하는 펩티드의 한 부분을 형성하지 않는 펩티드를 일컫는다.
그럼에도 불구하고, 이 길이의 아미노산은 본 발명에 따르면 세포 안으로의 효율적인 펩티드의 도입에 중요한 역할을 할 수 있다. 본 발명의 하나의 구현에서는, 펩티드는 예를 들면 NCBI, 젠뱅크(GenBank) 수탁 번호 X00497에서 유도된 것처럼 HLA-DR 항원-결합 불변 쇄(p33, 다음의 "Ii")의 80개 N-말단 아미노산을 포함하고 있는 융합 단백질이다. 다른 융합에서는, 본 발명의 펩티드는 항체에 의해 특이적으로 표적이 될 수 있도록 여기서 설명된 상기 항체나 그 기능적 일부 특히 항체의 서열에 대해 또는 예를 들어 수지상 세포에 특이적인 항체에 대해 또는 그 안으로 융합될 수 있다.
추가적으로, 펩티드 또는 변이체는 안정성 및/또는 MHC 분자와의 결합성을 높여 더 강한 면역 반응을 일으킬 수 있도록 변형될 수 있다. 펩티드 서열의 최적화를 위한 방법은 이 분야에서 잘 알려져 있으며, 예를 들면 반대 펩티드 결합 또는 비펩티드 결합을 도입하는 것이 있다.
반대 펩티드 결합에서는 아미노산 잔기가 펩티드(-CO-NH-) 연결로 결합되어 있지 않으나 펩티드 결합이 반대로 되어있다. 이러한 레트로-인버스 펩티드 모방체는 이 분야에서 잘 알려진 방법으로 생성될 수 있으며, 이 방법의 예는 이 문헌의 참조 문헌으로 포함된 문헌[Meziere et al(1997) J. Immunol. 159, 3230-3237]에 기술된 방법을 들 수 있다. 이 방법은 백본의 변경을 포함하지만, 측쇄의 방향을 바꾸지 않는 유사펩티드를 만드는 것을 포함한다. 메지에르(Meziere) 등(1997)은 MHC 결합과 T 도움 세포 반응에서 이 유사 펩티드가 유용하다는 것을 보여준다. CO-NH 대신에 NH-CO 결합을 포함하고 있는 역-인버스 펩티드는 단백질 가수 분해에 대한 저항력이 훨씬 높다.
비펩티드 결합의 예는 -CH2-NH, -CH2S-, -CH2CH2-, -CH=CH-, -COCH2-, -CH(OH)CH2-, 및 -CH2SO-이다. 미국 특허 번호 4,897,445는 기본 과정을 거쳐 합성된 폴리펩티드와 아미노 알데히드와 아미노산을 NaCNBH3 존재 하에 반응을 시켜 생성된 비펩티드 결합을 포함한 폴리펩티드 쇄의 비펩티드 결합(-CH2-NH) 고체상 합성의 방법을 제공한다.
위에서 기술된 서열을 갖는 펩티드는 안정성, 생물가용성, 및/또는 펩티드의 결합을 증가시키기 위해 추가적인 화학 기를 아미노 및 또는 카르복시 말단에 결합할 수도 있다. 예를 들면, 카르보벤족실, 단실, 또는 t-부틸옥시카르보닐 기 등의 수소성 기가 펩티드의 아미노 말단에 추가될 수 있다. 마찬가지로, 아세틸 기 또는 9-플루오레닐메톡시-카르보닐-기가 펩티드의 아미노 말단에 위치할 수도 있다. 또한, 소수성 기, t-부틸옥시카르보닐, 또는 아미도 기 또한 펩티드의 카르복시 말단에 추가될 수 있다.
또한, 이 발명의 펩티드는 그들의 입체 배치를 변화시키기 위해 생성될 수도 있다. 예를 들면, 펩티드의 하나 또는 그 이상의 아미노산 잔기의 D-이성질체가 보통의 L-이성질체 대신에 사용될 수도 있다. 더 나아가서, 발명의 펩티드의 적어도 하나의 아미노산 잔기가 비자연적으로 일어나는 아미노산 잔기와 치환될 수도 있다. 이와 같은 변화는 안정성, 생물가용성 및/또는 본 발명의 펩티드의 결합을 증가시킬 수 있다.
유사하게, 이 발명의 펩티드 또는 변이체는 특정한 아미노산을 펩티드 생성 전후에 반응시킴으로써 화학적으로 변형될 수 있다. 이러한 변형의 예는 이 분야에서 잘 알려져 있으며, 예를 들어 이 문헌의 참조 문헌에 포함되어 있는 문헌[R. Lundblad, Chemical Reagents for Protein Modification, 3rd ed. CRC Press, 2005]에 잘 기술되어 있다. 아미노산의 화학 변형은 아실화, 아미딘화, 리신의 피리독실화, 환원성 알킬화 반응, 아미노산의 2,4,6-트리니트로벤젠 술폰화(TNBS)에 의한 트라이 니트로 벤질화, 카르복실 기의 아미드 변형 및 퍼포민산에 의한 설피드릴 변형, 시스틴의 시스테릭산으로의 산화, 수은 유도체 생성, 다른 티올 복합체와 혼합된 이황화물 생성, 말레이미드와의 반응, 요오드화 아세트산 또는 요오드아세트아미드에 의한 카르복시메틸레이션 및 사이안산 염에 알칼리성 산도에서의 의한 카바밀화를 포함하지만 이에 국한되지 않은 변형을 말한다. 이에 관해서, 더 광대한 단백질의 화학 변형에 대한 방법론에 대해서는 전문가는 문헌[Current Protocols In Protein Science, Eds. Coligan et al. (John Wiley & Sons NY 1995-2000)]의 15장을 참조하길 바란다.
간단히 말하면, 예를 들어 단백질의 아르기닌 잔기는 흔히 페닐글리옥산, 2,3-부탄디온 및 1,2-사이클로헥산디온과 같은 가까운 디카르보닐 화합물과의 반응에 근거하여 부가물을 형성한다. 다른 예는 메틸글로옥살과 아르기닌 잔기와의 반응이다. 시스테인은 리신과 히스티딘과 같은 다른 친핵성 부위의 동시 변형 없이 변형시킬 수 있다. 그 결과 다수의 시약들이 시스테인 변형에 사용 가능하다. 시그마 알드리치(Sigma-Aldrich)(http://www.sigma-aldrich.com) 등 기업 웹사이트에서 특정한 시약에 관한 정보를 제공하고 있다.
단백질에서 이황화결합의 선택적 환원 또한 흔히 발생한다. 단백질에서 이황화 결합은 생물약제의 열처리 동안 형성되어 산화될 수 있다.
우드워드의 시약 K는 특정 글루탐산 잔기의 변형에 사용될 수 있다. N-(3디메틸아미노)프로필)-N'-에틸카르보디이미드를 사용하여 리신 잔기와 글루탐산 잔기 사이의 분자 내 가교를 형성할 수 있다.
예를 들어 디메틸카르보네이트는 단백질에서 히스티딘 잔기의 변형을 위한 시약이다. 히스티딘은 4-히드록시-2-노네날을 사용하여 변형시킬 수 있다.
리신 잔기와 다른 α-아미노기의 반응은, 예를 들어, 펩티드의 표현 결합 또는 단백질/펩티드들의 가교에 유용하다. 리신은 폴리(에틸렌)글리콜의 부착의 부위이고 단백질의 당화에서 중요 변형 부위이다.
단백질에서 메티오닌 잔기는 예를 들어 이오도아세트아미드, 브로모에틸아민 및 클로르아민 T를 사용하여 변형시킬 수 있다.
테트라니트로메탄 및 N-아세틸이미다졸은 티로신 잔기의 변형에 사용할 수 있다. 디티로신의 형성을 통한 가교 형성은 과산화 수소/구리 이온으로써 이루어질 수 있다.
트립토판의 변형에 대한 최근의 연구에서는 N-브로모숙신이미드, 브롬화 2-키드록시-5-니트로벤질 또는 3-브로모-3-메틸-2-(2-니트로페닐메르 캅토)-3H-인돌(BPNS-스카톨)이 사용된 바 있다.
PEG를 이용한 치료 단백질과 펩티드의 성공적인 변환은 수화겔 제조 시 사용되는 단백질을 글루타르알데히드, 폴리에틸렌글리콜 디아크릴레이트 및 포름알데히드와 교차 결합하는 동시 순환 반감기의 연장과 관련되어 있다. 면역 치료를 위한 알레르겐의 화학적 변형은 종종 칼륨 시안산염의 카르바밀화와 관련이 있다.
펩티드 또는 변이체(여기에서 펩티드는 변환되었거나 또는 비펩티드 결합을 포함하는 것)가 본 발명의 구현에서 바람직하다. 보통, 펩티드와 변이체(적어도 펩티드 링크를 아미노산 잔기 사이에 포함하는 것들)는 루(Lu) 등(1981) 및 그 문헌의 참조 자료에서 기술한 것처럼 고체상 펩티드 생성의 Fmoc-폴리아미드 모드에서 합성될 수 있다. 일시적인 N-말단 기의 보호는 9-플루오레닐메틸옥시카르보닐(Fmoc)에 의해 제공된다. 이렇게 고도로 염기 불안정한 보호기의 반복적인 절단은 N,N-디메틸포름아미드의 20% 피페리딘을 이용하여 이루어진다. 측쇄 기능은 부틸 에테르(세린, 트레오닌 및 티로신의 경우), 부틸 에스테르(글루탐산 및 아스파르트산의 경우), 부틸옥시카보닐 변이체(리신과 히스티딘의 경우), 트라이틸 변이체(아르기닌의 경우), 및 4-메톡시-2,3,6-트리메틸벤젠술포닐 유도체(아르기닌의 경우)로서 보호될 수 있다. 글루타민 또는 아스파라긴이 C-말단의 잔기인 경우, 4,4'-디메톡시벤즈히드릴이 사용되어 측쇄 아미도 기능을 보호한다. 고체상 지원은 디메틸아크릴아미드(백본-모노머), 비스아크릴로일에틸렌 디아민(가교 결합) 및 아크 릴로일사르코신 메틸 에스테르(기능 작용제)의 3개의 모노머로 만들어진 폴리디메틸-아크릴아미드 중합체에 기반을 둔다. 펩티드 대 레진 절단 가능 연결 작용제로 사용되는 것은 산-불안정 4-히드록시메틸-페녹시아세트산 유도체이다. 모든 아미노산 유도체는 역 N,N-디사이클로헥실-카보다이이미드/1-히드록시벤조트리아졸에 의한 커플링 과정에 의해 추가되는 아스파라진과 글루타민을 제외하여 미리 생성된 대칭의 무수물 유도체로서 추가된다. 모든 커플링과 탈보호 반응은 닌히드린, 트리니트로벤젠 술폰산 또는 이소틴 실험 과정에 의해 모니터링된다. 합성 완성 시에, 펩티드는 레진 기반에서 50% 스캐빈저 믹스를 포함한 95% 트리플루오르아세트산에 의한 측쇄 보호기 제거와 동시에 절단된다. 일반적으로 사용되는 스캐빈저로는 에탄디티올, 페놀, 아니솔 및 물이 포함되고, 정확한 선택은 합성되는 펩티드에 포함되어 있는 아미노산에 따라 결정된다. 펩티드의 합성에 있어서 고체상과 액체상 방법의 결합 또한 가능하다(예를 들면, 브룩도르퍼(Bruckdorfer) 등(2004) 과 그 참조 문헌 참고).
트리플루오르아세트산은 진공 상태에서 증발 및 그 이후 디에틸에테르에 의한 분쇄에 의해 제거되고 조 펩티드를 생성한다. 존재하는 임의의 스캐빈저는 수성상의 냉동건조에 의한 간단한 추출 과정에 의해 제거되며 이는 스캐빈저가 없는 조 펩티드를 생성한다. 펩티드 합성의 시약은 예를 들면 칼바이오켐-노바바이오켐 리미티드(Calbiochem-Novabiochem(UK) Ltd; 영국 노팅험 소재)와 같은 곳에서 제공된다.
정제는 재결정화, 크기 배제 크로마토그래피, 이온 교환 크로마토그래피, 소수성 상호 작용 크로마토그래피 및 (보통) 예를 들면 아세토니트릴/물 구배 분리를 사용하는 역상 고성능 액체 크로마토그래피 등의 단일 방법 또는 이의 결합 방법에 의해 시행된다.
펩티드의 분석은 박막 크로마토그래피, 전기 이동, 특히 모세관 전기 이동, 고체상 추출(CSPE), 역상 고성능 액체 크로마토그래피, 산 가수분해 후 아미노산 분석 및 고속 원자 폭격 질량 분광분석, 및 MALDI와 ESI-QTOF 질량 분광분석 등에 의해 이루어진다.
본 발명의 다른 양태는 본 발명의 펩티드 또는 펩티드 변이체를 인코딩하는 핵산(예를 들면 폴리뉴클레오티드)에 대한 정보를 제공한다. 폴리뉴클레오티드는 예를 들면, DNA, cDNA, PNA, CNA, RNA 또는 이의 결합일 수 있으며, 한 가닥 및/또는 이중 가닥으로 되어 있을 수 있고, 또는 본래의 형 또는 예를 들면 포스포로티오에이트 백본을 갖는 폴리뉴클레오티드의 안정화된 형으로 되어 있을 수도 있으며, 펩티드를 코딩하는 인트론을 포함할 수도 또는 그렇지 않을 수도 있다. 물론, 단지 자연적으로 일어나는 아미노산 잔기로 이루어진, 및 자연적으로 일어나는 펩티드 결합에 의해 결합이 된 펩티드만이 폴리뉴클레오티드에 의해서 인코딩될 수 있다. 본 발명의 또 다른 양태는 본 발명에 따른 폴리펩티드를 발현할 수 있는 발현 벡터에 대한 설명을 제공한다.
특히 긴 DNA와 같은 폴리뉴클레오티드를 벡터에, 예를 들면 상보성 응집성 말단을 이용하여 연결하는 여러 가지 방법이 개발되었다. 예를 들면, 상보성 동종중합체 트랙이 DNA 단편에 추가되어 이를 벡터 DNA에 삽입할 수 있다. 벡터와 DNA 단편은 이후 상보성 동종중합체 꼬리 간 수소 결합으로 결합하여 재조합 DNA 분자를 생성할 수 있다.
하나 또는 그 이상의 제한 부위를 포함하는 합성된 연결부위는 DNA 단편과 벡터를 결합하는 다른 방법을 제시한다. 여러 가지의 제한 엔도뉴클레아제 부위를 포함하는 합성 연결부위는 상업적으로 인터내셔날 바이오테크놀로지즈 인코포레이티드(International Biotechnologies Inc; 미국 코네티컷주 뉴 헤븐 소재)를 비롯한 곳에서 구입가능하다.
본 발명에서 폴리펩티드를 인코딩하는 DNA를 변환하는 바람직한 방법은 사이키(Saiki) 등(1988)에 의해 발표된 바 있는 폴리머라아제 연쇄 반응을 이용한다. 이 방법은 예를 들면 적당한 제한 부위를 만들어 적당한 벡터로의 DNA 도입 또는 이 분야에서 알려져 있는 DNA를 다른 용도를 위해 변환하는 데 사용될 수도 있다. 만약 바이러스 벡터가 사용된다면, 수두- 또는 아데노바이러스 벡터가 바람직하다.
DNA(또는 레트로 바이러스 벡터의 경우 RNA)는 그 후 적당한 숙주에서 발현되며 이는 본 발명의 펩티드 또는 변이체를 갖는 폴리펩티드를 생성한다. 따라서, 본 발명의 펩티드 또는 변이체를 인코딩하는 DNA는 알려진 기술과 여기에서 배울 수 있는 것과 함께 적당히 사용되어 본 발명의 폴리펩티드를 발현하고 생성하기 위해 적당한 숙주 세포를 형질전환을 시키는 데 사용된다. 이러한 기술은 다음에 공개되어 있다: 미국 특허 번호 4,440,859, 4,530,901, 4,582,800, 4,677,063, 4,678,751, 4,704,362, 4,710,463, 4,757,006, 4,766,075 및 4,810,648.
본 발명의 화합물을 구성하는 폴리펩티드를 인코딩하는 DNA(또는 레트로바이러스 벡터일 경우, RNA)는 많은 종류의 다른 DNA 서열과 결합되어, 적당한 숙주로의 도입을 유도할 수 있다. 동반 DNA는 숙주의 특성, DNA를 숙주로 도입하는 방법, 및 에피소말 유지 또는 통합이 필요한 지에 따라 결정될 것이다.
보통, DNA는 플라스미드와 같은 발현 벡터로 발현을 위한 올바른 방향 및 올바른 리딩 프레임에 맞추어 삽입된다. 필요할 경우, DNA는 바람직한 숙주에 의해 인식되는 적당한 전사 규제 제어 뉴클레오티드 서열(하지만, 이 제어는 대부분의 경우 숙주 세포 내에 이미 존재한다)과 함께 연결될 수도 있다. 벡터는 그 후 숙주로 기본적인 기술을 통해 도입된다. 보통, 모든 숙주가 벡터에 의해 형질전환되지 않는다. 따라서, 형질전환된 세포를 선택하는 것이 필요할 것이다. 하나의 선택 기술은 발현 벡터에 필요한 형질전환된 세포에서 선택가능한 예를 들면, 항생제 저항력과 같은, 제어 요소를 통합시키는 것이다.
다른 방법으로는, 이러한 선택가능한 특성이 다른 벡터에 있을 수도 있으며, 이는 바람직한 숙주 세포를 동시-형질전환하는 데에 사용된다.
발명의 재조합 DNA에 의해 형질전환된 숙주 세포는 충분한 시간 동안 적당한 상태에서 기술자에 의해서 배양되고 이는 폴리펩티드의 발현을 가능하게 하며, 이는 후에 복구된다.
박테리아(예를 들면, 에스케리키아 콜라이(Escherichia coli)와 바실러스 서브틸리스(Bacillus subtilis)), 효모(예를 들면 사카로마이세스 세레비지애(Saccharomyces cerevisiae)), 사상균류(예를 들면 아스퍼길러스 종(Aspergillus spec.)), 식물 세포, 동물 세포 및 곤충 세포 등의 많은 발현 체계가 알려져 있다. 바람직하게는, 그 체계는 ATCC 세포 생물학 콜렉션에서 구할 수 있는 CHO 세포 등의 포유류 세포로 구성될 수 있다.
구조성 발현을 위한 전형적인 포유류 세포 벡터 플라스미드는 CMV 또는 SV40 촉진제와 적당한 폴리 A 꼬리 및 네오마이신과 같은 저항 마커를 포함한다. 하나의 예는, 파마시아(Pharmacia; 미국 뉴욕주 피스캣웨이 소재)에서 구할 수 있는 pSVL이다. 유도가능한 포유류 발현 벡터의 예는 pMSG이고 이 또한 파마시아에서 구할 수 있다. 유용한 효소 플라스미드 벡터는 pRS403-406과 pRS413-416이고 이는 대부분 스트라타진 클로닝 시스템스(스트라타진 Cloning Systems; 미국 캘리포니아주 라 호이아 소재)에서 구할 수 있다. 플라스미드 pRS403, pRS404, pRS405 및 pRS406은 효소 통합 플라스미드(YIps)이고 이는 효소 선택 마커 HIS3, TRP1, LEU2와 URA3을 통합한다. 플라스미드 pRS413-416은 효소 동원체 플라스미드(Ycps)이다. CMV 프로모터 기반 벡터(예, 시그마 알드리치)는 일시적인 또한 안정된 발현, 세포질 발현 또는 분비, 및 FLAG, 3xFLAG, c-myc 또는 MAT 등의 다양한 합성의 N-말단 또는 C-말단 태깅 등을 제공한다. 이러한 융합 단백질은 재조합 단백질의 감지, 정화와 분석을 가능하게 한다. 이중-태깅된 융합은 검출 시 유연성을 제공한다.
강한 인간 사이토메갈로 바이러스(CMV) 프로모터 규제 지역은 구성적인 단백질 발현 수준을 높게는 COS 세포에서 1 mg/L까지 작동한다. 좀 더 효능이 약한 세포주에서는, 단백질 수준이 전형적으로 약 0.1 mg/L 정도이다. SV40 복제 원점이 있음으로써 SV40, 복제를 가능하게 하는 COS 세포 DNA 복제의 수준이 높은 결과를 낳는다. CMV 벡터는 예를 들면 박테리아 세포에서의 복제를 위해 pMB1 원점을, b-박테리아에서 암피실린 저항 선택을 위해 락타마아제 유전자는, hGH 폴리 A, 및 f1 원점을 가질 수 있다. 프리프로트립신(PPT)을 포함하는 벡터 서열은 FLAG 융합 단백질의 분비를 ANTI-FLAG 항원, 레진, 및 접시를 사용하여 정제하는 배지로 방향을 정할 수가 있다. 다른 벡터와 발현 체계는 여러 가지의 숙주 세포 사용에 대해 널리 알려져 있다.
다른 구현에서는 본 발명의 2개 이상 펩티드나 펩티드 변이체가 인코딩됨으로써 연속적인 순서로 발현된다("한 줄로 엮은 비드" 구조와 유사). 그렇게 함으로써 펩티드나 펩티드 변이체는 예를 들어 LLLLLL과 같은 연결기 아미노산의 퍼짐에 의해 함께 연결 또는 융합될 수 있으며 또한 그 사이에 추가의 펩티드(들) 없이 연결될 수 있다.
본 발명은 또한 본 발명의 폴리뉴클레오티드 벡터 구성에 의해 형질전환된 숙주 세포에 관한 것이다. 숙주 세포는 원핵 세포이거나 진핵 세포일 수 있다. 박테리아 세포가 몇몇의 상황에서 바람직한 원핵 숙주 세포일 수 있으며, 보통 베쎄다 리서치 래보래토리즈 인코포레이티드(Bethesda Research Laboratories Inc.; 미국 메릴랜드주 베쎄다 소재)에서 구할 수 있는 에스케리키아 콜라이 균주 DH5, 및 아메리칸 타입 컬쳐 콜렉션(ATCC)(미국 메릴랜드주 록빌 소재)에서 구할 수 있는 RR1(ATCC 번호 31343)이다. 진핵 숙주 세포는 효소, 곤충, 포유류 세포를 포함하고, 생쥐, 쥐, 원숭이 또는 인간 섬유아세포와 대장 세포주 등의 척추 동물이 바람직하다. 효모 숙주 세포에는 YPH499, YPH500 및 YPH501가 포함되며, 이는 대부분 스트라타진 클로닝 시스템스(미국 캘리포니아주 라 호이아 소재)에서 구입가능하다. 바람직한 포유류 숙주 세포는 ATCC에서 구입가능한 CCL61로 알려져 있는 중국 햄스터 난소 세포, ATCC에서 CRL 1658로 알려져 있는 스위스 생쥐 배아 세포 NIH/3T3, ATCC에서 CRL 1650 세포로 알려져 있는 원숭이 신장-유도 COS-1 세포와 293 세포로 알려져 있는 인간 배아 신장 세포를 들 수 있다. 바람직한 곤충 세포는 Sf9 세포이고 이는 배큘로바이러스 발현 벡터에 의해 세포로 감염될 수 있다. 발현을 위한 적당한 숙주 세포의 선택에 대한 개관은 예를 들면 문헌[Paulina Balbas and Argelia Lorence "Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols," Part One, Second Edition, ISBN 978-1- 58829-262-9] 및 해당 분야 기술자에게 공지된 문헌에서 찾을 수 있다.
적당한 세포 숙주를 본 발명의 DNA 구성으로 형질전환하는 것은 보통 사용되는 벡터의 유형에 따라 결정되는 잘 알려진 방법으로 수행된다. 원핵 숙주 세포의 형질전환에 대해서는, 예를 들면 문헌[Cohen et al(1972) Proc. Natl. Acad. Sci. USA 69, 2110], 및 문헌[Sambrook etal(1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY]을 참조한다. 효소 세포의 형질전환은 문헌[Sherman et al(1986) Methods In Yeast Genetics, A Laboratory Manual, Cold Spring Harbor, NY]에 묘사되어 있다. 문헌[Beggs (1978) Nature 275, 104-109]에 나와 있는 방법도 유용하다. 척추 동물 세포에 대해서는, 이러한 세포를 감염시키는 시약, 예를 들면 칼슘 인산염과 DEAE-덱스트란 또는 리포좀 공식에 대한 내용은 스트라타진 클로닝 시스템스, 또는 라이프 테크놀로지즈 인코포레이티드(Life Technologies Inc.; 미국 메릴랜드주 게이더벅스 소재)에 나와 있다. 전기 천공법 역시 형질전환 및/또는 세포를 감염시키는 데에 유용하며 이는 효소 세포, 박테리아 세포, 곤충세포 및 척추동물 세포 형질전환에 잘 알려져 있다.
성공적으로 형질전환이 된 세포는, 즉 본 발명의 DNA를 구성하는 세포는, 잘 알려진 PCR과 같은 기술로 식별된다. 다른 방법으로는, 상층액에 존재하는 단백질은 항생제를 사용함으로써 감지될 수 있다.
본 발명의 특정한 숙주 세포, 예를 들면 박테리아, 효소 및 곤충 세포와 같은 세포는 본 발명의 펩티드의 준비에 유용하다는 것을 알 수 있을 것이다. 하지만, 다른 숙주 세포 또한 특정한 치료 방법에 유용할 수도 있다. 예를 들면, 수지상 세포와 같은 항원제시 세포는 적당한 MHC 분자에 적재가 되도록 하는 본 발명의 펩티드를 발현하는 데 유용하게 사용될 수 있다. 따라서, 본 발명은 핵산 또는 발명에 따른 발현 벡터를 포함하는 숙주 세포를 제공한다.
바람직한 구현에서, 숙주 세포는 항원 제시 세포이고, 특히 수지상 세포 또는 항원 제시 세포이다. 전립선 산성 포스파타제(PAP)를 포함하는 재조합된 융합 단백질 APC은 현재 전립선암의 치료 방법에 대해 조사 중이다(Sipuleucel-T) (Small et al., 2006; Rini et al., 2006).
본 발명의 다른 양태는 펩티드 또는 그의 변이체의 숙주 세포를 배양하고 펩티드를 숙주 세포 또는 배지에서 격리하는 것을 포함한 생산 방법을 제공한다.
펩티드에 대한 다른 구현에서는, 핵산 또는 발명의 벡터 발현이 의학에서 사용된다. 예를 들면, 펩티드 또는 그의 변이체는 정맥 내(i.v.) 투여, 피하(s.c.) 투여, 피부 내(i.d.) 투여, 복강 내(i.p.) 투여, 근육 내(i.m.) 투여를 포함한다. 펩티드 투여의 바람직한 방법은 s.c., i.d., i.p., i.m., 및 i.v. 투여를 포함한다. DNA 투여의 바람직한 방법은 i.d., i.m., s.c., i.p. 및 i.v. 투여를 포함한다. 용량은 각각의 펩티드 또는 DNA에 따라서 펩티드 또는 DNA의 50 ㎍ 및 1.5 mg, 바람직하게는 125 ㎍ 내지 500 ㎍이 투여될 수 있다. 이러한 범위의 용량이 이전의 임상실험에서 성공적으로 사용된바 있다(Walter et al Nature Medicine 18, 1254-261(2012)).
본 발명의 다른 양태는 시험관 내 T 세포를 적당한 항원제시 세포의 표면에서 발현된 항원 적재된 인간 MHC 분자와 항원 특정 방식으로 T 세포를 활성화시키는 데 충분한 시간 동안 접촉시키는 단계를 포함하는, 활성화된 T 세포를 생성하는 시험관 내 방법을 포함하고, 상기 항원은 본 발명에 따른 펩티드이다. 바람직하게는, 충분한 양의 항원이 항원제시 세포와 함께 사용된다.
바람직하게는, 포유류 세포는 TAP 펩티드 트랜스포터가 결핍되어 있거나, 감소된 수준 또는 기능을 갖는다. TAP 펩티드 트랜스포터가 결핍되어 있는 적당한 세포로는 T2, RMA-S 및 초파리 세포를 들 수 있다. TAP이란 항원 처리에 관련된 트랜스포터를 일컫는다.
인간 펩티드 적재 결핍 세포주 T2는 아메리칸 타입 컬쳐 콜렉션(미국 메릴랜드주 록빌 파크라운 드라이브 12301 소재)의 카탈로그 번호 CRL 1992로 구입가능하고, 초파리 세포주 슈나이더(Schneider) 2는 ATCC의 카탈로그 번호 CRL 19863으로 구입가능하며, 생쥐 RMA-S 세포주는 문헌[Karre et al 1985]에서 기술되어 있다.
바람직하게는, 숙주 세포는 감염전에 대부분 MHC 유형 I 분자를 발현하지 않는다. 또한 자극기 세포는 B.7.1, B.7.2 ICAM-1, LFA-3 등 T 세포를 위한 보조자극 신호를 제공하는 데 중요한 분자를 발현하는 것이 바람직하다. 다수의 MHC 유형 II 분자의 핵산 서열 및 동시자극 분자의 서열은 젠뱅크와 EMBL 데이터베이스에서 공개적으로 제공된다.
MHC 유형 I 항원결정인자가 항원으로 사용되는 경우, T 세포는 CD8-양성 CTL이다.
만약 항원 제시 세포가 이러한 항원결정인자를 발현하도록 감염되었다면, 바람직하게는 그 세포는 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92 또는 이의 변이체 아미노산 서열을 포함하는 펩티드를 발현할 수 있는 발현 벡터를 포함한다.
CTL을 시험관 내에서 생성하는 몇몇 다른 방법도 사용된 바 있다. 예를 들면, 문헌[Peoples et al(1995)]과 문헌[Kawakami et al(1992)]에서 기술된 방법은 CTL 생성 시, 자가 조직의 종양-침투 림프구를 사용한다. 플레반스키(Plebanski) 등(1995)은 자가 조직 말초의 혈액(PLB)을 CTL 준비 시 사용한다. 조슈무스(Jochmus) 등(1997)은 수지성 세포를 펩티드 또는 폴리 펩티드로 펄스시키거나, 또는 재조합 바이러스에 의한 감염에 의해 자가 조직 CTL의 생성하는 방법을 기술한다. 힐(Hill) 등(1995) 및 제롬(Jerome) 등(1993)은 자가 세포 CTL 생성 시 B세포를 사용한다. 또한, 펩티드 또는 폴리펩티드로 펄스된 또는 재조합된 바이러스에 의해 감염된 대식 세포가 자가 조직 CTL의 준비 시 사용될 수 있다. 월터(S. Walter) 등(2003)은 인공 항원 제시 세포(aAPC)를 사용하는 시험관 내 T 세포의 프라이밍을 묘사하며, 이는 역시 선택된 펩티드에 대해 T 세포를 생성하는 데 사용될 수도 있다. 이 연구에서, aAPC는 미리 생성된 MHC:펩티드 복합체를 폴리스티렌 입자(마이크로 비드)의 표면과 커플링을 시키고 바이오틴-스트렙트아비딘을 이용함으로써 생성된다. 이 체계는 aAPC의 정확한 MHC 밀도를 제어할 수 있도록 허용하며, 이는 항원-특정 T 세포 반응을 혈액 샘플에서 높은 효율성으로 높은 또는 낮은 결합력을 임의적으로 유도해낼 수 있게 한다. MHC:펩티드 합성체를 제외하고, aAPC는 그들의 표면에 커플된 항-CD28 항원과 같은 동시자극 활성을 가지고 다른 단백질을 운반해야 한다. 또한 이러한 aAPC-기반 체계는 종종 예를 들면, 인터루킨-12와 같은 사이토카인 등 적당한 용해 요소를 필요로 한다.
동종이계 세포도 T 세포 제조에 사용될 수 있으며 방법은 WO 97/26328에 더 자세하게 기술되어 있으며, 여기에 참조 문헌으로 포함되어 있다. 예를 들어, 초파리 세포와 T2 세포에 추가적으로, CHO 세포, 배큘로바이러스-감염 곤충 세포, 박테리아, 효소, 백시니아-감염된 표적 세포 등과 같은 다른 세포들도 항원을 제시하는 데에 사용될 수 있다. 추가적으로 식물 바이러스가 사용될 수도 있다(예, 문헌[Porta et al(1994)] 참조). 이는 외부 펩티드의 제시를 위한 카우피 모자이크바이러스의 높은 수확 체계로서 개발에 대해 묘사한다.
이 실험의 펩티드에 대해 활성화된 T 세포는 치료에서 유용하다. 따라서, 본 발명의 더 나아간 양태는 앞서 말한 발명의 방법으로 획득할 수 있는 활성화된 T 세포에 대한 내용을 제공한다.
위에서 말한 방법으로 생성된 활성화된 T 세포는 서열번호 1 내지 92, 바람직하게는 서열번호 1 내지 65, 및 서열번호 76 내지 84, 및 서열번호 92의 아미노산 서열을 갖는 폴리펩티드를 비정상적으로 발현하는 세포를 선택적으로 인식한다.
바람직하게는, T 세포는 그의 TCR을 HLA/펩티드-합성체(예, 결합)와 상호작용을 함으로서 이런 세포를 인식한다. 이 T 세포는 효율적인 활성화된 T 세포의 숫자가 투여되었을 때 발명의 아미노산 서열을 갖는 폴리펩티드를 비정상적으로 발현하는 환자의 표적 세포를 죽이는 데 유용하다. 환자에게 투여된 T 세포는 위에서 묘사된 바와 같이 환자에게 유도되고 활성화된다(즉, 이는 자가 조직 T 세포이다). 다른 방법으로는, T 세포는 환자에게 유도가 안 되고, 다른 개인에서 유도된다. 물론, 이 개인이 건강한 개인인 것이 바람직하다. 발명자들이 말하는 "건강한 개인"이라고 함은 개인이 전체적으로 좋은 건강을 갖고, 바람직하게는 충분한 면역 체계를 갖고, 더 바람직하게는, 손쉽게 실험되고 감지될 수 있는 어떤 질병도 겪고 있지 않다는 것이다.
생체 안에서, 본 발명에 따른 CD8-양성 T 세포에 대한 표적 세포는 종양 세포(이들은 가끔 MHC 유형 II를 발현하기도 한다)이거나 또는 종양을 감싸고 있는 간질성 세포(종양 세포)(이는 가끔 MHC 유형 II를 또한 발현하기도 한다)일 수 있다(Dengjel et al., 2006).
본 발명의 T 세포는 활성적인 치료 구성의 성분으로 사용될 수도 있다. 따라서, 발명은 본 발명의 아미노산 서열을 갖는 폴리펩티드를 비정상적으로 발현하는 환자의 표적 세포를 죽이고 환자에게 위에 정의된 바처럼 효율적인 T 세포의 숫자를 투여하는 방법을 제공한다.
여기서 "비정상적으로 발현되는"이라는 것은 폴리펩티드가 정상 수준에 비교했을 때 과발현되거나 유전자가 종양이 유도된 조직에서는 억제되지만 종양에서는 발현되는 것을 말한다. "과발현"이라는 것은 폴리펩티드가 정상 조직에서 존재하는 수준의 적어도 1.2배 이상으로 존재하는 것을 말하고, 더 바람직하게는 적어도 2배, 더 바람직하게는 적어도 5배 또는 10배 이상으로 존재하는 것을 말한다.
T 세포는 예를 들면 위에서 묘사된 바와 같은 방법으로 얻어질 수 있다.
흔히 T 세포의 입양 전송이라고 불리는 것에 대한 프로토콜은 이 업계에서 잘 알려져 있다. 이에 대한 리뷰는 문헌[Gattinoni et al., 2006] 및[Morgan et al., 2006]에 나와 있다.
본 발명의 모든 분자(즉, 펩티드, 핵산, 발현 벡터, 세포, 활성화된 CTL, T 세포 수용체 또는 이를 인코딩하는 핵산)는 병을 고치는 데에 있어서 면역 반응을 피할 수 있는 성질을 갖는 세포에 포함되어 있는 것이 중요하다. 따라서 본 발명에 포함되어 있는 어떤 분자든지 약제로 사용되거나 약제를 만드는 데에 사용될 수 있다. 이 분자는 단독으로 사용될 수도 있고, 어떤 알려진 분자와 함께 결합하여 사용될 수도 있다.
바람직하게는, 이 본 발명의 약제는 백신이다. 이는 환자의 영향을 받은 기관에 직접적으로 투여될 수 있거나 i.d., i.m., s.c., i.p. 및 i.v.로서 전체적으로 투여되거나 또는 환자에게서 또는 나중에 환자에게 투여될 인간 세포주에 생체 외로 적용될 수도 있거나 또는 나중에 환자에게 다시 투여될 선택된 면역 세포의 부분 집단에 시험관 내로 사용될 수도 있다. 만약 핵산이 시험관 내에서 세포에 투여 되면, 인터루킨-2와 같은 면역 유도 사이토카인과 함께 발현되는 것이 유용할 수도 있다. 펩티드는 상당히 순도가 높을 수도 있고, 또는 면역-유도 보조제(아래 참조)와 합성되어 있거나 또는 면역-유도 사이토카인과 함께 합성체로 사용되거나, 또는 리포좀과 같은 적당한 전달 체계와 함께 투여될 수도 있다. 펩티드는 또한 키홀 림펫 해모시아닌(KLH) 또는 만난(WO 95/18145 및 문헌 [Longenecker et al(1993)] 참조)과 같은 적당한 담체와 함께 복합 단백질을 이룰 수도 있다. 펩티드는 태그를 부칠 수도 있으며 융합 단백질일 수 있으며 또한 하이브리드 분자일 수 있다. 본 발명에서 그 서열이 제공된 펩티드는 CD4 또는 CD8 T 세포를 자극할 것으로 기대된다. 하지만 CD8 CTL의 자극은 CD4 T도움 세포에 의해 도움이 제공될 때 더 효율적이다. 그러므로 CD8 CTL을 자극하는 MHC 유형 I 항원결정인자의 경우, 융합 짝 또는 하이브리드 분자의 섹션은 CD4-양성 T 세포를 자극하는 항원결정인자를 제공한다. CD4-와 CD8-자극 항원결정인자는 이 분야에서 잘 알려졌고 본 발명에서 식별된 것들을 포함한다
한 양태에서, 이 백신은 서열번호 1 내지 92를 명시하는 아미노산 서열을 갖는 적어도 하나의 펩티드, 및 적어도 하나의 추가적인 펩티드 바람직하게는 2 내지 50개이고, 더 바람직하게는 2 내지 25개이고, 보다 더 바람직하게는 2 내지 20개이고 가장 바람직하게는 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 또는 18개의 펩티드를 포함한다. 펩티드(들)는 하나 또는 그 이상의 특정 TAA에서 유도되었고 이는 MHC 유형 I 및/또는 유형 II 분자에 결합할 수 있다.
다른 양태에서, 이 백신은 서열번호 1 내지 65, 서열번호 76 내지 84, 및 서열번호 92를 명시하는 아미노산 서열을 갖는 적어도 하나의 펩티드, 및 적어도 하나의 추가적인 펩티드 바람직하게는 2 내지 50개이고, 더 바람직하게는 2 내지 25개이고, 보다 더 바람직하게는 2 내지 20개이고 가장 바람직하게는 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 또는 18개의 펩티드를 포함한다. 펩티드(들)는 하나 또는 그 이상의 특정한 TAA에서 유도되었고 이는 MHC 유형 I 및/또는 유형 II 분자에 결합할 수 있다.
폴리뉴클레오티드는 상당히 순도가 높을 수 있고, 또는 적당한 벡터 또는 전달 체계에 포함되어 있을 수 있다. 핵산은 DNA, cDNA, PNA, CNA, RNA 또는 이들의 조합일 수 있다. 이러한 핵산을 설계하고 도입하는 방법은 이 분야에 잘 알려져 있다. 개요는 문헌[Pascolo S. 2006], [Stan R. 2006], 또는 [A Mahdavi 2006]에 의해 제공된다. 폴리뉴클레오티드 백신은 만들기가 쉽지만, 이들 벡터의 면역 반응을 유도하는 동작 모드는 완전히 이해되지 않았다. 적당한 벡터와 전달 체계는 아데노바이러스, 백시니아 바이러스, 레트로바이러스, 헤르페스 바이러스, 아데노-결합 바이러스 또는 1개 또는 그 이상의 바이러스를 포함하는 혼성체 등의 바이러스 DNA 및/또는 RNA를 포함한다. 비-바이러스 전달 체계는 양이온 지질과 양이온 중합체를 포함하고 이는 이 DNA 전달 분야에서 잘 알려져 있다. "유전자총"을 통한 물리적 전달 또한 사용될 수 있다. 펩티드 또는 핵산에 의해 인코 된 펩티드는 융합 단백질이 될 수도 있고, 예로서는 위에서 언급한 각각의 반대 CDR을 위해 T 세포를 유도하는 항원결정인자를 들 수 있다.
이 발명의 약제는 하나 또는 그 이상의 보조제를 포함할 수 있다. 보조제는 면역 반응을 비-특정적으로 향상시키거나 강력하게 하는 물질을 말한다(예를 들면, CTL과 항원에 대한 조력 T 세포에 의해서 중재된 면역 반응). 따라서 본 발명에서 이는 중요한 약제 구성이라고 할 수 있다. 적당한 보조제는 다음을 포함하지만 이에 국한되지 않는다. 1018 ISS, 알루미늄 염, 암필박스(Amplivax), AS15, BCG, CP-870,893, CpG7909, CyaA, dSLIM, 플라젤린 또는 플라젤린에서 유도된 TLR5 리간드, FLT3 리간드, GM-CSF, IC30, IC31, 이미퀴모드(Imiquimod)(알다라(ALDARA)), 이뮤팩트(ImuFact) IMP321, IL-2, IL-13, IL-21과 같은 인터루킨, 인터페론-알파 또는 -베타, 또는 이들의 페길화된 유도체, IS 패치, ISS, 이스코매트릭스(ISCOMATRIX), 이스콤(ISCOM), 주브이뮨(JuvImmune), 리포백(LipoVac), MALP2, MF59, 모노포스포릴 지질 A, 몬타나이드 IMS 1312, 몬타나이드 ISA 206, 몬타나이드 ISA 50V, 몬타나이드 ISA-51, 워터인오일과 오일인워터 에멀전, OK-432, OM-174, OM-197-MP-EC, 온택(ONTAK), OspA, 펩텔(PepTel: 등록상표) 벡터 시스템, PLG와 덱스트란 극미립자, 레시퀴모드, SRL172, 비로솜(Virosome) 및 다른 바이러스-유사 입자, YF-17D, VEGF 트랩, R848, 베타-글루칸, Pam3Cys, 사포닌에서 유도된 아퀼라스 QS21 스티물론, 마이코박테리아 추출물과 합성 세균의 세포 벽 모방제, 및 기타 리비의 데톡스(Ribi's Detox), 쿠일(Quil), 또는 수퍼포스(Superfos)와 같은 독점 보조제 등이 있다. 프로인트 또는 GM-CSF와 같은 보조제가 바람직하다. 몇몇 면역적 보조제(예를 들면, MF59)는 수지상 세포에 특이적이고 및 그들의 준비 방법은 이전에 기술되어 있다(Allison and Krummel, 1995; Allison and Krummel, 1995). 또한, 사이토카인도 사용될 수 있다. 몇몇 사이토카인은 수지상 세포의 림프 조직으로의 이동과 직접적으로 연관된 바 있으며(예를 들면, TNF-), 이는 수지상 세포의 더 효율적인 T 림프구에 대한 항원 제시 세포로의 성장을 가속시키고(예를 들면, GM-CSF, IL-1 및 IL-4)(미국 특허 번호 5,849,589, 본 발명의 참조 문헌으로 들어가 있음) 면역보조제의 역할을 한다(예를 들면, IL-12, IL-15, IL-23, IL-7, IFN-알파, IFN-베타)(Gabrilovich,1996).
CpG 면역자극 올리고뉴클레오티드는 백신 세팅에서 보조제의 효율성을 높이는 것으로 나타났다. 이 이론에 국한되지 않고, CpG 올리고뉴클레오티드는 톨 유사 수용체(TLR), 주로 TLR9를 통해 선천적(비적응) 면역 체계를 활성화시킨다. CpG에 의해 유도된 TLR9의 활성화는 펩티드 또는 단백질 항원, 살아 있거나 죽은 바이러스, 수지상 세포 백신, 자가 세포 백신 및 예방적 및 치료적 백신의 다당류 접합체를 포함한 넓은 종류의 항원에 대한 항원-특이 체액성 및 세포성 반응을 향상시킨다. 더 중요하게 이는 수지상 세포의 성장 및 차별화를 향상시키고 이는 TH1 세포의 활성화를 향상시키며 강한 세포독성 T 림프구(CTL) 생성을 CD4 T 세포의 도움이 없을 때에도 향상시킨다. TLR9의 자극에 의해 일어난 TH1 바이어스는 보통 TH2 바이어스를 일으키는 알룸(alum) 또는 불완전 프로인트 보조제(IFA)와 같은 백신 보조제가 존재할 때도 유지된다. CpG 올리고뉴클리오티드는 다른 보조제와 함께 제조되거나 함께 투여될 때 또는 특히 항원이 상대적으로 약할 때 강한 반응을 얻어내기 위해 필요한 미세입자, 나노입자, 지질 에멀젼 또는 유사 제제로 되어 있을 경우 더 큰 보조제 활성을 보인다. 그들은 또한 면역 반응을 가속화시키고, 몇몇 연구에서 보여진 바 있듯이 CpG가 없을 때 전체 복용량이 일으키는 항체 반응 정도를 일으키기 위한 항원의 복용량을 약 두 배 정도 줄일 수 있도록 한다(Krieg, 2006). 미국 특허 번호 6,406,705 B1은 CpG 올리고뉴클레오티드, 비핵산 보조제 및 항원 특이 면역 반응을 일으키는 항원의 결합 사용에 대해 기술한다. CpG TLR9 길항제는 몰로겐(Mologen; 독일 베를린 소재)에 의해 만들어진 dSLIM(이중 줄기 루프 면역조절제)이고 이는 본 발명의 제약 조성의 바람직한 성분이다. RNA 결합 TLR 7, TLR 8 및/또 는 TLR 9 등의 다른 TLR 결합 분자 또한 사용이 가능하다.
다른 유용한 보조제의 예는 다음을 포함하지만 이에 국한되지 않는다. 화학적으로 변형된 CpGs(예를 들면, CpR, 이데라(Idera)), 폴리(I:C)와 같은 dsRNA 유사체 및 그 전구체(예를 들면, 암플리겐(AmpliGen), 힐토놀(Hiltonol), 폴리-(ICLC), 폴리(IC-R), 폴리(I:C12U)), 면역활성적인 작은 분자 및 비-CpG 박테리아 DNA 또는 RNA, 및 사이클로포스아미드, 수니티닙, 베바시주맙, 셀레브렉스, NCX-4016, 실데나필, 타달라필, 바르데나필, 소라페닙, 테모졸로마이드, 템시롤리무스, XL-999, CP-547632, 파조파닙, VEGF 트랩, ZD2171, AZD2171, 항-CTLA4, 면역계의 다른 항체 표적 주요 구조(예, 항-CD40, 항-TGF베타, 항-TNF 수용체) 및 SC58175와 같은 항체를 들 수 있으며 이는 치료적으로 또는 보조제의 역할을 할 수 있다. 본 발명에서 사용되는 보조제와 첨가제의 양과 농도는 특별히 다른 실험할 필요 없이 기술이 뛰어난 개인에 의해서 쉽게 결정될 수 있다.
바람직한 보조제들은 이미퀴모드, 레시퀴모드, GM-CSF, 사이클로포스파마이드, 수리티닙, 베바시주맙, 인터페론-알파, CpG 올리고뉴클레오티드 및 유도체, 폴리-(I:C) 및 유도체, RNA, 실데나필, 및 PLG 또는 비로솜과의 입자 배합들이다.
본 발명에 따른 약학 조성물의 바람직한 구현에서, 보조제는 그래뉼로사이트 마크로파지 콜로니-자극 인자(GMCSF, 사르가라모스팀), 사이클로포스파미드, 이미퀴모드, 레시퀴모드 및 인테페론-알파같은 콜로니-자극 인자로 구성된 군에서 선택된다.
본 발명에 따른 약학 조성물의 바람직한 구현에서, 보조제는 그래뉼로사이트 마크로파지 콜로니-자극 인자(GMCSF, 사르가라모스팀), 사이클로포스파미드, 이미퀴모드, 및 레시퀴모드 및인터페론 알파와 같은 콜로니 자극 인자로 구성된 군에서 선택된다.
본 발명에 따른 약학 조성물의 바람직한 구현에서, 보조제는 사이클로포스파미드, 이미퀴모드 또는 레시퀴모드이다.
훨씬 더 바람직한 보조제는 몬타나이드(Montanide) IMS 1312, 몬타나이드 ISA 206, 몬타나이드 ISA 50V, 몬타나이드 ISA-51, 폴리-ICLC(힐토놀(등록상표)) 및 항-CD40 mAB 또는 이들의 조합이다.
이 조성물은 피하, 피부내, 근육내 비경구 투약 또는 경구 투약에 사용된다. 이를 위해, 펩티드, 및 임의적으로 다른 분자들을 약학적으로 허용되는, 바람직하게는 수용성 운반체에 용해 또는 현탁한다. 추가로, 이 조성은 완충제, 결합제, 발파제, 희석제, 향미료, 윤활제 등의 첨가제를 함유할 수 있다. 또한 펩티드는 사이토카인 같은 면역 자극 물질과 같이 투여될 수 있다. 이런 조성에서 사용될 수 있는 부형제의 광범위한 목록은 예를 들면 문헌[A. Kibbe, Handbook of Pharmaceutical Excipients, 3. Ed. 2000, American Pharmaceutical Association and pharmaceutical press]에서 찾을 수 있다. 이러한 조성물은 선종성 또는 암질병의 예방, 방지 및/또는 치료에 사용될 수 있다. 예시적 배합은 예를 들어 EP 2113253에서 찾을 수 있다.
하지만 본 발명의 펩티드의 숫자와 물리화학적 특성에 따라 펩티드들의 특이적 조합들 특히 12 내지 18개월보다 오래 안정된 20개 이상 펩티드의 조합들에 대한 배합의 제공을 위해 더 많은 연구가 필요하다.
본 발명은 암 특히 비소세포 폐 암종, 위암, 신장 세포 암종, 대장암, 선암종, 전립선암, 양성 신생물 및 악성 흑색종의 치료에 유용한 약제를 제공한다.
본 발명은 또한, 다음으로 구성된 키트(kit)에 관한 것이다:
(a) 위에 묘사된 바와 같은 약학 조성물을 용액 또는 동결건조된 형태로 포함하고 있는 용기;
(b) 임의적으로, 희석제 또는 동결건조된 배합을 위한 재구성 용액을 포함하는 둘째 용기; 및
(c) 임의적으로, (i) 용액의 사용, 또는 (ii) 동결건조된 배합의 재구성 및/또는 사용을 위한 지시 사항.
이 키트는 또한 하나 이상의 (iii) 완충액, (iv) 희석제, (v) 필터, (vi) 주사바늘 또는 (v) 주사기를 포함할 수 있다. 그 용기는 바람직하게 병, 바이알, 주사기 또는 시험관이고, 다용도 용기일 수 있다. 약학적 조성은 바람직하게는 동결건조된다.
본 발명에 사용되는 키트는 바람직하게는 동결건조되어 있는 약제를 적당한 용기와 이들의 재구성 및/또는 사용에 관한 지침서를 함께 포함한다. 적당한 용기는 예를 들면, 병, 바이알(예를 들면, 이중 챔버 바이알), 주사기(이중 챔버 주사기 등) 및 시험관을 포함한다. 용기는 유리나 플라스틱과 같은 다양한 재질로서 형성할 수 있다. 바람직하게는 키트 및/또는 용기는 재구성 및/또는 사용에 대한 사용법을 표시하는 지시 내용을 그 용기 상에 또는 그와 연관하여 포함한다. 예를 들어, 라벨 상에서 동결건조된 배합을 상기 펩티드 농도로 재구성해야 한다고 지시할 수 있다. 라벨은 또한 약제가 피하투여가 가능한지 아니면 유용한지를 보여줄 수도 있다.
배합을 포함한 용기는 재구성된 약제의 반복된 투여를 가능하게 하는 다용도 바이알일 수 있다(예를 들면, 약 2 내지 6회의 투여). 키트는 또한 적당한 희석제(예를 들면, 중탄산 용액)를 포함하는 두 번째의 용기를 포함할 수도 있다.
희석제와 동결건조된 약제를 섞을 때는, 재구성된 약제의 최종 펩티드 농도가 바람직하게는 적어도 0.15 mg/mL/펩티드(= 75 ㎍)이고 3 mg/mL/펩티드(= 1500 ㎍)를 넘지 않아야 한다. 키트는 다른 완충제, 희석제, 필터, 바늘, 주사기, 및 패키지 삽입 및 사용 설명서 등의 사용자의 입장에서 필요한 것을 더 추가로 포함할 수도 있다.
본 발명의 키트는 본 발명에 따른 약학 조성물을 포함하는 하나의 용기를 다른 제품(예를 들면, 다른 화합물들 또는 이 다른 화합물들의 약학 조성물)과 함께 또는 단독으로 포함하거나 각각의 조성물을 각자 다른 용기에 포함할 수 있다.
바람직하게는, 본 발명의 키트는 다음과 같은 두 번째의 화합물 또는 그들의 조성물과 함께 투여될 수 있는 약학 조성물, 즉 보조제(예를 들면, GM-CSF), 화학요법제, 자연 생산품, 호르몬 또는 길항제, 항-혈관신생 제제 또는 억제제, 괴사유도제 또는 킬레이터를 포함한다. 키트의 조성물은 미리 혼합되어 있을 수도 있고 또는 각각의 조성물이 각각 따로 용기에 담겨 있을 수도 있다. 키트의 조성물은 하나 또는 그 이상의 액체 용액에 제공될 수도 있고, 바람직하게는 수용액, 더욱 바람직하게는 무균 수용액에 제공된다. 키트의 조성물은 적당한 용해제를 첨가함으로써 액체로 바뀔 수 있는 고체로 제공될 수도 있고, 바람직하게는 이는 다른 용기에 담겨 제공된다.
치료 키트의 용기는 바이알, 실험관, 플라스크, 병, 주사기 또는 고체나 액체를 담을 수 있는 다른 어떤 용기일 수 있다. 보통, 하나 이상의 구성물이 있을 경우, 키트는 두 번째의 또는 다른 용기를 포함하고, 이는 각각의 복용을 가능하게 한다. 키트는 약학적으로 허용가능한 액체를 포함하고 있는 용기를 포함할 수도 있다. 바람직하게는, 치료 키트는 현재 키트의 조성물인 발명의 제제를 투여할 수 있는 기구를 포함한다(예를 들면, 하나 또는 그 이상의 바늘, 주사기, 안약 투입제, 피펫 등).
본 배합은 구강(경구), 비강, 안약 형태의, 피하의, 피부내, 근육내, 혈관내 또는 경피 등 어떠한 투여 형태로든 펩티드 투여에 적당한 약제이다. 바람직한 투여 경로는 피하 경로이고 가장 바람직한 투여 경로는 피부내 경로이다. 주입 펌프에 의해서도 투여가 가능하다.
본 발명의 펩티드가 NSCLC로부터 분리되었기 때문에, 본 발명의 약제는 바람직하게는 NSCLC의 치료에 사용된다. 바람직한 구현에서, ABCA13 및 MMP12로부터 유래한 본 발명의 펩티드는 NSCLC로부터 분리되었으므로 본 발명의 약제는 NSCLC의 치료에 사용하는 것이 바람직하다.
서열번호 78 내지 92의 펩티드는 또한 메르켈 세포 암종에서도 분리되었으므로 메르켈 세포 암종 치료에 사용될 수 있다.
본 발명은 그 바람직한 전형을 포함하는 다음의 실시예에서 기술될 것이나, 이에 국한되지 않는다. 본 발명의 목적상, 여기에 인용된 모든 참조 문헌들은 참조 문헌으로 그 전문이 포함된다.
실시예
실시예 1: 세포 표면에 제시한 종양 연관 펩티드의 동정 및 정량화
조직 샘플
환자의 종양 조직은 독일 하이델베르크 소재의 유니버시티 오브 하이델베르크(University of Heidelberg)에서 제공하였다. 모든 환자의 고지에 의한 서면 동의서가 수술 전에 제출되었다. 조직은 수술 직후 액체 질소에서 충격 동결되었으며 TUMAP의 분리까지 -80℃에서 보관되었다.
조직 샘플에서 HLA 펩티드의 분리
약간 변형된 프로토콜에 따르면, 충격 냉동된 조직 샘플의 HLA 펩티드 풀은 고형 조직의 면역 촉진에 의해 HLA-A*02-특이 항체 BB7.2 또는 HLA-A, -B, -C-특이 항체 W6/32, CNBr-활성화된 세파로오스, 산성치료와 한외 여과를 이용해 획득되었다(Falk, K. et al 1991; Seeger, F.H. et al. T 1999).
방법
얻어진 HLA 펩티드 풀은 그들의 소수성에 의해 역상 크로마토그래피를 이용하여 분리되었고(악퀴티(Acquity) UPLC 시스템, 워터스(Waters)) 녹여서 분리하는 펩티드는 ESI 공급원을 갖춘 LTQ-오비트랩 하이브리드 질량 분석기(써모일렉트론(ThermoElectron))에 의해 분석되었다. 펩티드 풀은 분당 400nL의 유량을 적용하여 1.7 ㎛ C18 역상 물질(워터스)로 충전된 합성-실리카 마이크로-모세관 칼럼(75 ㎛ i.d. x 250 mm)에 바로 로딩되었다. 이어서, 펩티드는 2 단계 180분 - 10% 내지 33%의 이진 그라디언트를 이용하여 분리되고, 여기서 유량은 분당 300nL이다. 그라디언트는 용매 A(물의 0.1% 포름산)와 용매 B(아세토니트릴의 0.1% 포름산)로 이루어져 있다. 미세-ESI 공급원으로 도입할 때 금이 입혀진 유리 모세관(피코팁(PicoTip), 뉴 옵제티브(New Objective))이 사용되었다. LTQ-오비트랩 질량 분석계가 TOP5 전략을 이용한 데이터-의존 모드에서 작동되었다. 간략하게, 스캔 사이클은 오비트랩의 높은 질량 정확도(R = 30,000)의 전스캔으로 시작되고, 이후 5개의 가장 많은 이전에 선택한 이온의 동적 배제에 의한 전구 이온에 대한 오비트랩(R = 7,500)의 MS/MS 스캔이 이어진다. 탠덤 질량 스펙트럼은 시퀘스트(SEQUEST)와 추가적인 수동 제어에 의해 해석된다. 동정된 펩티드 서열은 생성된 자연 펩티드 분절 패턴과 합성 서열-일치 참고 펩티드와의 비교를 통해 확인되었다. 도 1은 UPLC 체계의 MHC 유형 1과 관련된 ABCA13-001 펩티드와 이의 분리 프로필의 예를 보여준다.
비표지 상대적 LC-MS 정량화는 이온 계측, 즉, LC-MS 특징의 추출 및 분석에 의해 수행되었다(Mueller et al. 2007a). 이 방법은 펩티드의 LC-MS 신호 영역이 샘플 내의 존재율과 상관관계가 있음을 가정한다. 추출된 특징은 전하 상태 디컨볼루션 및 정체 시간 정렬에 의해 추가로 처리되었다(Mueller et al. 2007b; Sturm et al. 2008). 마지막으로 모든 LC-MS 특징은 서열 확인 결과와 상호 참조하여 다른 샘플과 조직의 정량 데이터를 펩티드 제시 프로필에 통합되었다. 이 정량 데이터를 중심 경향성에 따라 2단 형태로 정규화함으로써 기술적인 생물학적 복제 내에서의 변동을 고려하였다. 그리하여 동정된 펩티드는 하나씩 정량 데이터와 연관시키며 샘플과 조직 사이의 상대적 정량화를 허용할 수 있다. 그 밖에 펩티드 후보로부터 얻어진 모든 정량 데이터를 수동으로 검사하여 데이터 일관성을 보증하고 자동화 분석의 정확성을 확인하였다. 펩티드마다 평균 샘플 제시는 물론 복제 변이를 보여주는 제시 프로필을 계산하였다. 이 프로필은 NSCLC 샘플을 정상 조직 샘플의 기준선에 병치한다.
예시적인 과제시된 펩티드의 제시 프로필은 도 3에 제시된다.
실시예 2
본 발명의 펩티드를 인코딩하는 유전자의 발현 프로필
암 세포의 표면에 MHC 분자에 의해 제시되는 모든 펩티드가 면역 치료에 적당한 것은 아니다. 이는 이 펩티드의 거의 대부분이 많은 세포 유형에서 발현되는 정상 세포 단백질에서 유도가 된 것이기 때문이다. 아주 적은 몇 개의 펩티드가 암과 관련이 있고, 높은 특수성을 가지고 자가 유도된 암의 T 세포를 유도할 수 있는 능력을 갖는다. 이런 펩티드를 식별하고 백신에 의해서 발생하는 자가면역의 위험을 최소화 하기 위해 발명자들은 정상 조직과 비교했을 때 종양 세포에서 현저히 과발현되는 단백질에 초점을 맞추었다.
이상적인 펩티드는 그 종양에만 고유한 단백질에서 유래하고 다른 어떠한 조직에서도 찾을 수 없는 것이다. 이러한 발현 프로필과 비슷한 것을 갖는 유전자에 의해서 생성되는 펩티드를 식별하기 위하여, 식별된 펩티드는 단백질과 유전자에 할당되었고, 이 유전자들의 발현 프로필이 생성되었다.
RNA 공급원과 준비
수술로 제거된 조직 표본은 각각의 환자로부터 성문의 동의서가 주어진 후 2개의 임상 실험 센터에서 제공되었다(실시예 1 참조). 종양 조직 표본은 액체 질소에 의해 수술 직후 스냅-냉동되었고 절구와 유봉을 이용하여 액체 질소 환경 아래에서 균질화되었다. 총 RNA는 트리졸(인비트로겐(Invitrogen,), 독일 카를스루에 소재)을 이용하여 샘플로부터 준비되었고 이는 RNeasy(퀴아겐, 독일 힐든 소재)에 의해 세척되었다; 이 2개의 모든 방법은 제조업체의 설명서에 따라 실행되었다.
건강한 인간 조직의 총 RNA는 상업적으로 얻어졌다(앰비온(Ambion), 영국 헌팅돈 소재; 클론테크(Clontech), 독일 하이델베르크 소재; 스트라타진(Stratagene), 네덜란드 암스테르담 소재; 바이오체인(BioChain), 미국 캘리포니아주 헤이와드 소재). 여러 개인에서 얻어진 RNA(2 내지 123명의 개인)는 각각의 개인에게 균등 가중치를 두어 섞어졌다.
RNA 샘플의 양과 질은 아질런트 2100 바이오애널라이저(아질런트(Agilent), 독일 발트브론 소재)에 의해 RNA 6000 피코 랩칩 키트(아질런트)를 사용하여 분석되었다.
마이크로어레이 실험
모든 암과 정상 조직 RNA 샘플의 유전자 발현 분석은 어피매트릭스 휴먼 게놈(HG) U133A 또는 HG-U133 플러스 2.0 올리고뉴클레오티드 마이크로어레이(어피매트릭스(Affymetrix), 미국 캘리포니아주 산타 클라라 소재)에 의해 실행되었다. 모든 단계는 어피매트릭스의 사용설명서에 따라 실행되었다. 간단히, 이중가닥 cDNA는 슈퍼스크립트 RTII(인비트로겐)와 올리고-dT-T7 프라이머(엠더블유지 바이오테크(MWG Biotech), 독일 에베르스베르크 소재)를 사용하여 사용설명서에 따라 총 RNA 5 내지 8 ㎍으로부터 합성되었다. 시험관 내 전사는 U133A 어레이를 위한 바이오어레이 고수율 RNA 전사 라벨링 키트(엔조 디아그노스틱스 인코포레이티드(ENZO Diagnostics, Inc.), 미국 뉴욕주 파밍데일 소재) 또는 U133 플러스 2.0 어레이를 위한 유전자칩 IVT 라벨링 키트(어피매트릭스)를 사용하여 실행되었다. 이는 cRNA 단편화, 부합법 및 스트렙트아비딘-피코에리트리틴 및 비오티닐화된 항-스트렙트아비딘 항체로의 염색으로 이어졌다(몰레큘라 프로브스(Molecular Probes), 네덜란드 레이덴 소재). 이미지는 아질런트 2500A 유전자어레이 스케너(U133A) 또는 어피매트릭스 유전자칩 스캐너 3000(U133 플러스 2.0)을 이용하여 스캔되었고, 데이터는 기본 세팅을 이용하여 GCOS 소프트웨어(어피매트릭스)를 통해 분석되었다. 정규화를 위해, 100 어피매트릭스에 의해 제공된 항존 유전자가 사용되었다. 상대적인 발현 값은 시그널 로그 비율을 통해 계산되었고 정상 샘플의 값은 임의로 1.0으로 정해졌다.
본 발명의 비소세포 폐암종에서 고도로 과발현 또는 배타적으로 발현되는 공급 유전자의 발현 프로필은 도 2에서 보여진다.
실시예 4
NSCLC MHC 유형 I 제시 펩티드의 시험관 내 면역원성
본 발명의 TUMAP의 면역원성에 대한 정보를 얻기 위해, 펩티드/MHC 복합체 및 항-CD28 항체가 로딩된 인공 항원 제시 세포(aAPC)를 갖는 CD8+ T 세포의 반복된 자극을 근거로 생체 내 T 세포 감작을 사용하여 조사를 수행하였다. 이 방법으로 지금까지 9개의 HLA-A*0201 제한된 TUMAP의 면역원성을 보여줄 수 있었으며, 이것은 이 펩티드들이 인간에 존재하는 CD8+ 전구 T 세포에 대한 T 세포 항원결정인자라는 것을 보여주었다(표 4).
CD8+ T 세포의 시험관 내 감작
펩티드-MHC 복합체(pMHC) 및 항-CD28 항체가 로딩된 인공 항원 제시 세포에 의한 시험관 내 자극을 수행하기 위해, 독일 소재의 트랜스퓨전 메디슨 튀빙겐(Transfusion Medicine Tuebingen)에서 동의서를 받은 건강한 공여자로부터의 CD8 마이크로비드(밀테니이 바이오텍(Miltenyi Biotec), 독일 베르가슈-글라트바흐 소재)를 사용한 양성 선택을 통해 신선한 HLA-A*02 백혈구 성분 채집 산물로부터 CD8+ T 세포를 먼저 분리하였다.
단리된 CD8+ 림프구 또는 PBMC는 10% 열 비활성화된 인간 AB 혈청(판-바이오텍(PAN-Biotech), 독일 아이덴바흐 소재), 100 U/ml 페니실린/100 ㎍/ml 스트렙토마이신(캠브렉스(Cambrex), 독일 콜로그네 소재), 1 mM 피루브산 나트륨(씨씨 프로(CC Pro), 독일 오베흐돌라 소재), 20 ㎍/ml 젠타마이신(캠브렉스)으로 보충된 RPMI-글루타맥스(인비트로겐, 독일 카를스루에 소재)를 포함하는 T 세포 배지(TCM)에서 사용할 때까지 배양하였다. 이 단계에서 2.5 ng/ml IL-7(프로모셀(PromoCell), 독일 하이델베르크 소재) 및 10 U/ml IL-2(노바티스 파마((Novartis Pharma), 독일 뉘른베르크 소재) 또한 TCM에 추가하였다.
pMHC/항-CD28 코팅된 비드의 생성, T 세포 자극 및 판독은 고도로 정의된 시험관 내 체계에서 수행했으며, 자극 조건당 4가지 다른 pMHC 분자, 및 판독 조건 당 8가지 다른 pMHC 분자를 각각 사용하였다.
aAPC 로딩 및 세포 측정 판독에 사용된 모든 pMHC 복합체는 UV-유도 MHC 리간드 교환(Rodenko et al., 2006)을 약간 변형하여 얻었다. 교환에 의해 얻어진 pMHC 단량체의 수량을 결정하기 위해, 스트렙타비딘-기반 샌드위치 ELISA(Rodenko et al., 2006)를 수행하였다.
정제된 보조자극 쥐 IgG2a 항인간 CD28 Ab 9.3(Jung et al., 1987)은 제조사가 권장하는 술폰-N-히드록시숙신이미도비오틴을 사용하여 화학적으로 비오틴닐화되었다(퍼바이오, 독일 본 소재). 사용된 비드는 스트렙티비딘으로 코팅된 직경 5.6 nm의 폴리스티렌 입자였다(뱅스 래보래토리즈(Bangs Laboratories), 미국 일리노이주 소재).
양성과 음성 대조군으로 사용되는 pMHC는 각각 A*0201/MLA-001(변형된 Melan-A/MART-1의 펩티드 ELAGIGILTV) 및 A*0201/DDX5-001(DDX5의 YLLPAIVHI)이었다.
800.000 비드/200 ㎕를 4 x 12.5 ng의 상이한 비오틴-pMHC 존재 하에 96-웰 플레이트에서 코팅하고 세척한 다음 600 ng 비오틴 항-CD28을 첨가하여 200 ㎕의 부피로 만들었다. 1 x 106 CD8+ T 세포를 5 ng/ml IL-12(포로모셀)가 보충된 200 ㎕ TCM 중에서 2 x 105 세척된 코팅된 비드와 공항온처리하여 96-웰 플레이트에서 자극을 개시하였다. 이어서, 매질의 반은 80 U/ml IL-2가 보충된 새로운 TCM에 의해 교환되고 배양은 37℃에서 3 내지 4 일간 계속 항온처리하였다. 이 자극 주기는 총 세 번 수행되었다. 조건 당 8가지 다른 pMHC 분자를 사용하는 pMHC 멀티머의 판독을 위해, 이미 설명된 바와 같이(Andersen et al., 2012) 2차원 조합대수적 코팅 접근 방식을 사용했으며, 5가지 다른 형광색소와의 결합을 허용하는 약간의 변형이 있었다. 마지막으로 멀티머 분석은 살아있는/죽은 근 IR 염료(인비트로겐, 독일 카를스루에 소재), CD8-FITC 항체 클론 SK1(비디(BD), 독일 하이델베르크 소재) 및 형광 pMHC 멀티머로써 세포를 염색하여 수행하였다. 분석에는 적절한 레이저 및 필터가 장착된 BD LSRII SORP 세포측정기를 사용하였다. 펩티드 특이적 세포는 총 CD8+ T 세포의 백분율로 계산되었다. 멀티머 분석의 평가는 FCS 익스프레스 소프트웨어(드 노보 소프트웨어)를 사용하여 수행되었다. 특정 멀티머 + CD8+ 림프구의 시험관 내 감작은 적절한 통문과 음성 대조군 자극과 비교함으로써 감지되었다. 주어진 항원의 면역성은 건강한 기증자의 최소한 하나의 시험관 내 자극된 평가 가능한 웰이 시험관 내 자극 후 CD8+ T 세포주를 보이면 발견되었다(즉, 이 웰은 CD8+ T 세포 중 1% 이상의 특정 멀티머+를 가졌으며 특정 멀티머+ 세포의 백분율은 음성 대조군 자극 중간값의 10배 이상이었다).
NSCLC 펩티드의 시험관 내 면역원성
시험된 HLA 유형 I 펩티드에서, 시험관 내 면역원성은 펩티드 특정 T 세포주의 형성에 의해 입증될 수 있었다. 본 발명의 2개의 펩티드에 대한 TUMAP-특이 멀티머 염색의 유동세포계측법의 결과 및 상응하는 음성 대조가 도 4에 제시되었다. 본 발명의 25개의 펩티드에 대한 결과는 표 5에 요약되어 있다.
[표 5]
본 발명의 HLA 유형 I 펩티드의 시험관 내 면역원성
본 발명의 펩티드 지원자에 의해 수행한 시험관 내 면역원성 실험의 예시적 결과. < 20% = +; 20% 내지 49% = ++; 50% 내지 70% = +++; 및 > 70% = ++++
Figure pat00013
Figure pat00014
실시예 5
펩티드의 합성
모든 펩티드는 Fmoc-전략을 사용하여 표준 및 확립된 고체상 펩티드 합성으로써 합성되었다. 예비 RP-HPLC에 의한 정제 후, 이온 교환 절차를 수행하여 생리적으로 호환가능한 반대 이온(예를 들어 삼불화초산, 초산, 암모니아 또는 염소)을 통합시켰다.
각 개별 펩티드의 식별과 순도는 질량 분석법과 분석 RP-HPLC에 의해 결정하였다. 이온교환 절차 후 펩티드는 90% 내지 99.7%의 순도로서 백색에서 황백색의 동결건조물로 수득되었다.
모든 TUMAP는 바람직하게는 삼불화아세트산 염 또는 아세트산 염으로 투여되지만, 다른 염의 형태 또한 가능하다. 실시예 4의 측정에서는 펩티드의 삼불화 아세트산 염을 사용하였다.
실시예 6
UV-리간드 교환
본 발명에 따른 백신의 후보 펩티드들은 또한 시험관 내 감작 검정에 의해 면역원성을 시험하였다. 이러한 검정에 요구되는 개별 펩티드-MHC 복합체는 UV-리간드 교환에 의해 만들었으며, UV에 민감한 펩티드가 UV 조사 후 분할된 다음 분석된 관심 대상의 펩티드로 교환되었다. 펩티드 수용성 MHC 분자를 효과적으로 결합하고 안정화시킬 수 있는 펩티드 후보만이 MHC 복합체의 해리를 막는다. 이 교환작용의 수율을 결정하기 위해, 안정화된 MHC 복합체의 경쇄(β2m) 검출에 근거하여 ELISA를 수행하였다. 이 검정은 로덴코(Rodenko) 등에서 일반적으로 설명된 대로 수행하였다(Rodenko B, Toebes M, Hadrup SR, van Esch WJ, Molenaar AM, Schumacher TN, Ovaa H. Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc. 2006;1(3):1120-32.).
96 웰 MAXISorp 플레이트(NUNC)를 PBS에서 2 ㎍/ml 스트렙타비딘으로 하룻밤 동안 코팅하고 4회 세척한 다음 블로킹 완충액을 함유하는 2% BSA와 37℃에서 30분 동안 블로킹을 진행하였다. 되접기된 HLA-A*0201/MLA-001 단량체가 표준의 역할을 했으며, 그 범위는 8 내지 500 ng/ml였다. UV-교환 반응을 위한 펩티드-MHC 단량체는 블로킹 완충액으로 100배 희석되었다. 샘플은 37℃에서 1시간 배양 후 4회 세척하고 2 ㎍/ml HRP 접합된 항-β2m으로 37℃에서 1시간 배양한 다음 NH2SO4로 정지시킨 TMB 용액으로 검출하였다. 흡광은 450 nm에서 측정하였다.
[표 6]
UV-리간드 교환
Figure pat00015
Figure pat00016
높은 교환 수율(즉, 40% 초과, 바람직하게는 50% 초과, 더 바람직하게는 70% 초과, 가장 바람직하게는 80% 초과)을 보이는 후보 펩티드가 일반적으로 항체나 그의 단편 및/또는 T 세포 수용체나 그의 단편의 생성 및 생성을 위해 선호되는데, 이는 MHC 분자에 대한 충분한 결합활성을 보이고 MHC 복합체의 해리를 막기 때문이다.
실시예 7
선택된 MHC 유형 II 펩티드의 결합 및 면역원성
HLA 유형 II 단백질은 3개의 주요 동형인 HLA-DR, -DP, DQ로 분류되며 이들은 무수한 일배체형에 의해 인코딩된다. 다양한 α- 및 β-쇄 조합들은 임의 모집단에서 발견되는 HLA 유형 II 단백질의 다양성을 증가시킨다. 그러므로 선택된 HLA 유형 II TUMAP들이 유의한 백분율의 환자에서 효과적인 T 세포 반응에 기여하기 위해서는 몇몇 다른 HLA-DR 분자에 결합해야 한다(즉, 뚜렷한 결합 능력을 보인다).
다양한 HLA-DR 일배체형에 대한 POSTN-002 및 MMP12-002의 뚜렷한 결합, 및 형성된 복합체의 안정성은 다음의 외부 서비스 제공자에 의해 시험관 내 결합 검정을 통해 평가되었다.
재료 및 방법
펩티드의 목록
Figure pat00017
조사한 HLA-DR 일배체형의 목록
HLA-A*02 및 HLA-A*24 양성의 북미 모집단에서 빈도에 따라 조사한 7가지 HLA-DR 일배체형이 선택되었다(표 7.1 및 7.2)
데이터는 미국 골수 공여자 프로그램에 등록된 135만 HLA-형 지원자를 분석하여 얻어진 것이다(Mori et al., 1997). 분석한 모집단은 다음의 인종군으로 다시 분류되었다: 백인계 미국인(N=997,193), 흑인계 미국인(N=110,057), 아시아계 미국인(N=81,139), 중남미계 미국인(N=100,128) 및 미국 원주민(N=19,203).
[표 7.1]
HLA-A*02 양성 북미인에서 일배체형 빈도: 분석된 일배체형은 볼드체로 강조표시 되어있다.
Figure pat00018
[표 7.2]
HLA-A*24 양성 북미인에서 일배체형의 빈도: 분석된 일배체형은 볼드체로 강조표시 되어있다.
Figure pat00019
시험의 원리
프로이뮨 레빌(REVEAL: 등록상표) MHC-펩티드 결합 분석은 각 후보 펩티드가 선택된 HLA 유형 II 일배체형과 결합하여 HLA-펩티드 복합체를 안정화하는 능력을 결정한다. 그 결과 후보 펩티드는 특정한 HLA 유형 II 단백질과 시험관 내에서 조립되는 것이다. HLA 분자에 포함되는 펩티드의 수준은 되접기 절차가 완료된 후 시간 0에서 조립된 HLA-펩티드 복합체의 자연 입체형태에 대한 존재 또는 부재에 의해 측정된다.
후보 펩티드의 특정한 HLA 분자에 대한 결합 용량은 매우 강력한 결합 성질을 갖는 것(양성 대조)와 비교함으로써, 상응하는 레빌(등록상표) MHC-펩티드 결합 점수가 얻어진다. 양성 대조 펩티드는 HLA 일배체형 각각에 대한 경험을 바탕으로 프로이뮨사가 선택하여 제공한다.
펩티드의 특정한 HLA 분자에 대한 친화력 외에도, 형성된 HLA-펩티드 복합체의 내구적인 안전성이 면역 반응의 발생에 매우 중대하다. 따라서 형성된 HLA-펩티드 복합체의 존재는 37℃에서 24시간의 배양 이후에 측정된다. 결과적으로 형성된 MHC-펩티드 복합체의 안정성은 되접기 직후(즉 시간 0)에서의 결합 점수에 대한 24시간 후의 결합 점수의 비율(%)로 계산된다.
결과
레빌(등록상표) MHC-펩티드 결합 검정에서 POSTN-002 및 MMP12-002의 분석 결과에 의하면 두 펩티드 모두 다양한 HLA 일배체형과 결합하였다. POSTN-002는 7개의 조사된 HLA 일배체형 가운데 5개, 및 MMP12-002는 4개와 각각 복합체를 형성하는 것으로 나타났다(도 5). 두 펩티드 모두 HLA-DR3 및 HLA-DR6에 결합하지 않았다. 검출된 결합 점수는 양성 대조와 비교하여 0.02 내지 약 2.5%의 범위 내에 있었으며 명백히 비결합 펩티드의 점수보다 높았다.
형성된 HLA-POSTN-002 및 HLA-MMP12-002 복합체의 안정성 분석에 의하면, 6개의 조사된 HLA-펩티드 복합체 가운데 각각 3개 및 2개가 37℃에서 24시간 후에 안정한 것으로 드러났다(도 6).
HLA 분자에 대한 결합 용량에 근거하면 펩티드의 면역원성에 대한 결론은 이 펩티드의 결합 점수를 알려진 면역원성을 갖는 것에 비교하여 내릴 수 있다. 따라서 결정된 면역원성을 갖는 5개의 잘 조사된 펩티드가 이러한 비교를 위해 선택되었다. 이러한 펩티드의 면역원성은 세포 내 사이토카인 염색(ICS) CD4 T 세포를 사용하여 백신 접종된 환자의 혈액 샘플에서 체외로 결정되었다.
원칙적으로 ICS 검사에서는 특이적 T 세포의 질을 작용기 기능으로서 분석한다. 따라서 말초 단핵 세포(PBMC)를 시험관 내에서 배양한 다음 관심 대상의 펩티드, 참고 펩티드 및 음성 대조군(여기서는 MOCK)으로 다시 자극하였다. 다음 재자극된 세포를 FN-감마, TNF-알파, IL-2 및 IL-10 생산, 및 보조자극 분자 CD154의 발현을 위해 염색하였다. 흐름 세포측정기에서 영향을 받은 세포의 계측을 수행하였다(도 7).
면역원성 분석의 결과에 따르면, IMA950 펩티드(BIR-002 및 MET-005)로 접종받은 16명의 환자는 100% 면역 반응을 보였으며, IMA910 펩티드(CEA-006, TGFBI-004 및 MMP-001)로 접종받은 71명의 환자는 44% 내지 86%의 면역 반응을 보였다.
POSTN-002 및 MMP12-002의 결합 점수를 IMA910 및 IMA950 펩티드의 결합 점수와 비교하기 위해, 모든 펩티드를 검출된 결합 점수에 따라서 조사된 HLA-DR 일배체형 별로 표에 정렬하였다(표 8.1 내지 8.5).
[표 8.1]
알려진 면역원성을 갖는 유형 II 펩티드의 결합 점수와 비교한 HLA-DR1에 대한 POSTN-002 및 MMP12-002의 결합 점수: POSTN-002 및 MMP12-002는 볼드체로 강조 표시됨.
Figure pat00020
[표 8.2]
알려진 면역원성을 갖는 유형 II 펩티드의 결합 점수와 비교한 HLA-DR2에 대한 POSTN-002 및 MMP12-002의 결합 점수: POSTN-002 및 MMP12-002는 볼드체로 강조 표시됨.
Figure pat00021
[표 8.3]
알려진 면역원성을 갖는 유형 II 펩티드의 결합 점수와 비교한 HLA-DR4에 대한 POSTN-002 및 MMP12-002의 결합 점수: POSTN-002 및 MMP12-002는 볼드체로 강조 표시됨.
Figure pat00022
[표 8.4]
알려진 면역원성을 갖는 유형 II 펩티드의 결합 점수와 비교한 HLA-DR5에 대한 POSTN-002 및 MMP12-002의 결합 점수: POSTN-002 및 MMP12-002는 볼드체로 강조 표시됨.
Figure pat00023
[표 8.5]
알려진 면역원성을 갖는 유형 II 펩티드의 결합 점수와 비교한 HLA-DR7에 대한 POSTN-002 및 MMP12-002의 결합 점수: POSTN-002 및 MMP12-002는 볼드체로 강조 표시됨.
Figure pat00024
POSTN-002 및 MMP12-002의 결합 점수를 알려진 면역원성을 갖는 다른 유형 II의 결합 점수와 비교한 결과, 두 펩티드 모두의 결합 용량은 대부분 표들의 중간에서 하반부까지에 위치하며, 단 HLA-DR2는 예외이다. 두 펩티드의 HLA-DR2에 대한 결합 용량은 표의 상반부에 위치하며 MMP12-002가 최고의 후보이다. 이 분석에 근거하면, POSTN-002 및 MMP12-002의 두 펩티드가 모두 면역 반응을 유도한다는 것을 기대할 수 있어야 한다.
참조문헌 목록
Acuff HB, Sinnamon M, Fingleton B, Boone B, Levy SE, Chen X, Pozzi A, Carbone DP, Schwartz DR, Moin K, Sloane BF, Matrisian LM (2006). Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res 66, 7968-7975.
Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R, Bernard S, Quarto M, Capra M, Goettig S, Kogel U, Scheffner M, Helin K, Eilers M (2005). The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123, 409-421.
Albig AR, Schiemann WP (2005). Identification and characterization of regulator of G protein signaling 4 (RGS4) as a novel inhibitor of tubulogenesis: RGS4 inhibits mitogen-activated protein kinases and vascular endothelial growth factor signaling. Mol. Biol. Cell 16, 609-625.
Allison JP, Krummel MF (1995). The Yin and Yang of T cell costimulation. Science 270, 932-933.
An CH, Kim YR, Kim HS, Kim SS, Yoo NJ, Lee SH (2012). Frameshift mutations of vacuolar protein sorting genes in gastric and colorectal cancers with microsatellite instability. Hum. Pathol. 43, 40-47.
Appay V, Speiser DE, Rufer N, Reynard S, Barbey C, Cerottini JC, Leyvraz S, Pinilla C, Romero P (2006). Decreased specific CD8+ T cell cross-reactivity of antigen recognition following vaccination with Melan-A peptide. Eur. J Immunol. 36, 1805-1814.
Araki W, Takahashi-Sasaki N, Chui DH, Saito S, Takeda K, Shirotani K, Takahashi K, Murayama KS, Kametani F, Shiraishi H, Komano H, Tabira T (2008). A family of membrane proteins associated with presenilin expression and gamma-secretase function. FASEB J 22, 819-827.
Arenberg DA, Polverini PJ, Kunkel SL, Shanafelt A, Hesselgesser J, Horuk R, Strieter RM (1997). The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer. J Leukoc. Biol. 62, 554-562.
Asteriti IA, Rensen WM, Lindon C, Lavia P, Guarguaglini G (2010). The Aurora-A/TPX2 complex: a novel oncogenic holoenzyme. Biochim. Biophys. Acta 1806, 230-239.
Aylsworth A, Jiang SX, Desbois A, Hou ST (2009). Characterization of the role of full-length CRMP3 and its calpain-cleaved product in inhibiting microtubule polymerization and neurite outgrowth. Exp. Cell Res. 315, 2856-2868.
Badiglian FL, Oshima CT, De Oliveira LF, De Oliveira CH, De Sousa DR, Gomes TS, Goncalves WJ (2009). Canonical and noncanonical Wnt pathway: a comparison among normal ovary, benign ovarian tumor and ovarian cancer. Oncol Rep. 21, 313-320.
Bargo S, Raafat A, McCurdy D, Amirjazil I, Shu Y, Traicoff J, Plant J, Vonderhaar BK, Callahan R (2010). Transforming acidic coiled-coil protein-3 (Tacc3) acts as a negative regulator of Notch signaling through binding to CDC10/Ankyrin repeats. Biochem. Biophys. Res Commun. 400, 606-612.
Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G, Swinnen JV (2007). Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 67, 8180-8187.
Beckmann RP, Mizzen LE, Welch WJ (1990). Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850-854.
Behrens P, Brinkmann U, Fogt F, Wernert N, Wellmann A (2001). Implication of the proliferation and apoptosis associated CSE1L/CAS gene for breast cancer development. Anticancer Res. 21, 2413-2417.
Belaaouaj A, Kim KS, Shapiro SD (2000). Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science 289, 1185-1188.
Beljan PR, Durdov MG, Capkun V, Ivcevic V, Pavlovic A, Soljic V, Peric M (2012). IMP3 can predict aggressive behaviour of lung adenocarcinoma. Diagn. Pathol. 7, 165.
Benaglio P, McGee TL, Capelli LP, Harper S, Berson EL, Rivolta C (2011). Next generation sequencing of pooled samples reveals new SNRNP200 mutations associated with retinitis pigmentosa. Hum. Mutat. 32, E2246-E2258.
Bennett G, Sadlier D, Doran PP, Macmathuna P, Murray DW (2011). A functional and transcriptomic analysis of NET1 bioactivity in gastric cancer. BMC. Cancer 11, 50.
Bergner A, Kellner J, Tufman A, Huber RM (2009). Endoplasmic reticulum Ca2+-homeostasis is altered in Small and non-small Cell Lung Cancer cell lines. J Exp. Clin Cancer Res. 28, 25.
Bird AW, Hyman AA (2008). Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. J Cell Biol. 182, 289-300.
Boni R, Wellmann A, Man YG, Hofbauer G, Brinkmann U (1999). Expression of the proliferation and apoptosis-associated CAS protein in benign and malignant cutaneous melanocytic lesions. Am. J Dermatopathol. 21, 125-128.
Brandt S, Ellwanger K, Beuter-Gunia C, Schuster M, Hausser A, Schmitz I, Beer-Hammer S (2010). SLy2 targets the nuclear SAP30/HDAC1 complex. Int. J Biochem. Cell Biol. 42, 1472-1481.
Brozic P, Turk S, Rizner TL, Gobec S (2011). Inhibitors of aldo-keto reductases AKR1C1-AKR1C4. Curr. Med. Chem. 18, 2554-2565.
Bruckdorfer T, Marder O, Albericio F (2004). From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr. Pharm. Biotechnol. 5, 29-43.
Brunsvig PF, Aamdal S, Gjertsen MK, Kvalheim G, Markowski-Grimsrud CJ, Sve I, Dyrhaug M, Trachsel S, Moller M, Eriksen JA, Gaudernack G (2006). Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol. Immunother. 55, 1553-1564.
Brusselmans K, De SE, Verhoeven G, Swinnen JV (2005). RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 65, 6719-6725.
Brustmann H (2004). Expression of cellular apoptosis susceptibility protein in serous ovarian carcinoma: a clinicopathologic and immunohistochemical study. Gynecol. Oncol 92, 268-276.
Bukau B, Horwich AL (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366.
Byrns MC, Jin Y, Penning TM (2011). Inhibitors of type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3): overview and structural insights. J Steroid Biochem. Mol. Biol. 125, 95-104.
Calabrese F, Lunardi F, Balestro E, Marulli G, Perissinotto E, Loy M, Nannini N, Valente M, Saetta M, Agostini C, Rea F (2012). Serpin B4 isoform overexpression is associated with aberrant epithelial proliferation and lung cancer in idiopathic pulmonary fibrosis. Pathology 44, 192-198.
Cao X, Coskun U, Rossle M, Buschhorn SB, Grzybek M, Dafforn TR, Lenoir M, Overduin M, Simons K (2009). Golgi protein FAPP2 tubulates membranes. Proc. Natl. Acad. Sci. U. S. A 106, 21121-21125.
Cataldo DD, Gueders MM, Rocks N, Sounni NE, Evrard B, Bartsch P, Louis R, Noel A, Foidart JM (2003). Pathogenic role of matrix metalloproteases and their inhibitors in asthma and chronic obstructive pulmonary disease and therapeutic relevance of matrix metalloproteases inhibitors. Cell Mol. Biol. (Noisy. -le-grand) 49, 875-884.
Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V (2006). Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 66, 5287-5294.
Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003). Regulation of matrix metalloproteinases: an overview. Mol. Cell Biochem. 253, 269-285.
Chami M, Gozuacik D, Saigo K, Capiod T, Falson P, Lecoeur H, Urashima T, Beckmann J, Gougeon ML, Claret M, le MM, Brechot C, Paterlini-Brechot P (2000). Hepatitis B virus-related insertional mutagenesis implicates SERCA1 gene in the control of apoptosis. Oncogene 19, 2877-2886.
Chandler S, Cossins J, Lury J, Wells G (1996). Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochem. Biophys. Res Commun. 228, 421-429.
Chang CC, Tai CJ, Su TC, Shen KH, Lin SH, Yeh CM, Yeh KT, Lin YM, Jiang MC (2012). The prognostic significance of nuclear CSE1L in urinary bladder urothelial carcinomas. Ann. Diagn. Pathol. 16, 362-368.
Chanock SJ, Foster CB, Miller FW, O'Hanlon TP (2004). HLA-A, -B, -Cw, -DQA1 and -DRB1 Alleles in a Caucasian Population from Bethesda, USA. Hum. Immunol. 65, 1211-1223.
Chen CY, Fang HY, Chiou SH, Yi SE, Huang CY, Chiang SF, Chang HW, Lin TY, Chiang IP, Chow KC (2011a). Sumoylation of eukaryotic elongation factor 2 is vital for protein stability and anti-apoptotic activity in lung adenocarcinoma cells. Cancer Sci. 102, 1582-1589.
Chen CY, Fang HY, Chiou SH, Yi SE, Huang CY, Chiang SF, Chang HW, Lin TY, Chiang IP, Chow KC (2011b). Sumoylation of eukaryotic elongation factor 2 is vital for protein stability and anti-apoptotic activity in lung adenocarcinoma cells. Cancer Sci. 102, 1582-1589.
Chen D, Brooks CL, Gu W (2006). ARF-BP1 as a potential therapeutic target. Br. J Cancer 94, 1555-1558.
Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005a). ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121, 1071-1083.
Chen DR, Chien SY, Kuo SJ, Teng YH, Tsai HT, Kuo JH, Chung JG (2010a). SLC34A2 as a novel marker for diagnosis and targeted therapy of breast cancer. Anticancer Res. 30, 4135-4140.
Chen J, Emara N, Solomides C, Parekh H, Simpkins H (2010b). Resistance to platinum-based chemotherapy in lung cancer cell lines. Cancer Chemother. Pharmacol. 66, 1103-1111.
Chen JF, Zhang LJ, Zhao AL, Wang Y, Wu N, Xiong HC, Liang Z, Li JY, Huang XF, Yang Y (2005b). [Abnormal expression of Thy-1 as a novel tumor marker in lung cancer and its prognostic significance]. Zhonghua Yi. Xue. Za Zhi. 85, 1921-1925.
Chen P, Wang SJ, Wang HB, Ren P, Wang XQ, Liu WG, Gu WL, Li DQ, Zhang TG, Zhou CJ (2012). The distribution of IGF2 and IMP3 in osteosarcoma and its relationship with angiogenesis. J Mol. Histol. 43, 63-70.
Cho NH, Hong KP, Hong SH, Kang S, Chung KY, Cho SH (2004). MMP expression profiling in recurred stage IB lung cancer. Oncogene 23, 845-851.
Choi KU, Yun JS, Lee IH, Heo SC, Shin SH, Jeon ES, Choi YJ, Suh DS, Yoon MS, Kim JH (2010). Lysophosphatidic acid-induced expression of periostin in stromal cells: Prognoistic relevance of periostin expression in epithelial ovarian cancer. Int J Cancer.
Chong IW, Chang MY, Chang HC, Yu YP, Sheu CC, Tsai JR, Hung JY, Chou SH, Tsai MS, Hwang JJ, Lin SR (2006). Great potential of a panel of multiple hMTH1, SPD, ITGA11 and COL11A1 markers for diagnosis of patients with non-small cell lung cancer. Oncol Rep. 16, 981-988.
Chouchane L, Ahmed SB, Baccouche S, Remadi S (1997). Polymorphism in the tumor necrosis factor-alpha promotor region and in the heat shock protein 70 genes associated with malignant tumors. Cancer 80, 1489-1496.
Chung FY, Cheng TL, Chang HJ, Chiu HH, Huang MY, Chang MS, Chen CC, Yang MJ, Wang JY, Lin SR (2010). Differential gene expression profile of MAGE family in taiwanese patients with colorectal cancer. J Surg. Oncol 102, 148-153.
Ciocca DR, Calderwood SK (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress. Chaperones. 10, 86-103.
Ciocca DR, Fuqua SA, Lock-Lim S, Toft DO, Welch WJ, McGuire WL (1992). Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res. 52, 3648-3654.
Claudio JO, Zhu YX, Benn SJ, Shukla AH, McGlade CJ, Falcioni N, Stewart AK (2001). HACS1 encodes a novel SH3-SAM adaptor protein differentially expressed in normal and malignant hematopoietic cells. Oncogene 20, 5373-5377.
Coe BP, Henderson LJ, Garnis C, Tsao MS, Gazdar AF, Minna J, Lam S, MacAulay C, Lam WL (2005). High-resolution chromosome arm 5p array CGH analysis of small cell lung carcinoma cell lines. Genes Chromosomes. Cancer 42, 308-313.
Colombetti S, Basso V, Mueller DL, Mondino A (2006). Prolonged TCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin. J Immunol. 176, 2730-2738.
Confalonieri S, Quarto M, Goisis G, Nuciforo P, Donzelli M, Jodice G, Pelosi G, Viale G, Pece S, Di Fiore PP (2009). Alterations of ubiquitin ligases in human cancer and their association with the natural history of the tumor. Oncogene 28, 2959-2968.
Cooper CR, Graves B, Pruitt F, Chaib H, Lynch JE, Cox AK, Sequeria L, van Golen KL, Evans A, Czymmek K, Bullard RS, Donald CD, Sol-Church K, Gendernalik JD, Weksler B, Farach-Carson MC, Macoska JA, Sikes RA, Pienta KJ (2008). Novel surface expression of reticulocalbin 1 on bone endothelial cells and human prostate cancer cells is regulated by TNF-alpha. J Cell Biochem. 104, 2298-2309.
Cooper WA, Kohonen-Corish MR, McCaughan B, Kennedy C, Sutherland RL, Lee CS (2009). Expression and prognostic significance of cyclin B1 and cyclin A in non-small cell lung cancer. Histopathology 55, 28-36.
Cordes C, Munzel AK, Gorogh T, Leuschner I, Ambrosch P, Gottschlich S, Hoffmann M (2010). Prognostic relevance of the proliferation marker REPP86 for laryngeal cancer. Anticancer Res 30, 3541-3547.
Creighton CJ, Bromberg-White JL, Misek DE, Monsma DJ, Brichory F, Kuick R, Giordano TJ, Gao W, Omenn GS, Webb CP, Hanash SM (2005). Analysis of tumor-host interactions by gene expression profiling of lung adenocarcinoma xenografts identifies genes involved in tumor formation. Mol. Cancer Res 3, 119-129.
D'Angelo G, Rega LR, De Matteis MA (2012). Connecting vesicular transport with lipid synthesis: FAPP2. Biochim. Biophys. Acta 1821, 1089-1095.
Da Forno PD, Pringle JH, Hutchinson P, Osborn J, Huang Q, Potter L, Hancox RA, Fletcher A, Saldanha GS (2008). WNT5A expression increases during melanoma progression and correlates with outcome. Clin Cancer Res 14, 5825-5832.
de Souza Meyer EL, Dora JM, Wagner MS, Maia AL (2005). Decreased type 1 iodothyronine deiodinase expression might be an early and discrete event in thyroid cell dedifferentation towards papillary carcinoma. Clin Endocrinol. (Oxf) 62, 672-678.
Delpech B, Girard N, Bertrand P, Courel MN, Chauzy C, Delpech A (1997). Hyaluronan: fundamental principles and applications in cancer. J Intern. Med 242, 41-48.
Dengjel J, Nastke MD, Gouttefangeas C, Gitsioudis G, Schoor O, Altenberend F, Muller M, Kramer B, Missiou A, Sauter M, Hennenlotter J, Wernet D, Stenzl A, Rammensee HG, Klingel K, Stevanovic S (2006). Unexpected Abundance of HLA Class II Presented Peptides in Primary Renal Cell Carcinomas. Clin Cancer Res. 12, 4163-4170.
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235.
Denys H, De WO, Nusgens B, Kong Y, Sciot R, Le AT, Van DK, Jadidizadeh A, Tejpar S, Mareel M, Alman B, Cassiman JJ (2004). Invasion and MMP expression profile in desmoid tumours. Br. J Cancer 90, 1443-1449.
Deshpande A, Sicinski P, Hinds PW (2005). Cyclins and cdks in development and cancer: a perspective. Oncogene 24, 2909-2915.
Dharmavaram RM, Huynh AI, Jimenez SA (1998). Characterization of human chondrocyte and fibroblast type XII collagen cDNAs. Matrix Biol. 16, 343-348.
Dobashi Y, Shoji M, Jiang SX, Kobayashi M, Kawakubo Y, Kameya T (1998). Active cyclin A-CDK2 complex, a possible critical factor for cell proliferation in human primary lung carcinomas. Am J Pathol. 153, 963-972.
Dolznig H, Schweifer N, Puri C, Kraut N, Rettig WJ, Kerjaschki D, Garin-Chesa P (2005). Characterization of cancer stroma markers: in silico analysis of an mRNA expression database for fibroblast activation protein and endosialin. Cancer Immun. 5, 10.
Dong-Dong L (2007). Small interfering RNA (siRNA) inhibited human liver cancer cell line SMMC7721 proliferation and tumorigenesis. Hepatogastroenterology 54, 1731-1735.
Drucker KL, Kitange GJ, Kollmeyer TM, Law ME, Passe S, Rynearson AL, Blair H, Soderberg CL, Morlan BW, Ballman KV, Giannini C, Jenkins RB (2009). Characterization and gene expression profiling in glioma cell lines with deletion of chromosome 19 before and after microcell-mediated restoration of normal human chromosome 19. Genes Chromosomes. Cancer 48, 854-864.
Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850-854.
Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005). Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346-2357.
Ecimovic P, Murray D, Doran P, McDonald J, Lambert DG, Buggy DJ (2011). Direct effect of morphine on breast cancer cell function in vitro: role of the NET1 gene. Br. J Anaesth. 107, 916-923.
Ehrmann J, Strakova N, Vrzalikova K, Hezova R, Kolar Z (2008). Expression of STATs and their inhibitors SOCS and PIAS in brain tumors. In vitro and in vivo study. Neoplasma 55, 482-487.
Fang WY, Liu TF, Xie WB, Yang XY, Wang S, Ren CP, Deng X, Liu QZ, Huang ZX, Li X, Ding YQ, Yao KT (2005). Reexploring the possible roles of some genes associated with nasopharyngeal carcinoma using microarray-based detection. Acta Biochim. Biophys. Sin. (Shanghai) 37, 541-546.
Feng CJ, Li HJ, Li JN, Lu YJ, Liao GQ (2008). Expression of Mcm7 and Cdc6 in oral squamous cell carcinoma and precancerous lesions. Anticancer Res 28, 3763-3769.
Findeis-Hosey JJ, Xu H (2012). Insulin-like growth factor II-messenger RNA-binding protein-3 and lung cancer. Biotech. Histochem. 87, 24-29.
Findeis-Hosey JJ, Yang Q, Spaulding BO, Wang HL, Xu H (2010). IMP3 expression is correlated with histologic grade of lung adenocarcinoma. Hum. Pathol. 41, 477-484.
Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG (2001). Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci. U. S. A 98, 8809-8814.
Fukuda T, Oyamada H, Isshiki T, Maeda M, Kusakabe T, Hozumi A, Yamaguchi T, Igarashi T, Hasegawa H, Seidoh T, Suzuki T (2007). Distribution and variable expression of secretory pathway protein reticulocalbin in normal human organs and non-neoplastic pathological conditions. J Histochem. Cytochem. 55, 335-345.
Gamero AM, Young MR, Mentor-Marcel R, Bobe G, Scarzello AJ, Wise J, Colburn NH (2010). STAT2 contributes to promotion of colorectal and skin carcinogenesis. Cancer Prev. Res. (Phila) 3, 495-504.
Gares SL, Pilarski LM (2000). Balancing thymocyte adhesion and motility: a functional linkage between beta1 integrins and the motility receptor RHAMM. Dev. Immunol 7, 209-225.
Garg M, Kanojia D, Saini S, Suri S, Gupta A, Surolia A, Suri A (2010a). Germ cell-specific heat shock protein 70-2 is expressed in cervical carcinoma and is involved in the growth, migration, and invasion of cervical cells. Cancer 116, 3785-3796.
Garg M, Kanojia D, Seth A, Kumar R, Gupta A, Surolia A, Suri A (2010b). Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion. Eur. J Cancer 46, 207-215.
Gattinoni L, Powell DJ, Jr., Rosenberg SA, Restifo NP (2006). Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383-393.
Ghosh S, Albitar L, LeBaron R, Welch WR, Samimi G, Birrer MJ, Berkowitz RS, Mok SC (2010). Up-regulation of stromal versican expression in advanced stage serous ovarian cancer. Gynecol. Oncol 119, 114-120.
Gorrin Rivas MJ, Arii S, Furutani M, Harada T, Mizumoto M, Nishiyama H, Fujita J, Imamura M (1998). Expression of human macrophage metalloelastase gene in hepatocellular carcinoma: correlation with angiostatin generation and its clinical significance. Hepatology 28, 986-993.
Gorrin-Rivas MJ, Arii S, Mori A, Takeda Y, Mizumoto M, Furutani M, Imamura M (2000). Implications of human macrophage metalloelastase and vascular endothelial growth factor gene expression in angiogenesis of hepatocellular carcinoma. Ann Surg 231, 67-73.
Graf F, Mosch B, Koehler L, Bergmann R, Wuest F, Pietzsch J (2010). Cyclin-dependent kinase 4/6 (cdk4/6) inhibitors: perspectives in cancer therapy and imaging. Mini. Rev. Med. Chem. 10, 527-539.
Greenfield JJ, High S (1999). The Sec61 complex is located in both the ER and the ER-Golgi intermediate compartment. J Cell Sci. 112 ( Pt 10), 1477-1486.
Gregory KE, Keene DR, Tufa SF, Lunstrum GP, Morris NP (2001). Developmental distribution of collagen type XII in cartilage: association with articular cartilage and the growth plate. J Bone Miner. Res. 16, 2005-2016.
Grunda JM, Fiveash J, Palmer CA, Cantor A, Fathallah-Shaykh HM, Nabors LB, Johnson MR (2010). Rationally designed pharmacogenomic treatment using concurrent capecitabine and radiotherapy for glioblastoma; gene expression profiles associated with outcome. Clin Cancer Res. 16, 2890-2898.
Gruter P, Tabernero C, von KC, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E (1998). TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1, 649-659.
Gudmundsson J, Sulem P, Gudbjartsson DF, Blondal T, Gylfason A, Agnarsson BA, Benediktsdottir KR, Magnusdottir DN, Orlygsdottir G, Jakobsdottir M, Stacey SN, Sigurdsson A, Wahlfors T, Tammela T, Breyer JP, McReynolds KM, Bradley KM, Saez B, Godino J, Navarrete S, Fuertes F, Murillo L, Polo E, Aben KK, van Oort IM, Suarez BK, Helfand BT, Kan D, Zanon C, Frigge ML, Kristjansson K, Gulcher JR, Einarsson GV, Jonsson E, Catalona WJ, Mayordomo JI, Kiemeney LA, Smith JR, Schleutker J, Barkardottir RB, Kong A, Thorsteinsdottir U, Rafnar T, Stefansson K (2009). Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet. 41, 1122-1126.
Guo Y, Hsu DK, Feng SL, Richards CM, Winkles JA (2001). Polypeptide growth factors and phorbol ester induce progressive ankylosis (ank) gene expression in murine and human fibroblasts. J Cell Biochem. 84, 27-38.
Hagemann T, Gunawan B, Schulz M, Fuzesi L, Binder C (2001). mRNA expression of matrix metalloproteases and their inhibitors differs in subtypes of renal cell carcinomas. Eur. J Cancer 37, 1839-1846.
Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y, Furukawa Y (2006). Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 97, 113-118.
Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901.
Han S, Nam J, Li Y, Kim S, Cho SH, Cho YS, Choi SY, Choi J, Han K, Kim Y, Na M, Kim H, Bae YC, Choi SY, Kim E (2010). Regulation of dendritic spines, spatial memory, and embryonic development by the TANC family of PSD-95-interacting proteins. J Neurosci. 30, 15102-15112.
Hartl FU, Hayer-Hartl M (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858.
Hase ME, Yalamanchili P, Visa N (2006). The Drosophila heterogeneous nuclear ribonucleoprotein M protein, HRP59, regulates alternative splicing and controls the production of its own mRNA. J Biol. Chem. 281, 39135-39141.
Hernandez I, Moreno JL, Zandueta C, Montuenga L, Lecanda F (2010). Novel alternatively spliced ADAM8 isoforms contribute to the aggressive bone metastatic phenotype of lung cancer. Oncogene 29, 3758-3769.
Hitakomate E, Hood FE, Sanderson HS, Clarke PR (2010). The methylated N-terminal tail of RCC1 is required for stabilisation of its interaction with chromatin by Ran in live cells. BMC. Cell Biol. 11, 43.
Hjelmqvist L, Tuson M, Marfany G, Herrero E, Balcells S, Gonzalez-Duarte R (2002). ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 3, RESEARCH0027.
Ho CY, Wong CH, Li HY (2008). Perturbation of the chromosomal binding of RCC1, Mad2 and survivin causes spindle assembly defects and mitotic catastrophe. J Cell Biochem. 105, 835-846.
Hochrainer K, Mayer H, Baranyi U, Binder B, Lipp J, Kroismayr R (2005). The human HERC family of ubiquitin ligases: novel members, genomic organization, expression profiling, and evolutionary aspects. Genomics 85, 153-164.
Hofmann HS, Hansen G, Richter G, Taege C, Simm A, Silber RE, Burdach S (2005). Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res 11, 1086-1092.
Honda A, Valogne Y, Bou NM, Brechot C, Faivre J (2012). An intron-retaining splice variant of human cyclin A2, expressed in adult differentiated tissues, induces a G1/S cell cycle arrest in vitro. PLoS. ONE. 7, e39249.
Honore B, Baandrup U, Vorum H (2004). Heterogeneous nuclear ribonucleoproteins F and H/H' show differential expression in normal and selected cancer tissues. Exp. Cell Res. 294, 199-209.
Hood FE, Royle SJ (2011). Pulling it together: The mitotic function of TACC3. Bioarchitecture. 1, 105-109.
Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 5, 973-979.
Houghton AM, Grisolano JL, Baumann ML, Kobayashi DK, Hautamaki RD, Nehring LC, Cornelius LA, Shapiro SD (2006). Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66, 6149-6155.
Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR, Jenkins KM, Beaulieu KA, Mouded M, Frank SJ, Wong KK, Shapiro SD (2010). Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med. 16, 219-223.
Hovhannisyan RH, Carstens RP (2007). Heterogeneous ribonucleoprotein m is a splicing regulatory protein that can enhance or silence splicing of alternatively spliced exons. J Biol. Chem. 282, 36265-36274.
Hua D, Shen L, Xu L, Jiang Z, Zhou Y, Yue A, Zou S, Cheng Z, Wu S (2012). Polypeptide N-acetylgalactosaminyltransferase 2 regulates cellular metastasis-associated behavior in gastric cancer. Int. J Mol. Med. 30, 1267-1274.
Huang CL, Liu D, Nakano J, Ishikawa S, Kontani K, Yokomise H, Ueno M (2005). Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor--an expression in non-small-cell lung cancer. J Clin Oncol 23, 8765-8773.
Huang KH, Chiou SH, Chow KC, Lin TY, Chang HW, Chiang IP, Lee MC (2010). Overexpression of aldo-keto reductase 1C2 is associated with disease progression in patients with prostatic cancer. Histopathology 57, 384-394.
Huang MY, Wang HM, Tok TS, Chang HJ, Chang MS, Cheng TL, Wang JY, Lin SR (2012). EVI2B, ATP2A2, S100B, TM4SF3, and OLFM4 as potential prognostic markers for postoperative Taiwanese colorectal cancer patients. DNA Cell Biol. 31, 625-635.
Huo J, Liu Y, Ma J, Xiao S (2010). A novel splice-site mutation of ATP2A2 gene in a Chinese family with Darier disease. Arch. Dermatol. Res. 302, 769-772.
Hwang YS, Park KK, Cha IH, Kim J, Chung WY (2012). Role of insulin-like growth factorII mRNA-binding protein-3 in invadopodia formation and the growth of oral squamous cell carcinoma in athymic nude mice. Head Neck 34, 1329-1339.
Ishikawa N, Daigo Y, Yasui W, Inai K, Nishimura H, Tsuchiya E, Kohno N, Nakamura Y (2004). ADAM8 as a novel serological and histochemical marker for lung cancer. Clin Cancer Res. 10, 8363-8370.
Ishikawa Y, Vranka J, Wirz J, Nagata K, Bachinger HP (2008). The rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens. J Biol. Chem. 283, 31584-31590.
Ito K, Takahashi A, Morita M, Suzuki T, Yamamoto T (2011). The role of the CNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cell viability. Protein Cell 2, 755-763.
Iuchi S, Green H (1999). Basonuclin, a zinc finger protein of keratinocytes and reproductive germ cells, binds to the rRNA gene promoter. Proc. Natl. Acad. Sci. U. S. A 96, 9628-9632.
Jalbout M, Bouaouina N, Gargouri J, Corbex M, Ben AS, Chouchane L (2003). polymorphism of the stress protein HSP70-2 gene is associated with the susceptibility to the nasopharyngeal carcinoma. Cancer Lett. 193, 75-81.
Jeng YM, Wang TH, Lu SH, Yuan RH, Hsu HC (2009). Prognostic significance of insulin-like growth factor II mRNA-binding protein 3 expression in gastric adenocarcinoma. Br. J Surg 96, 66-73.
Jung CK, Jung JH, Park GS, Lee A, Kang CS, Lee KY (2006). Expression of transforming acidic coiled-coil containing protein 3 is a novel independent prognostic marker in non-small cell lung cancer. Pathol. Int 56, 503-509.
Jung G, Ledbetter JA, Muller-Eberhard HJ (1987). Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heteroconjugates. Proc Natl Acad Sci U S A 84, 4611-4615.
Kabbarah O, Nogueira C, Feng B, Nazarian RM, Bosenberg M, Wu M, Scott KL, Kwong LN, Xiao Y, Cordon-Cardo C, Granter SR, Ramaswamy S, Golub T, Duncan LM, Wagner SN, Brennan C, Chin L (2010). Integrative genome comparison of primary and metastatic melanomas. PLoS. ONE. 5, e10770.
Kadara H, Lacroix L, Behrens C, Solis L, Gu X, Lee JJ, Tahara E, Lotan D, Hong WK, Wistuba II, Lotan R (2009). Identification of gene signatures and molecular markers for human lung cancer prognosis using an in vitro lung carcinogenesis system. Cancer Prev. Res (Phila) 2, 702-711.
Kamlekar RK, Simanshu DK, Gao YG, Kenoth R, Pike HM, Prendergast FG, Malinina L, Molotkovsky JG, Venyaminov SY, Patel DJ, Brown RE (2013). The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): structure drives preference for simple neutral glycosphingolipids. Biochim. Biophys. Acta 1831, 417-427.
Kanno A, Satoh K, Masamune A, Hirota M, Kimura K, Umino J, Hamada S, Satoh A, Egawa S, Motoi F, Unno M, Shimosegawa T (2008). Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. Int J Cancer 122, 2707-2718.
Kanno T, Kamba T, Yamasaki T, Shibasaki N, Saito R, Terada N, Toda Y, Mikami Y, Inoue T, Kanematsu A, Nishiyama H, Ogawa O, Nakamura E (2012). JunB promotes cell invasion and angiogenesis in VHL-defective renal cell carcinoma. Oncogene 31, 3098-3110.
Kao RH, Francia G, Poulsom R, Hanby AM, Hart IR (2003). Application of differential display, with in situ hybridization verification, to microscopic samples of breast cancer tissue. Int. J Exp. Pathol. 84, 207-212.
Kars MD, Iseri OD, Gunduz U (2011). A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells. Eur. J Pharmacol. 657, 4-9.
Katagiri C, Iida T, Nakanishi J, Ozawa M, Aiba S, Hibino T (2010). Up-regulation of serpin SCCA1 is associated with epidermal barrier disruption. J Dermatol. Sci. 57, 95-101.
Katoh M (2008). WNT signaling in stem cell biology and regenerative medicine. Curr. Drug Targets. 9, 565-570.
Katoh M, Katoh M (2007). STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (Review). Int J Mol. Med 19, 273-278.
Kawata H, Shimada N, Kamiakito T, Komatsu K, Morita T, Ota T, Obayashi M, Shitara K, Tanaka A (2012). RhoC and guanine nucleotide exchange factor Net1 in androgen-unresponsive mouse mammary carcinoma SC-4 cells and human prostate cancer after short-term endocrine therapy. Prostate 72, 1071-1079.
Kelly SM, Corbett AH (2009). Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic. 10, 1199-1208.
Kennedy A, Dong H, Chen D, Chen WT (2009). Elevation of seprase expression and promotion of an invasive phenotype by collagenous matrices in ovarian tumor cells. Int J Cancer 124, 27-35.
Kikuchi A, Yamamoto H, Sato A, Matsumoto S (2012). Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf) 204, 17-33.
Kikuchi Y, Kashima TG, Nishiyama T, Shimazu K, Morishita Y, Shimazaki M, Kii I, Horie H, Nagai H, Kudo A, Fukayama M (2008). Periostin is expressed in pericryptal fibroblasts and cancer-associated fibroblasts in the colon. J Histochem. Cytochem. 56, 753-764.
Kim DH, Park SE, Kim M, Ji YI, Kang MY, Jung EH, Ko E, Kim Y, Kim S, Shim YM, Park J (2011). A functional single nucleotide polymorphism at the promoter region of cyclin A2 is associated with increased risk of colon, liver, and lung cancers. Cancer 117, 4080-4091.
Kim EH, Park AK, Dong SM, Ahn JH, Park WY (2010a). Global analysis of CpG methylation reveals epigenetic control of the radiosensitivity in lung cancer cell lines. Oncogene 29, 4725-4731.
Kim HS, Kim dH, Kim JY, Jeoung NH, Lee IK, Bong JG, Jung ED (2010b). Microarray analysis of papillary thyroid cancers in Korean. Korean J Intern. Med. 25, 399-407.
Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J (2009). Tumor self-seeding by circulating cancer cells. Cell 139, 1315-1326.
Kim S, Park HS, Son HJ, Moon WS (2004). [The role of angiostatin, vascular endothelial growth factor, matrix metalloproteinase 9 and 12 in the angiogenesis of hepatocellular carcinoma]. Korean J Hepatol. 10, 62-72.
Kimura J, Kudoh T, Miki Y, Yoshida K (2011). Identification of dihydropyrimidinase-related protein 4 as a novel target of the p53 tumor suppressor in the apoptotic response to DNA damage. Int. J Cancer 128, 1524-1531.
Kloth JN, Oosting J, van WT, Szuhai K, Knijnenburg J, Gorter A, Kenter GG, Fleuren GJ, Jordanova ES (2007). Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer. BMC. Genomics 8, 53.
Knight HM, Pickard BS, Maclean A, Malloy MP, Soares DC, McRae AF, Condie A, White A, Hawkins W, McGhee K, van BM, MacIntyre DJ, Starr JM, Deary IJ, Visscher PM, Porteous DJ, Cannon RE, St CD, Muir WJ, Blackwood DH (2009). A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. Am J Hum. Genet. 85, 833-846.
Kolehmainen J, Black GC, Saarinen A, Chandler K, Clayton-Smith J, Traskelin AL, Perveen R, Kivitie-Kallio S, Norio R, Warburg M, Fryns JP, de la Chapelle A, Lehesjoki AE (2003). Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am. J Hum. Genet. 72, 1359-1369.
Konishi N, Shimada K, Nakamura M, Ishida E, Ota I, Tanaka N, Fujimoto K (2008). Function of JunB in transient amplifying cell senescence and progression of human prostate cancer. Clin Cancer Res. 14, 4408-4416.
Kornak U, Brancati F, Le MM, Lichtenbelt K, Hohne W, Tinschert S, Garaci FG, Dallapiccola B, Nurnberg P (2010). Three novel mutations in the ANK membrane protein cause craniometaphyseal dysplasia with variable conductive hearing loss. Am. J Med. Genet. A 152A, 870-874.
Korosec B, Glavac D, Rott T, Ravnik-Glavac M (2006). Alterations in the ATP2A2 gene in correlation with colon and lung cancer. Cancer Genet. Cytogenet. 171, 105-111.
Kramer MW, Escudero DO, Lokeshwar SD, Golshani R, Ekwenna OO, Acosta K, Merseburger AS, Soloway M, Lokeshwar VB (2010). Association of hyaluronic acid family members (HAS1, HAS2, and HYAL-1) with bladder cancer diagnosis and prognosis. Cancer.
Krieg AM (2006). Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5, 471-484.
Kuang P, Zhou C, Li X, Ren S, Li B, Wang Y, Li J, Tang L, Zhang J, Zhao Y (2012). Proteomics-based identification of secreted protein dihydrodiol dehydrogenase 2 as a potential biomarker for predicting cisplatin efficacy in advanced NSCLC patients. Lung Cancer 77, 427-432.
Kuang SQ, Tong WG, Yang H, Lin W, Lee MK, Fang ZH, Wei Y, Jelinek J, Issa JP, Garcia-Manero G (2008). Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22, 1529-1538.
Kudo Y, Ogawa I, Kitajima S, Kitagawa M, Kawai H, Gaffney PM, Miyauchi M, Takata T (2006). Periostin promotes invasion and anchorage-independent growth in the metastatic process of head and neck cancer. Cancer Res 66, 6928-6935.
Kwon OH, Park JL, Kim M, Kim JH, Lee HC, Kim HJ, Noh SM, Song KS, Yoo HS, Paik SG, Kim SY, Kim YS (2011). Aberrant up-regulation of LAMB3 and LAMC2 by promoter demethylation in gastric cancer. Biochem. Biophys. Res. Commun. 406, 539-545.
Kwon YJ, Lee SJ, Koh JS, Kim SH, Kim YJ, Park JH (2009). Expression patterns of aurora kinase B, heat shock protein 47, and periostin in esophageal squamous cell carcinoma. Oncol Res 18, 141-151.
Labied S, Galant C, Nisolle M, Ravet S, Munaut C, Marbaix E, Foidart JM, Frankenne F (2009). Differential elevation of matrix metalloproteinase expression in women exposed to levonorgestrel-releasing intrauterine system for a short or prolonged period of time. Hum. Reprod. 24, 113-121.
Lau E, Zhu C, Abraham RT, Jiang W (2006). The functional role of Cdc6 in S-G2/M in mammalian cells. EMBO Rep. 7, 425-430.
Lazaris AC, Chatzigianni EB, Panoussopoulos D, Tzimas GN, Davaris PS, Golematis BC (1997). Proliferating cell nuclear antigen and heat shock protein 70 immunolocalization in invasive ductal breast cancer not otherwise specified. Breast Cancer Res. Treat. 43, 43-51.
Le CB, Rynkowski M, Le MM, Bruyere C, Lonez C, Gras T, Haibe-Kains B, Bontempi G, Decaestecker C, Ruysschaert JM, Kiss R, Lefranc F (2010). Long-term in vitro treatment of human glioblastoma cells with temozolomide increases resistance in vivo through up-regulation of GLUT transporter and aldo-keto reductase enzyme AKR1C expression. Neoplasia. 12, 727-739.
Lee KH, Kim JR (2012). Regulation of HGF-mediated cell proliferation and invasion through NF-kappaB, JunB, and MMP-9 cascades in stomach cancer cells. Clin Exp. Metastasis 29, 263-272.
Lee WS, Jain MK, Arkonac BM, Zhang D, Shaw SY, Kashiki S, Maemura K, Lee SL, Hollenberg NK, Lee ME, Haber E (1998). Thy-1, a novel marker for angiogenesis upregulated by inflammatory cytokines. Circ. Res 82, 845-851.
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.
Lefave CV, Squatrito M, Vorlova S, Rocco GL, Brennan CW, Holland EC, Pan YX, Cartegni L (2011). Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J 30, 4084-4097.
Leivo I, Jee KJ, Heikinheimo K, Laine M, Ollila J, Nagy B, Knuutila S (2005). Characterization of gene expression in major types of salivary gland carcinomas with epithelial differentiation. Cancer Genet. Cytogenet. 156, 104-113.
Lemmel C, Weik S, Eberle U, Dengjel J, Kratt T, Becker HD, Rammensee HG, Stevanovic S (2004). Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat. Biotechnol. 22, 450-454.
Li H, Guo L, Li J, Liu N, Liu J (2000a). Alternative splicing of RHAMM gene in chinese gastric cancers and its in vitro regulation. Zhonghua Yi. Xue. Yi. Chuan Xue. Za Zhi. 17, 343-347.
Li H, Guo L, Li JW, Liu N, Qi R, Liu J (2000b). Expression of hyaluronan receptors CD44 and RHAMM in stomach cancers: relevance with tumor progression. Int J Oncol 17, 927-932.
Li HG, Han JJ, Huang ZQ, Wang L, Chen WL, Shen XM (2011). IMP3 is a novel biomarker to predict metastasis and prognosis of tongue squamous cell carcinoma. J Craniofac. Surg. 22, 2022-2025.
Li J, Ying J, Fan Y, Wu L, Ying Y, Chan AT, Srivastava G, Tao Q (2010). WNT5A antagonizes WNT/beta-catenin signaling and is frequently silenced by promoter CpG methylation in esophageal squamous cell carcinoma. Cancer Biol. Ther. 10, 617-624.
Li Y, Chu LW, LI Z, Yik PY, Song YQ (2009). A study on the association of the chromosome 12p13 locus with sporadic late-onset Alzheimer's disease in Chinese. Dement. Geriatr. Cogn Disord. 27, 508-512.
Liang WJ, Qiu F, Hong MH, Guo L, Qin HD, Liu QC, Zhang XS, Mai HQ, Xiang YQ, Min HQ, Zeng YX (2008). [Differentially expressed genes between upward and downward progressing types of nasopharyngeal carcinoma]. Ai. Zheng. 27, 460-465.
Liao B, Hu Y, Brewer G (2011). RNA-binding protein insulin-like growth factor mRNA-binding protein 3 (IMP-3) promotes cell survival via insulin-like growth factor II signaling after ionizing radiation. J Biol. Chem. 286, 31145-31152.
Liao B, Hu Y, Herrick DJ, Brewer G (2005). The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol. Chem. 280, 18517-18524.
Lin DM, Ma Y, Xiao T, Guo SP, Han NJ, Su K, Yi SZ, Fang J, Cheng SJ, Gao YN (2006). [TPX2 expression and its significance in squamous cell carcinoma of lung]. Zhonghua Bing. Li Xue. Za Zhi. 35, 540-544.
Litjens SH, de Pereda JM, Sonnenberg A (2006). Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol. 16, 376-383.
Liu J, Yang L, Jin M, Xu L, Wu S (2011a). regulation of the invasion and metastasis of human glioma cells by Polypeptide N-acetylgalactosaminyltransferase 2. Mol. Med. Rep. 4, 1299-1305.
Liu T, Jin X, Zhang X, Yuan H, Cheng J, Lee J, Zhang B, Zhang M, Wu J, Wang L, Tian G, Wang W (2012). A novel missense SNRNP200 mutation associated with autosomal dominant retinitis pigmentosa in a Chinese family. PLoS. ONE. 7, e45464.
Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H, Hitomi T, Hashikata H, Matsuura N, Yamazaki S, Toyoda A, Kikuta K, Takagi Y, Harada KH, Fujiyama A, Herzig R, Krischek B, Zou L, Kim JE, Kitakaze M, Miyamoto S, Nagata K, Hashimoto N, Koizumi A (2011b). Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS. ONE. 6, e22542.
Lleres D, Denegri M, Biggiogera M, Ajuh P, Lamond AI (2010). Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Rep. 11, 445-451.
Lu D, Yang X, Jiang NY, Woda BA, Liu Q, Dresser K, Mercurio AM, Rock KL, Jiang Z (2011). IMP3, a new biomarker to predict progression of cervical intraepithelial neoplasia into invasive cancer. Am. J Surg. Pathol. 35, 1638-1645.
Lu Z, Zhou L, Killela P, Rasheed AB, Di C, Poe WE, McLendon RE, Bigner DD, Nicchitta C, Yan H (2009). Glioblastoma proto-oncogene SEC61gamma is required for tumor cell survival and response to endoplasmic reticulum stress. Cancer Res. 69, 9105-9111.
Lugassy C, Torres-Munoz JE, Kleinman HK, Ghanem G, Vernon S, Barnhill RL (2009). Overexpression of malignancy-associated laminins and laminin receptors by angiotropic human melanoma cells in a chick chorioallantoic membrane model. J Cutan. Pathol. 36, 1237-1243.
Ma LJ, Li W, Zhang X, Huang DH, Zhang H, Xiao JY, Tian YQ (2009). Differential gene expression profiling of laryngeal squamous cell carcinoma by laser capture microdissection and complementary DNA microarray. Arch. Med Res 40, 114-123.
Ma TS, Mann DL, Lee JH, Gallinghouse GJ (1999). SR compartment calcium and cell apoptosis in SERCA overexpression. Cell Calcium 26, 25-36.
Ma Y, Lin D, Sun W, Xiao T, Yuan J, Han N, Guo S, Feng X, Su K, Mao Y, Cheng S, Gao Y (2006). Expression of targeting protein for xklp2 associated with both malignant transformation of respiratory epithelium and progression of squamous cell lung cancer. Clin Cancer Res 12, 1121-1127.
MacLennan DH, Rice WJ, Green NM (1997). The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol. Chem. 272, 28815-28818.
Maeder C, Kutach AK, Guthrie C (2009). ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat Struct. Mol. Biol. 16, 42-48.
Manda R, Kohno T, Niki T, Yamada T, Takenoshita S, Kuwano H, Yokota J (2000). Differential expression of the LAMB3 and LAMC2 genes between small cell and non-small cell lung carcinomas. Biochem. Biophys. Res. Commun. 275, 440-445.
Marchand M, Van BN, Weynants P, Brichard V, Dreno B, Tessier MH, Rankin E, Parmiani G, Arienti F, Humblet Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De GJ, Atzpodien J, Brasseur F, Coulie PG, van der BP, Boon T (1999). Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int. J. Cancer 80, 219-230.
Marchand M, Weynants P, Rankin E, Arienti F, Belli F, Parmiani G, Cascinelli N, Bourlond A, Vanwijck R, Humblet Y (1995). Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int. J Cancer 63, 883-885.
Masson NM, Currie IS, Terrace JD, Garden OJ, Parks RW, Ross JA (2006). Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1. Am J Physiol Gastrointest. Liver Physiol 291, G45-G54.
McManus KJ, Barrett IJ, Nouhi Y, Hieter P (2009). Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc. Natl. Acad. Sci. U. S. A 106, 3276-3281.
Mercer CA, Kaliappan A, Dennis PB (2009). A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy. 5, 649-662.
Mestiri S, Bouaouina N, Ahmed SB, Khedhaier A, Jrad BB, Remadi S, Chouchane L (2001). Genetic variation in the tumor necrosis factor-alpha promoter region and in the stress protein hsp70-2: susceptibility and prognostic implications in breast carcinoma. Cancer 91, 672-678.
Meyer EL, Goemann IM, Dora JM, Wagner MS, Maia AL (2008). Type 2 iodothyronine deiodinase is highly expressed in medullary thyroid carcinoma. Mol. Cell Endocrinol. 289, 16-22.
Miller NH, Justice CM, Marosy B, Swindle K, Kim Y, Roy-Gagnon MH, Sung H, Behneman D, Doheny KF, Pugh E, Wilson AF (2012). Intra-familial tests of association between familial idiopathic scoliosis and linked regions on 9q31.3-q34.3 and 16p12.3-q22.2. Hum. Hered. 74, 36-44.
Milovanovic T, Planutis K, Nguyen A, Marsh JL, Lin F, Hope C, Holcombe RF (2004). Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. Int. J Oncol 25, 1337-1342.
Mochizuki S, Okada Y (2007). ADAMs in cancer cell proliferation and progression. Cancer Sci. 98, 621-628.
Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006). Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes. Science.
Mori M, Beatty PG, Graves M, Boucher KM, Milford EL (1997). HLA gene and haplotype frequencies in the North American population: the National Marrow Donor Program Donor Registry. Transplantation 64, 1017-1027.
Moroy G, Alix AJ, Sapi J, Hornebeck W, Bourguet E (2012). Neutrophil elastase as a target in lung cancer. Anticancer Agents Med. Chem. 12, 565-579.
Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T, Yao M, Latif F, Maher ER (2010). Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29, 2104-2117.
Moss DK, Wilde A, Lane JD (2009). Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase. J Cell Sci. 122, 644-655.
Murakami M, Araki O, Morimura T, Hosoi Y, Mizuma H, Yamada M, Kurihara H, Ishiuchi S, Tamura M, Sasaki T, Mori M (2000). Expression of type II iodothyronine deiodinase in brain tumors. J Clin Endocrinol. Metab 85, 4403-4406.
Nakamura Y, Muguruma Y, Yahata T, Miyatake H, Sakai D, Mochida J, Hotta T, Ando K (2006). Expression of CD90 on keratinocyte stem/progenitor cells. Br. J Dermatol. 154, 1062-1070.
Neidert MC, Schoor O, Trautwein C, Trautwein N, Christ L, Melms A, Honegger J, Rammensee HG, Herold-Mende C, Dietrich PY, Stevanovic S (2012). Natural HLA class I ligands from glioblastoma: extending the options for immunotherapy. J Neurooncol.
Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998). Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 4, 328-332.
Niedergethmann M, Alves F, Neff JK, Heidrich B, Aramin N, Li L, Pilarsky C, Grutzmann R, Allgayer H, Post S, Gretz N (2007). Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic SCID mouse model. Br. J Cancer 97, 1432-1440.
Nikolova DN, Zembutsu H, Sechanov T, Vidinov K, Kee LS, Ivanova R, Becheva E, Kocova M, Toncheva D, Nakamura Y (2008). Genome-wide gene expression profiles of thyroid carcinoma: Identification of molecular targets for treatment of thyroid carcinoma. Oncol Rep. 20, 105-121.
Nirde P, Derocq D, Maynadier M, Chambon M, Basile I, Gary-Bobo M, Garcia M (2010). Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene 29, 117-127.
Nishinakamura R, Uchiyama Y, Sakaguchi M, Fujimura S (2011). Nephron progenitors in the metanephric mesenchyme. Pediatr. Nephrol. 26, 1463-1467.
Odermatt A, Taschner PE, Khanna VK, Busch HF, Karpati G, Jablecki CK, Breuning MH, MacLennan DH (1996). Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat Genet. 14, 191-194.
Oh SP, Taylor RW, Gerecke DR, Rochelle JM, Seldin MF, Olsen BR (1992). The mouse alpha 1(XII) and human alpha 1(XII)-like collagen genes are localized on mouse chromosome 9 and human chromosome 6. Genomics 14, 225-231.
Ohta S, Koide M, Tokuyama T, Yokota N, Nishizawa S, Namba H (2001). Cdc6 expression as a marker of proliferative activity in brain tumors. Oncol Rep. 8, 1063-1066.
Ortega P, Moran A, Fernandez-Marcelo T, De JC, Frias C, Lopez-Asenjo JA, Sanchez-Pernaute A, Torres A, Diaz-Rubio E, Iniesta P, Benito M (2010). MMP-7 and SGCE as distinctive molecular factors in sporadic colorectal cancers from the mutator phenotype pathway. Int. J Oncol 36, 1209-1215.
Osborne AR, Rapoport TA, van den Berg B (2005). Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529-550.
Pascolo S, Ginhoux F, Laham N, Walter S, Schoor O, Probst J, Rohrlich P, Obermayr F, Fisch P, Danos O, Ehrlich R, Lemonnier FA, Rammensee HG (2005). The non-classical HLA class I molecule HFE does not influence the NK-like activity contained in fresh human PBMCs and does not interact with NK cells. Int. Immunol. 17, 117-122.
Pascreau G, Eckerdt F, Lewellyn AL, Prigent C, Maller JL (2009). Phosphorylation of p53 is regulated by TPX2-Aurora A in xenopus oocytes. J Biol. Chem. 284, 5497-5505.
Patterson CE, Abrams WR, Wolter NE, Rosenbloom J, Davis EC (2005). Developmental regulation and coordinate reexpression of FKBP65 with extracellular matrix proteins after lung injury suggest a specialized function for this endoplasmic reticulum immunophilin. Cell Stress. Chaperones. 10, 285-295.
Patterson CE, Schaub T, Coleman EJ, Davis EC (2000). Developmental regulation of FKBP65. An ER-localized extracellular matrix binding-protein. Mol. Biol. Cell 11, 3925-3935.
Peiro G, Diebold J, Baretton GB, Kimmig R, Lohrs U (2001). Cellular apoptosis susceptibility gene expression in endometrial carcinoma: correlation with Bcl-2, Bax, and caspase-3 expression and outcome. Int. J Gynecol. Pathol. 20, 359-367.
Peng C, Togayachi A, Kwon YD, Xie C, Wu G, Zou X, Sato T, Ito H, Tachibana K, Kubota T, Noce T, Narimatsu H, Zhang Y (2010). Identification of a novel human UDP-GalNAc transferase with unique catalytic activity and expression profile. Biochem. Biophys. Res. Commun. 402, 680-686.
Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, Ma H, Moore M, Palackal N, Ratnam K (2000). Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem. J 351, 67-77.
Perrin-Tricaud C, Rutschmann C, Hennet T (2011). Identification of domains and amino acids essential to the collagen galactosyltransferase activity of GLT25D1. PLoS. ONE. 6, e29390.
Pine SR, Mechanic LE, Enewold L, Chaturvedi AK, Katki HA, Zheng YL, Bowman ED, Engels EA, Caporaso NE, Harris CC (2011). Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer. J Natl. Cancer Inst. 103, 1112-1122.
Piskac-Collier AL, Monroy C, Lopez MS, Cortes A, Etzel CJ, Greisinger AJ, Spitz MR, El-Zein RA (2011). Variants in folate pathway genes as modulators of genetic instability and lung cancer risk. Genes Chromosomes. Cancer 50, 1-12.
Pontisso P, Calabrese F, Benvegnu L, Lise M, Belluco C, Ruvoletto MG, Marino M, Valente M, Nitti D, Gatta A, Fassina G (2004). Overexpression of squamous cell carcinoma antigen variants in hepatocellular carcinoma. Br. J Cancer 90, 833-837.
Prades C, Arnould I, Annilo T, Shulenin S, Chen ZQ, Orosco L, Triunfol M, Devaud C, Maintoux-Larois C, Lafargue C, Lemoine C, Denefle P, Rosier M, Dean M (2002). The human ATP binding cassette gene ABCA13, located on chromosome 7p12.3, encodes a 5058 amino acid protein with an extracellular domain encoded in part by a 4.8-kb conserved exon. Cytogenet. Genome Res 98, 160-168.
Prasad P, Tiwari AK, Kumar KM, Ammini AC, Gupta A, Gupta R, Thelma BK (2010). Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes. BMC. Med. Genet. 11, 52.
Puppin C, Fabbro D, Dima M, Di LC, Puxeddu E, Filetti S, Russo D, Damante G (2008). High periostin expression correlates with aggressiveness in papillary thyroid carcinomas. J Endocrinol. 197, 401-408.
Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, Prokhortchouk E, Wu X, Kiemeney LA, Gaborieau V, Jacobs KB, Chow WH, Zaridze D, Matveev V, Lubinski J, Trubicka J, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Bucur A, Bencko V, Foretova L, Janout V, Boffetta P, Colt JS, Davis FG, Schwartz KL, Banks RE, Selby PJ, Harnden P, Berg CD, Hsing AW, Grubb RL, III, Boeing H, Vineis P, Clavel-Chapelon F, Palli D, Tumino R, Krogh V, Panico S, Duell EJ, Quiros JR, Sanchez MJ, Navarro C, Ardanaz E, Dorronsoro M, Khaw KT, Allen NE, Bueno-de-Mesquita HB, Peeters PH, Trichopoulos D, Linseisen J, Ljungberg B, Overvad K, Tjonneland A, Romieu I, Riboli E, Mukeria A, Shangina O, Stevens VL, Thun MJ, Diver WR, Gapstur SM, Pharoah PD, Easton DF, Albanes D, Weinstein SJ, Virtamo J, Vatten L, Hveem K, Njolstad I, Tell GS, Stoltenberg C, Kumar R, Koppova K, Cussenot O, Benhamou S, Oosterwijk E, Vermeulen SH, Aben KK, van der Marel SL, Ye Y, Wood CG, Pu X, Mazur AM, Boulygina ES, Chekanov NN, Foglio M, Lechner D, Gut I, Heath S, Blanche H, Hutchinson A, Thomas G, Wang Z, Yeager M, Fraumeni JF, Jr., Skryabin KG, McKay JD, Rothman N, Chanock SJ, Lathrop M, Brennan P (2011). Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 43, 60-65.
Puyol M, Martin A, Dubus P, Mulero F, Pizcueta P, Khan G, Guerra C, Santamaria D, Barbacid M (2010). A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18, 63-73.
Qu P, Du H, Wang X, Yan C (2009). Matrix metalloproteinase 12 overexpression in lung epithelial cells plays a key role in emphysema to lung bronchioalveolar adenocarcinoma transition. Cancer Res 69, 7252-7261.
Ramakrishna M, Williams LH, Boyle SE, Bearfoot JL, Sridhar A, Speed TP, Gorringe KL, Campbell IG (2010). Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis. PLoS. ONE. 5, e9983.
Rammensee HG, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999). SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213-219.
Rammensee HG, Bachmann J, Stevanovic S (1997). MHC Ligands and Peptide Motifs.(Heodelberg, Germany: Springer-Verlag).
Rao B, Gao Y, Huang J, Gao X, Fu X, Huang M, Yao J, Wang J, Li W, Zhang J, Liu H, Wang L, Wang J (2011). Mutations of p53 and K-ras correlate TF expression in human colorectal carcinomas: TF downregulation as a marker of poor prognosis. Int. J Colorectal Dis. 26, 593-601.
Rappsilber J, Ryder U, Lamond AI, Mann M (2002). Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245.
Rauch J, O'Neill E, Mack B, Matthias C, Munz M, Kolch W, Gires O (2010). Heterogeneous nuclear ribonucleoprotein H blocks MST2-mediated apoptosis in cancer cells by regulating A-Raf transcription. Cancer Res. 70, 1679-1688.
Rege TA, Hagood JS (2006a). Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 20, 1045-1054.
Rege TA, Hagood JS (2006b). Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses. Biochim. Biophys. Acta 1763, 991-999.
Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Ozer HL, Schwab M, Albino AP, Old LJ (1993). Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 53, 3327-3335.
Rettig WJ, Su SL, Fortunato SR, Scanlan MJ, Raj BK, Garin-Chesa P, Healey JH, Old LJ (1994). Fibroblast activation protein: purification, epitope mapping and induction by growth factors. Int J Cancer 58, 385-392.
Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM, Small EJ (2006). Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer 107, 67-74.
Ripka S, Konig A, Buchholz M, Wagner M, Sipos B, Kloppel G, Downward J, Gress T, Michl P (2007). WNT5A--target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis 28, 1178-1187.
Rivera VT, Boudoukha S, Simon A, Souidi M, Cuvellier S, Pinna G, Polesskaya A (2013). Post-transcriptional regulation of cyclins D1, D3 and G1 and proliferation of human cancer cells depend on IMP-3 nuclear localization. Oncogene.
Rodningen OK, Borresen-Dale AL, Alsner J, Hastie T, Overgaard J (2008). Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis. Radiother. Oncol 86, 314-320.
Rodriguez CI, Stewart CL (2007). Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev. Biol. 312, 501-508.
Roemer A, Schwettmann L, Jung M, Roigas J, Kristiansen G, Schnorr D, Loening SA, Jung K, Lichtinghagen R (2004a). Increased mRNA expression of ADAMs in renal cell carcinoma and their association with clinical outcome. Oncol Rep. 11, 529-536.
Roemer A, Schwettmann L, Jung M, Stephan C, Roigas J, Kristiansen G, Loening SA, Lichtinghagen R, Jung K (2004b). The membrane proteases adams and hepsin are differentially expressed in renal cell carcinoma. Are they potential tumor markers? J Urol. 172, 2162-2166.
Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M (2005). Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev. 19, 570-582.
Romagnoli S, Fasoli E, Vaira V, Falleni M, Pellegrini C, Catania A, Roncalli M, Marchetti A, Santambrogio L, Coggi G, Bosari S (2009). Identification of potential therapeutic targets in malignant mesothelioma using cell-cycle gene expression analysis. Am J Pathol. 174, 762-770.
Romero-Weaver AL, Wang HW, Steen HC, Scarzello AJ, Hall VL, Sheikh F, Donnelly RP, Gamero AM (2010). Resistance to IFN-alpha-induced apoptosis is linked to a loss of STAT2. Mol. Cancer Res. 8, 80-92.
Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT (1987). A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 316, 889-897.
Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA (1988). Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J Med 319, 1676-1680.
Ruan K, Bao S, Ouyang G (2009). The multifaceted role of periostin in tumorigenesis. Cell Mol. Life Sci. 66, 2219-2230.
Ruiz dA, I, Scarselli M, Rosemond E, Gautam D, Jou W, Gavrilova O, Ebert PJ, Levitt P, Wess J (2010). RGS4 is a negative regulator of insulin release from pancreatic beta-cells in vitro and in vivo. Proc Natl. Acad. Sci. U. S. A 107, 7999-8004.
Rusin M, Zientek H, Krzesniak M, Malusecka E, Zborek A, Krzyzowska-Gruca S, Butkiewicz D, Vaitiekunaite R, Lisowska K, Grzybowska E, Krawczyk Z (2004). Intronic polymorphism (1541-1542delGT) of the constitutive heat shock protein 70 gene has functional significance and shows evidence of association with lung cancer risk. Mol. Carcinog. 39, 155-163.
Sagara N, Toda G, Hirai M, Terada M, Katoh M (1998). Molecular cloning, differential expression, and chromosomal localization of human frizzled-1, frizzled-2, and frizzled-7. Biochem. Biophys. Res. Commun. 252, 117-122.
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491.
Sakuntabhai A, Ruiz-Perez V, Carter S, Jacobsen N, Burge S, Monk S, Smith M, Munro CS, O'Donovan M, Craddock N, Kucherlapati R, Rees JL, Owen M, Lathrop GM, Monaco AP, Strachan T, Hovnanian A (1999). Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet. 21, 271-277.
Samanta S, Sharma VM, Khan A, Mercurio AM (2012). Regulation of IMP3 by EGFR signaling and repression by ERbeta: implications for triple-negative breast cancer. Oncogene 31, 4689-4697.
Sang QX (1998). Complex role of matrix metalloproteinases in angiogenesis. Cell Res 8, 171-177.
Sarai N, Kagawa W, Fujikawa N, Saito K, Hikiba J, Tanaka K, Miyagawa K, Kurumizaka H, Yokoyama S (2008). Biochemical analysis of the N-terminal domain of human RAD54B. Nucleic Acids Res. 36, 5441-5450.
Satow R, Shitashige M, Kanai Y, Takeshita F, Ojima H, Jigami T, Honda K, Kosuge T, Ochiya T, Hirohashi S, Yamada T (2010). Combined functional genome survey of therapeutic targets for hepatocellular carcinoma. Clin Cancer Res 16, 2518-2528.
Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, Old LJ, Rettig WJ (1994). Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl. Acad. Sci. U. S. A 91, 5657-5661.
Schafer R, Sedehizade F, Welte T, Reiser G (2003). ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am. J Physiol Lung Cell Mol. Physiol 285, L376-L385.
Schegg B, Hulsmeier AJ, Rutschmann C, Maag C, Hennet T (2009). Core glycosylation of collagen is initiated by two beta(1-O)galactosyltransferases. Mol. Cell Biol. 29, 943-952.
Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M, Fehm T, Solomayer E, Riess O, Wallwiener D, Kurek R, Neubauer HJ (2006). Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonuclotide microarray analysis. Cancer Res 66, 5278-5286.
Scieglinska D, Piglowski W, Mazurek A, Malusecka E, Zebracka J, Filipczak P, Krawczyk Z (2008). The HspA2 protein localizes in nucleoli and centrosomes of heat shocked cancer cells. J Cell Biochem. 104, 2193-2206.
Seifert W, Kuhnisch J, Maritzen T, Horn D, Haucke V, Hennies HC (2011). Cohen syndrome-associated protein, COH1, is a novel, giant Golgi matrix protein required for Golgi integrity. J Biol. Chem. 286, 37665-37675.
Shaulian E (2010). AP-1--The Jun proteins: Oncogenes or tumor suppressors in disguise? Cell Signal. 22, 894-899.
Shaulian E, Karin M (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol. 4, E131-E136.
Sherman-Baust CA, Weeraratna AT, Rangel LB, Pizer ES, Cho KR, Schwartz DR, Shock T, Morin PJ (2003). Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell 3, 377-386.
Shigeishi H, Fujimoto S, Hiraoka M, Ono S, Taki M, Ohta K, Higashikawa K, Kamata N (2009). Overexpression of the receptor for hyaluronan-mediated motility, correlates with expression of microtubule-associated protein in human oral squamous cell carcinomas. Int J Oncol 34, 1565-1571.
Shimbo T, Tanemura A, Yamazaki T, Tamai K, Katayama I, Kaneda Y (2010). Serum anti-BPAG1 auto-antibody is a novel marker for human melanoma. PLoS. ONE. 5, e10566.
Shyian M, Gryshkova V, Kostianets O, Gorshkov V, Gogolev Y, Goncharuk I, Nespryadko S, Vorobjova L, Filonenko V, Kiyamova R (2011). Quantitative analysis of SLC34A2 expression in different types of ovarian tumors. Exp. Oncol 33, 94-98.
Siddiqui N, Borden KL (2012). mRNA export and cancer. Wiley. Interdiscip. Rev. RNA. 3, 13-25.
Simpson NE, Tryndyak VP, Beland FA, Pogribny IP (2012). An in vitro investigation of metabolically sensitive biomarkers in breast cancer progression. Breast Cancer Res. Treat. 133, 959-968.
Singh-Jasuja H, Emmerich NP, Rammensee HG (2004). The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol. Immunother. 53, 187-195.
Siow DL, Wattenberg BW (2012). Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis. J Biol. Chem. 287, 40198-40204.
Slack FJ, Weidhaas JB (2008). MicroRNA in cancer prognosis. N. Engl. J Med. 359, 2720-2722.
Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM (2006). Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 24, 3089-3094.
Smith MJ, Culhane AC, Donovan M, Coffey JC, Barry BD, Kelly MA, Higgins DG, Wang JH, Kirwan WO, Cotter TG, Redmond HP (2009a). Analysis of differential gene expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification. Br. J Cancer 100, 1452-1464.
Smith SC, Nicholson B, Nitz M, Frierson HF, Jr., Smolkin M, Hampton G, El-Rifai W, Theodorescu D (2009b). Profiling bladder cancer organ site-specific metastasis identifies LAMC2 as a novel biomarker of hematogenous dissemination. Am J Pathol. 174, 371-379.
Sohr S, Engeland K (2008). RHAMM is differentially expressed in the cell cycle and downregulated by the tumor suppressor p53. Cell Cycle 7, 3448-3460.
Somers GR, Bradbury R, Trute L, Conigrave A, Venter DJ (1999). Expression of the human P2Y6 nucleotide receptor in normal placenta and gestational trophoblastic disease. Lab Invest 79, 131-139.
Srougi MC, Burridge K (2011). The nuclear guanine nucleotide exchange factors Ect2 and Net1 regulate RhoB-mediated cell death after DNA damage. PLoS. ONE. 6, e17108.
Staehler M, Stenzl A, Dietrich PY, Eisen T, Haferkamp A, Beck J, Mayer A, Walter S, Singh-Jasuja H, Stief C (2007). A phase I study to evaluate safety, immunogenicity and anti-tumor activity of the multi-peptide vaccine IMA901 in renal cell carcinoma patients (RCC). Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I, Vol 25, No. 18S (June 20 Supplement), 2007: 5098 (Abstract).
Starzyk RM, Rosenow C, Frye J, Leismann M, Rodzinski E, Putney S, Tuomanen EI (2000). Cerebral cell adhesion molecule: a novel leukocyte adhesion determinant on blood-brain barrier capillary endothelium. J Infect. Dis. 181, 181-187.
Steckelbroeck S, Jin Y, Gopishetty S, Oyesanmi B, Penning TM (2004). Human cytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3beta-hydroxysteroid dehydrogenase activity: implications for steroid hormone metabolism and action. J Biol. Chem. 279, 10784-10795.
Stewart DJ (2010). Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit Rev. Oncol Hematol. 75, 173-234.
Stuart JE, Lusis EA, Scheck AC, Coons SW, Lal A, Perry A, Gutmann DH (2010). Identification of Gene Markers Associated With Aggressive Meningioma by Filtering Across Multiple Sets of Gene Expression Arrays. J Neuropathol. Exp. Neurol.
Suminami Y, Kishi F, Sekiguchi K, Kato H (1991). Squamous cell carcinoma antigen is a new member of the serine protease inhibitors. Biochem. Biophys. Res. Commun. 181, 51-58.
Sunaga N, Imai H, Shimizu K, Shames DS, Kakegawa S, Girard L, Sato M, Kaira K, Ishizuka T, Gazdar AF, Minna JD, Mori M (2012). Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int. J Cancer 130, 1733-1744.
Sutherlin ME, Nishimori I, Caffrey T, Bennett EP, Hassan H, Mandel U, Mack D, Iwamura T, Clausen H, Hollingsworth MA (1997). Expression of three UDP-N-acetyl-alpha-D-galactosamine:Polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines. Cancer Res. 57, 4744-4748.
Suvasini R, Shruti B, Thota B, Shinde SV, Friedmann-Morvinski D, Nawaz Z, Prasanna KV, Thennarasu K, Hegde AS, Arivazhagan A, Chandramouli BA, Santosh V, Somasundaram K (2011). Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2. J Biol. Chem. 286, 25882-25890.
Tai CJ, Shen SC, Lee WR, Liao CF, Deng WP, Chiou HY, Hsieh CI, Tung JN, Chen CS, Chiou JF, Li LT, Lin CY, Hsu CH, Jiang MC (2010). Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp. Cell Res. 316, 2969-2981.
Takanami I, Abiko T, Koizumi S (2008). Expression of periostin in patients with non-small cell lung cancer: correlation with angiogenesis and lymphangiogenesis. Int J Biol. Markers 23, 182-186.
Tanaka S, Akiyoshi T, Mori M, Wands JR, Sugimachi K (1998). A novel frizzled gene identified in human esophageal carcinoma mediates APC/beta-catenin signals. Proc. Natl. Acad. Sci. U. S. A 95, 10164-10169.
Tanaka T, Ohkubo S, Tatsuno I, Prives C (2007). hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130, 638-650.
Terabayashi T, Sakaguchi M, Shinmyozu K, Ohshima T, Johjima A, Ogura T, Miki H, Nishinakamura R (2012). Phosphorylation of Kif26b promotes its polyubiquitination and subsequent proteasomal degradation during kidney development. PLoS. ONE. 7, e39714.
Terry KL, Vitonis AF, Hernandez D, Lurie G, Song H, Ramus SJ, Titus-Ernstoff L, Carney ME, Wilkens LR, Gentry-Maharaj A, Menon U, Gayther SA, Pharaoh PD, Goodman MT, Cramer DW, Birrer MJ (2010). A polymorphism in the GALNT2 gene and ovarian cancer risk in four population based case-control studies. Int. J Mol. Epidemiol. Genet. 1, 272-277.
Thierry L, Geiser AS, Hansen A, Tesche F, Herken R, Miosge N (2004). Collagen types XII and XIV are present in basement membrane zones during human embryonic development. J Mol. Histol. 35, 803-810.
Thorsen K, Sorensen KD, Brems-Eskildsen AS, Modin C, Gaustadnes M, Hein AM, Kruhoffer M, Laurberg S, Borre M, Wang K, Brunak S, Krainer AR, Torring N, Dyrskjot L, Andersen CL, ORntoft TF (2008). Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol. Cell Proteomics. 7, 1214-1224.
Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den DP, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G (1999). Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp. Med 190, 1669-1678.
Timar J, Kasler M, Katai J, Soos M, Mathiasz D, Romany A, Patthy L, Kovacs G, Jozsa A, Szilak L, Forrai T (2006). [Developments in cancer management by innovative genomics. 2006 report of the National Cancer Consortium]. Magy. Onkol. 50, 349-359.
Tischler V, Fritzsche FR, Wild PJ, Stefan C, Seifert HH, Riener MO, Hermanns T, Mortezavi A, Gerhardt J, Schraml P, Jung K, Moch H, Soltermann A, Kristiansen G (2010). Periostin is up-regulated in high grade and high stage prostate cancer. BMC. Cancer 10, 273.
Tompkins DH, Besnard V, Lange AW, Keiser AR, Wert SE, Bruno MD, Whitsett JA (2011). Sox2 activates cell proliferation and differentiation in the respiratory epithelium. Am J Respir. Cell Mol. Biol. 45, 101-110.
Tondreau T, Dejeneffe M, Meuleman N, Stamatopoulos B, Delforge A, Martiat P, Bron D, Lagneaux L (2008). Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC. Genomics 9, 166.
Tong L, Harwood HJ, Jr. (2006). Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. J Cell Biochem. 99, 1476-1488.
Tong WG, Wierda WG, Lin E, Kuang SQ, Bekele BN, Estrov Z, Wei Y, Yang H, Keating MJ, Garcia-Manero G (2010). Genome-wide DNA methylation profiling of chronic lymphocytic leukemia allows identification of epigenetically repressed molecular pathways with clinical impact. Epigenetics. 5, 499-508.
Torre GC (1998). SCC antigen in malignant and nonmalignant squamous lesions. Tumour. Biol. 19, 517-526.
Tritz R, Hickey MJ, Lin AH, Hadwiger P, Sah DW, Neuwelt EA, Mueller BM, Kruse CA (2009). FAPP2 gene downregulation increases tumor cell sensitivity to Fas-induced apoptosis. Biochem. Biophys. Res. Commun. 383, 167-171.
Tsai JR, Chong IW, Chen YH, Yang MJ, Sheu CC, Chang HC, Hwang JJ, Hung JY, Lin SR (2007). Differential expression profile of MAGE family in non-small-cell lung cancer. Lung Cancer 56, 185-192.
Tseng H (1998). Basonuclin, a zinc finger protein associated with epithelial expansion and proliferation. Front Biosci. 3, D985-D988.
Tseng H, Biegel JA, Brown RS (1999). Basonuclin is associated with the ribosomal RNA genes on human keratinocyte mitotic chromosomes. J Cell Sci. 112 Pt 18, 3039-3047.
Tseng H, Green H (1994). Association of basonuclin with ability of keratinocytes to multiply and with absence of terminal differentiation. J Cell Biol. 126, 495-506.
Tsuji A, Kikuchi Y, Sato Y, Koide S, Yuasa K, Nagahama M, Matsuda Y (2006). A proteomic approach reveals transient association of 레티큘로칼빈-3, a novel member of the CREC family, with the precursor of subtilisin-like proprotein convertase, PACE4. Biochem. J 396, 51-59.
Tsukamoto Y, Uchida T, Karnan S, Noguchi T, Nguyen LT, Tanigawa M, Takeuchi I, Matsuura K, Hijiya N, Nakada C, Kishida T, Kawahara K, Ito H, Murakami K, Fujioka T, Seto M, Moriyama M (2008). Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer. J Pathol. 216, 471-482.
Twarock S, Tammi MI, Savani RC, Fischer JW (2010). Hyaluronan stabilizes focal adhesions, filopodia, and the proliferative phenotype in esophageal squamous carcinoma cells. J Biol. Chem. 285, 23276-23284.
Twells RC, Metzker ML, Brown SD, Cox R, Garey C, Hammond H, Hey PJ, Levy E, Nakagawa Y, Philips MS, Todd JA, Hess JF (2001). The sequence and gene characterization of a 400-kb candidate region for IDDM4 on chromosome 11q13. Genomics 72, 231-242.
Tzankov A, Strasser U, Dirnhofer S, Menter T, Arber C, Jotterand M, Rovo A, Tichelli A, Stauder R, Gunthert U (2011). In situ RHAMM protein expression in acute myeloid leukemia blasts suggests poor overall survival. Ann Hematol.
Uchiyama Y, Sakaguchi M, Terabayashi T, Inenaga T, Inoue S, Kobayashi C, Oshima N, Kiyonari H, Nakagata N, Sato Y, Sekiguchi K, Miki H, Araki E, Fujimura S, Tanaka SS, Nishinakamura R (2010). Kif26b, a kinesin family gene, regulates adhesion of the embryonic kidney mesenchyme. Proc. Natl. Acad. Sci. U. S. A 107, 9240-9245.
Ullman E, Pan JA, Zong WX (2011). Squamous cell carcinoma antigen 1 promotes caspase-8-mediated apoptosis in response to endoplasmic reticulum stress while inhibiting necrosis induced by lysosomal injury. Mol. Cell Biol. 31, 2902-2919.
Utispan K, Thuwajit P, Abiko Y, Charngkaew K, Paupairoj A, Chau-in S, Thuwajit C (2010). Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Mol. Cancer 9, 13.
van AM, Schepens M, de BD, Janssen B, Merkx G, Geurts van KA (2000). Construction of a 350-kb sequence-ready 11q13 cosmid contig encompassing the markers D11S4933 and D11S546: mapping of 11 genes and 3 tumor-associated translocation breakpoints. Genomics 66, 35-42.
Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR (1998). Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int. J Cancer 79, 468-475.
Vazquez-Ortiz G, Pina-Sanchez P, Vazquez K, Duenas A, Taja L, Mendoza P, Garcia JA, Salcedo M (2005). Overexpression of cathepsin F, matrix metalloproteinases 11 and 12 in cervical cancer. BMC. Cancer 5, 68.
Wahl MC, Will CL, Luhrmann R (2009). The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701-718.
Walchli C, Koch M, Chiquet M, Odermatt BF, Trueb B (1994). Tissue-specific expression of the fibril-associated collagens XII and XIV. J Cell Sci. 107 (Pt 2), 669-681.
Wallace AM, Sandford AJ, English JC, Burkett KM, Li H, Finley RJ, Muller NL, Coxson HO, Pare PD, Abboud RT (2008). Matrix metalloproteinase expression by human alveolar macrophages in relation to emphysema. COPD. 5, 13-23.
Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Buhring HJ, Rammensee HG, Stevanovic S (2003). Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres. J. Immunol. 171, 4974-4978.
Wang C, Rajput S, Watabe K, Liao DF, Cao D (2010a). Acetyl-CoA carboxylase-a as a novel target for cancer therapy. Front Biosci. (Schol. Ed) 2, 515-526.
Wang C, Xu C, Sun M, Luo D, Liao DF, Cao D (2009a). Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem. Biophys. Res. Commun. 385, 302-306.
Wang HW, Lin CP, Chiu JH, Chow KC, Kuo KT, Lin CS, Wang LS (2007). Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int. J Cancer 120, 2019-2027.
Wang J, Tsui HW, Beier F, Pritzker KP, Inman RD, Tsui FW (2008a). The ANKH DeltaE490Mutation in Calcium Pyrophosphate Dihydrate Crystal Deposition Disease (CPPDD) affects tissue non-specific Alkaline Phosphatase (TNAP) activities. Open Rheumatol. J 2, 23-30.
Wang KK, Liu N, Radulovich N, Wigle DA, Johnston MR, Shepherd FA, Minden MD, Tsao MS (2002). Novel candidate tumor marker genes for lung adenocarcinoma. Oncogene 21, 7598-7604.
Wang Q, Traynor JR (2011). Opioid-induced down-regulation of RGS4: role of ubiquitination and implications for receptor cross-talk. J Biol. Chem. 286, 7854-7864.
Wang SZ, Luo XG, Shen J, Zou JN, Lu YH, Xi T (2008b). Knockdown of SMYD3 by RNA interference inhibits cervical carcinoma cell growth and invasion in vitro. BMB. Rep. 41, 294-299.
Wang WX, Zhang WJ, Peng ZL, Yang KX (2009b). [Expression and clinical significance of CDC6 and hMSH2 in cervical carcinoma]. Sichuan. Da. Xue. Xue. Bao. Yi. Xue. Ban. 40, 857-860.
Wang Y, Zhou F, Wu Y, Xu D, Li W, Liang S (2010b). The relationship between three heat shock protein 70 gene polymorphisms and susceptibility to lung cancer. Clin Chem. Lab Med. 48, 1657-1663.
Warner SL, Stephens BJ, Nwokenkwo S, Hostetter G, Sugeng A, Hidalgo M, Trent JM, Han H, Von Hoff DD (2009). Validation of TPX2 as a potential therapeutic target in pancreatic cancer cells. Clin Cancer Res 15, 6519-6528.
Watanabe M, Takemasa I, Kawaguchi N, Miyake M, Nishimura N, Matsubara T, Matsuo E, Sekimoto M, Nagai K, Matsuura N, Monden M, Nishimura O (2008). An application of the 2-nitrobenzenesulfenyl method to proteomic profiling of human colorectal carcinoma: A novel approach for biomarker discovery. Proteomics. Clin Appl. 2, 925-935.
Watanabe T, Kobunai T, Yamamoto Y, Ikeuchi H, Matsuda K, Ishihara S, Nozawa K, Iinuma H, Kanazawa T, Tanaka T, Yokoyama T, Konishi T, Eshima K, Ajioka Y, Hibi T, Watanabe M, Muto T, Nagawa H (2011). Predicting ulcerative colitis-associated colorectal cancer using reverse-transcription polymerase chain reaction analysis. Clin Colorectal Cancer 10, 134-141.
Watrin E, Legagneux V (2005). Contribution of hCAP-D2, a non-SMC subunit of condensin I, to chromosome and chromosomal protein dynamics during mitosis. Mol. Cell Biol. 25, 740-750.
Watt SL, Lunstrum GP, McDonough AM, Keene DR, Burgeson RE, Morris NP (1992). Characterization of collagen types XII and XIV from fetal bovine cartilage. J Biol. Chem. 267, 20093-20099.
Wawrzynska L, Sakowicz A, Rudzinski P, Langfort R, Kurzyna M (2003). The conversion of thyroxine to triiodothyronine in the lung: comparison of activity of type I iodothyronine 5' deiodinase in lung cancer with peripheral lung tissues. Monaldi Arch. Chest Dis. 59, 140-145.
Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279-288.
Weiner L, Green H (1998). Basonuclin as a cell marker in the formation and cycling of the murine hair follicle. Differentiation 63, 263-272.
Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanovic S, Rammensee HG (2002). Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res. 62, 5818-5827.
Wickramasinghe VO, Stewart M, Laskey RA (2010). GANP enhances the efficiency of mRNA nuclear export in mammalian cells. Nucleus. 1, 393-396.
Wildeboer D, Naus S, my Sang QX, Bartsch JW, Pagenstecher A (2006). Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. J Neuropathol. Exp. Neurol. 65, 516-527.
Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath SC, Timpson NJ, Najjar SS, Stringham HM, Strait J, Duren WL, Maschio A, Busonero F, Mulas A, Albai G, Swift AJ, Morken MA, Narisu N, Bennett D, Parish S, Shen H, Galan P, Meneton P, Hercberg S, Zelenika D, Chen WM, Li Y, Scott LJ, Scheet PA, Sundvall J, Watanabe RM, Nagaraja R, Ebrahim S, Lawlor DA, Ben-Shlomo Y, Davey-Smith G, Shuldiner AR, Collins R, Bergman RN, Uda M, Tuomilehto J, Cao A, Collins FS, Lakatta E, Lathrop GM, Boehnke M, Schlessinger D, Mohlke KL, Abecasis GR (2008). Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 40, 161-169.
Winkler GS, Mulder KW, Bardwell VJ, Kalkhoven E, Timmers HT (2006). Human Ccr4-Not complex is a ligand-dependent repressor of nuclear receptor-mediated transcription. EMBO J 25, 3089-3099.
Wong CH, Chan H, Ho CY, Lai SK, Chan KS, Koh CG, Li HY (2009). Apoptotic histone modification inhibits nuclear transport by regulating RCC1. Nat Cell Biol. 11, 36-45.
Wu A, Wu B, Guo J, Luo W, Wu D, Yang H, Zhen Y, Yu X, Wang H, Zhou Y, Liu Z, Fang W, Yang Z (2011a). Elevated expression of CDK4 in lung cancer. J Transl. Med. 9, 38.
Wu GC, Hu HC, Shi MH (2008). [Expression and clinical significance of a disintegrin and metalloprotease 8 (ADAM8) and epidermal growth factor receptor (EGFR) in non-small cell lung cancer]. Ai. Zheng. 27, 874-878.
Wu H, Xu H, Miraglia LJ, Crooke ST (2000). Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol. Chem. 275, 36957-36965.
Wu KD, Lee WS, Wey J, Bungard D, Lytton J (1995). Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts. Am. J Physiol 269, C775-C784.
Wu SQ, Lv YE, Lin BH, Luo LM, Lv SL, Bi AH, Jia YS (2013). Silencing of periostin inhibits nicotine-mediated tumor cell growth and epithelial-mesenchymal transition in lung cancer cells. Mol. Med. Rep. 7, 875-880.
Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ, Chen CH, Huang J, Lai HS, Lee PH, Hsu WM, Huang HC, Huang MC (2011b). Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res. 71, 7270-7279.
Wu Z, Jiang H, Zhang L, Xu X, Zhang X, Kang Z, Song D, Zhang J, Guan M, Gu Y (2012). Molecular analysis of RNF213 gene for moyamoya disease in the Chinese Han population. PLoS. ONE. 7, e48179.
Wullner U, Neef I, Eller A, Kleines M, Tur MK, Barth S (2008). Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr. Cancer Drug Targets. 8, 554-565.
Xia LM, Tian DA, Zhang Q, Yan W, Wang B, Liu M, Li PY, Chen B (2008). [Inhibition of HSP70-2 expression by RNA interference induces apoptosis of human hepatocellular carcinoma cells]. Zhonghua Gan Zang. Bing. Za Zhi. 16, 678-682.
Xiao L, Rao JN, Zou T, Liu L, Marasa BS, Chen J, Turner DJ, Passaniti A, Wang JY (2007). Induced JunD in intestinal epithelial cells represses CDK4 transcription through its proximal promoter region following 폴리amine depletion. Biochem. J 403, 573-581.
Xie Y, Wolff DW, Wei T, Wang B, Deng C, Kirui JK, Jiang H, Qin J, Abel PW, Tu Y (2009). Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4. Cancer Res 69, 5743-5751.
Xiong D, Li G, Li K, Xu Q, Pan Z, Ding F, Vedell P, Liu P, Cui P, Hua X, Jiang H, Yin Y, Zhu Z, Li X, Zhang B, Ma D, Wang Y, You M (2012). Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non-small cell lung carcinoma from Chinese patients. Carcinogenesis 33, 1797-1805.
Yamada H, Yanagisawa K, Tokumaru S, Taguchi A, Nimura Y, Osada H, Nagino M, Takahashi T (2008). Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes. Cancer 47, 810-818.
Yamamoto H, Oue N, Sato A, Hasegawa Y, Yamamoto H, Matsubara A, Yasui W, Kikuchi A (2010). Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene 29, 2036-2046.
Yamazaki H, Nishida H, Iwata S, Dang NH, Morimoto C (2009). CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells. Biochem. Biophys. Res Commun. 383, 172-177.
Yang S, Shin J, Park KH, Jeung HC, Rha SY, Noh SH, Yang WI, Chung HC (2007). Molecular basis of the differences between normal and tumor tissues of gastric cancer. Biochim. Biophys. Acta 1772, 1033-1040.
Yasmeen A, Berdel WE, Serve H, Muller-Tidow C (2003). E- and A-type cyclins as markers for cancer diagnosis and prognosis. Expert. Rev. Mol. Diagn. 3, 617-633.
Yasukawa M, Ishida K, Yuge Y, Hanaoka M, Minami Y, Ogawa M, Sasaki T, Saito M, Tsuji T (2013). Dpysl4 is involved in tooth germ morphogenesis through growth regulation, polarization and differentiation of dental epithelial cells. Int. J Biol. Sci. 9, 382-390.
Ye H, Yu T, Temam S, Ziober BL, Wang J, Schwartz JL, Mao L, Wong DT, Zhou X (2008). Transcriptomic dissection of tongue squamous cell carcinoma. BMC. Genomics 9, 69.
Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002). Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. U. S. A 99, 16168-16173.
Yoon H, Liyanarachchi S, Wright FA, Davuluri R, Lockman JC, de la CA, Pellegata NS (2002). Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53. Proc Natl. Acad. Sci. U. S. A 99, 15632-15637.
Yoshida K, Sugimoto N, Iwahori S, Yugawa T, Narisawa-Saito M, Kiyono T, Fujita M (2010). CDC6 interaction with ATR regulates activation of a replication checkpoint in higher eukaryotic cells. J Cell Sci. 123, 225-235.
Yu JM, Jun ES, Jung JS, Suh SY, Han JY, Kim JY, Kim KW, Jung JS (2007). Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett. 257, 172-181.
Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, Tasdemir N, Yilmaz M, Erdal E, Akcali KC, Atabey N, Ozturk M (2009). Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol. Cancer 8, 90.
Zaka R, Dion AS, Kusnierz A, Bohensky J, Srinivas V, Freeman T, Williams CJ (2009). Oxygen tension regulates the expression of ANK (progressive ankylosis) in an HIF-1-dependent manner in growth plate chondrocytes. J Bone Miner. Res. 24, 1869-1878.
Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J (1997). Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res. 57, 4570-4577.
Zhang H, Jia Y, Cooper JJ, Hale T, Zhang Z, Elbein SC (2004). Common variants in glutamine:fructose-6-phosphate amidotransferase 2 (GFPT2) gene are associated with type 2 diabetes, diabetic nephropathy, and increased GFPT2 mRNA levels. J Clin Endocrinol. Metab 89, 748-755.
Zhang J, Valianou M, Cheng JD (2010a). Identification and characterization of the promoter of fibroblast activation protein. Front Biosci. (Elite. Ed) 2, 1154-1163.
Zhang X, Berger FG, Yang J, Lu X (2011a). USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1. EMBO J 30, 2177-2189.
Zhang Y, Zhang G, Li J, Tao Q, Tang W (2010b). The expression analysis of periostin in human breast cancer. J Surg Res 160, 102-106.
Zhang ZC, Satterly N, Fontoura BM, Chook YM (2011b). Evolutionary development of redundant nuclear localization signals in the mRNA export factor NXF1. Mol. Biol. Cell 22, 4657-4668.
Zhao C, Bellur DL, Lu S, Zhao F, Grassi MA, Bowne SJ, Sullivan LS, Daiger SP, Chen LJ, Pang CP, Zhao K, Staley JP, Larsson C (2009). Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am. J Hum. Genet. 85, 617-627.
Zhao Z, Lee CC, Baldini A, Caskey CT (1995). A human homologue of the Drosophila polarity gene frizzled has been identified and mapped to 17q21.1. Genomics 27, 370-373.
Zheng PS, Wen J, Ang LC, Sheng W, Viloria-Petit A, Wang Y, Wu Y, Kerbel RS, Yang BB (2004). Versican/PG-M G3 domain promotes tumor growth and angiogenesis. FASEB J 18, 754-756.
Zhu CQ, Popova SN, Brown ER, Barsyte-Lovejoy D, Navab R, Shih W, Li M, Lu M, Jurisica I, Penn LZ, Gullberg D, Tsao MS (2007). Integrin alpha 11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells. Proc. Natl. Acad. Sci. U. S. A 104, 11754-11759.
Zhu JH, Hong DF, Song YM, Sun LF, Wang ZF, Wang JW (2013). Suppression of Cellular Apoptosis Susceptibility (CSE1L) Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells. Asian Pac. J Cancer Prev. 14, 1017-1021.
Zlobec I, Terracciano L, Tornillo L, Gunthert U, Vuong T, Jass JR, Lugli A (2008). Role of RHAMM within the hierarchy of well-established prognostic factors in colorectal cancer. Gut 57, 1413-1419.
Zou JN, Wang SZ, Yang JS, Luo XG, Xie JH, Xi T (2009). Knockdown of SMYD3 by RNA interference down-regulates c-Met expression and inhibits cells migration and invasion induced by HGF. Cancer Lett. 280, 78-85.
Zou TT, Selaru FM, Xu Y, Shustova V, Yin J, Mori Y, Shibata D, Sato F, Wang S, Olaru A, Deacu E, Liu TC, Abraham JM, Meltzer SJ (2002). Application of cDNA microarray to generate a molecular taxonomy capable of distinguishing between colon cancer and normal colon. Oncogene 21, 4855-4862.
Allander SV, Illei PB, Chen Y, Antonescu CR, Bittner M, Ladanyi M, Meltzer PS (2002). Expression profiling of synovial sarcoma by cDNA microarray: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am. J Pathol. 161, 1587-1595.
Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004). BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet. 36, 744-749.
Balla A, Kim YJ, Varnai P, Szentpetery Z, Knight Z, Shokat KM, Balla T (2008). Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol. Biol. Cell 19, 711-721.
Barembaum M, Moreno TA, LaBonne C, Sechrist J, Bronner-Fraser M (2000). Noelin-1 is a secreted glycoprotein involved in generation of the neural crest. Nat Cell Biol. 2, 219-225.
Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M, Mizuno N, Lamla S, Bastin P, Nigg EA, Lorentzen E (2013). Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341, 1009-1012.
Blumental-Perry A, Haney CJ, Weixel KM, Watkins SC, Weisz OA, Aridor M (2006). Phosphatidylinositol 4-phosphate formation at ER exit sites regulates ER export. Dev. Cell 11, 671-682.
Cantor JM, Ginsberg MH (2012). CD98 at the crossroads of adaptive immunity and cancer. J Cell Sci. 125, 1373-1382.
Cave H, Suciu S, Preudhomme C, Poppe B, Robert A, Uyttebroeck A, Malet M, Boutard P, Benoit Y, Mauvieux L, Lutz P, Mechinaud F, Grardel N, Mazingue F, Dupont M, Margueritte G, Pages MP, Bertrand Y, Plouvier E, Brunie G, Bastard C, Plantaz D, Vande V, I, Hagemeijer A, Speleman F, Lessard M, Otten J, Vilmer E, Dastugue N (2004). Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood 103, 442-450.
Chadwick BP, Obermayr F, Frischauf AM (1996). Nuclear cap binding protein maps close to the xeroderma pigmentosum complementation group A (XPA) locus in human and mouse. Genomics 35, 632-633.
Cornen S, Guille A, Adelaide J, Addou-Klouche L, Finetti P, Saade MR, Manai M, Carbuccia N, Bekhouche I, Letessier A, Raynaud S, Charafe-Jauffret E, Jacquemier J, Spicuglia S, de TH, Viens P, Bertucci F, Birnbaum D, Chaffanet M (2014). Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling. PLoS. ONE. 9, e81843.
Dear TN, Sanchez-Garcia I, Rabbitts TH (1993). The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc. Natl. Acad. Sci. U. S. A 90, 4431-4435.
Deves R, Boyd CA (2000). Surface antigen CD98(4F2): not a single membrane protein, but a family of proteins with multiple functions. J Membr. Biol. 173, 165-177.
Ferrando AA, Herblot S, Palomero T, Hansen M, Hoang T, Fox EA, Look AT (2004). Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood 103, 1909-1911.
Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA (1998). C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol. 141, 1563-1574.
Fu J, Bian M, Jiang Q, Zhang C (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol. Cancer Res. 5, 1-10.
Garbarino JE, Gibbons IR (2002). Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein. BMC. Genomics 3, 18.
Gomez-Ferreria MA, Bashkurov M, Mullin M, Gingras AC, Pelletier L (2012). CEP192 interacts physically and functionally with the K63-deubiquitinase CYLD to promote mitotic spindle assembly. Cell Cycle 11, 3555-3558.
Gomez-Ferreria MA, Rath U, Buster DW, Chanda SK, Caldwell JS, Rines DR, Sharp DJ (2007). Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 17, 1960-1966.
Hinck L (2004). The versatile roles of "axon guidance" cues in tissue morphogenesis. Dev. Cell 7, 783-793.
Ilboudo A, Nault JC, Dubois-Pot-Schneider H, Corlu A, Zucman-Rossi J, Samson M, Le SJ (2014). Overexpression of phosphatidylinositol 4-kinase type IIIalpha is associated with undifferentiated status and poor prognosis of human hepatocellular carcinoma. BMC. Cancer 14, 7.
Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, Hisada T, Ishizuka T, Kanai Y, Nakajima T, Mori M (2009). Prognostic significance of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (CD98) expression in stage I pulmonary adenocarcinoma. Lung Cancer 66, 120-126.
Kataoka N, Ohno M, Kangawa K, Tokoro Y, Shimura Y (1994). Cloning of a complementary DNA encoding an 80 kilodalton nuclear cap binding protein. Nucleic Acids Res. 22, 3861-3865.
Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med. 7, 673-679.
Kim HJ, Cho JH, Quan H, Kim JR (2011). Down-regulation of Aurora B kinase induces cellular senescence in human fibroblasts and endothelial cells through a p53-dependent pathway. FEBS Lett. 585, 3569-3576.
Kulkarni NH, Karavanich CA, Atchley WR, Anholt RR (2000). Characterization and differential expression of a human gene family of olfactomedin-related proteins. Genet. Res. 76, 41-50.
Kunitoku N, Sasayama T, Marumoto T, Zhang D, Honda S, Kobayashi O, Hatakeyama K, Ushio Y, Saya H, Hirota T (2003). CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev. Cell 5, 853-864.
Lampson MA, Kapoor TM (2005). The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol. 7, 93-98.
Latil A, Chene L, Cochant-Priollet B, Mangin P, Fournier G, Berthon P, Cussenot O (2003). Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int. J Cancer 103, 306-315.
Lee Y, Yoon KA, Joo J, Lee D, Bae K, Han JY, Lee JS (2013). Prognostic implications of genetic variants in advanced non-small cell lung cancer: a genome-wide association study. Carcinogenesis 34, 307-313.
Lemaitre G, Gonnet F, Vaigot P, Gidrol X, Martin MT, Tortajada J, Waksman G (2005). CD98, a novel marker of transient amplifying human keratinocytes. Proteomics. 5, 3637-3645.
Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG (2005). Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. J Biol. Chem. 280, 27688-27696.
Malureanu LA, Jeganathan KB, Hamada M, Wasilewski L, Davenport J, van Deursen JM (2009). BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase. Dev. Cell 16, 118-131.
Matsuura S, Matsumoto Y, Morishima K, Izumi H, Matsumoto H, Ito E, Tsutsui K, Kobayashi J, Tauchi H, Kajiwara Y, Hama S, Kurisu K, Tahara H, Oshimura M, Komatsu K, Ikeuchi T, Kajii T (2006). Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am. J Med. Genet. A 140, 358-367.
Mayor T, Hacker U, Stierhof YD, Nigg EA (2002). The mechanism regulating the dissociation of the centrosomal protein C-Nap1 from mitotic spindle poles. J Cell Sci. 115, 3275-3284.
Minogue S, Waugh MG (2012). The Phosphatidylinositol 4-Kinases: Don't Call it a Comeback. Subcell. Biochem. 58, 1-24.
Nagase T, Seki N, Ishikawa K, Ohira M, Kawarabayasi Y, Ohara O, Tanaka A, Kotani H, Miyajima N, Nomura N (1996). Prediction of the coding sequences of unidentified human genes. VI. The coding sequences of 80 new genes (KIAA0201-KIAA0280) deduced by analysis of cDNA clones from cell line KG-1 and brain. DNA Res. 3, 321-354.
Narayan G, Goparaju C, Arias-Pulido H, Kaufmann AM, Schneider A, Durst M, Mansukhani M, Pothuri B, Murty VV (2006). Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression. Mol. Cancer 5, 16.
Pandey A, Blagoev B, Kratchmarova I, Fernandez M, Nielsen M, Kristiansen TZ, Ohara O, Podtelejnikov AV, Roche S, Lodish HF, Mann M (2002). Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases. Oncogene 21, 8029-8036.
Perumal D, Singh S, Yoder SJ, Bloom GC, Chellappan SP (2012). A novel five gene signature derived from stem-like side population cells predicts overall and recurrence-free survival in NSCLC. PLoS. ONE. 7, e43589.
Pokrovskaya ID, Willett R, Smith RD, Morelle W, Kudlyk T, Lupashin VV (2011). Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21, 1554-1569.
Qian Y, Fritzsch B, Shirasawa S, Chen CL, Choi Y, Ma Q (2001). Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3. Genes Dev. 15, 2533-2545.
Reynders E, Foulquier F, Leao TE, Quelhas D, Morelle W, Rabouille C, Annaert W, Matthijs G (2009). Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum. Mol. Genet. 18, 3244-3256.
Schmid BC, Rezniczek GA, Fabjani G, Yoneda T, Leodolter S, Zeillinger R (2007). The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Res. Treat. 106, 333-342.
Sharma G, Mirza S, Prasad CP, Srivastava A, Gupta SD, Ralhan R (2007). Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci. 80, 1873-1881.
Shin J, Gu C, Park E, Park S (2007). Identification of phosphotyrosine binding domain-containing proteins as novel downstream targets of the EphA8 signaling function. Mol. Cell Biol. 27, 8113-8126.
Suzuki M, Shiraishi K, Eguchi A, Ikeda K, Mori T, Yoshimoto K, Ohba Y, Yamada T, Ito T, Baba Y, Baba H (2013). Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer. Oncol Rep. 29, 1308-1314.
Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE, Heuser JE, Krieger M, Waters MG (2002). Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol. 157, 405-415.
Ungar D, Oka T, Vasile E, Krieger M, Hughson FM (2005). Subunit architecture of the conserved oligomeric Golgi complex. J Biol. Chem. 280, 32729-32735.
Whyte JR, Munro S (2001). The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527-537.
Wong YF, Cheung TH, Lo KW, Yim SF, Siu NS, Chan SC, Ho TW, Wong KW, Yu MY, Wang VW, Li C, Gardner GJ, Bonome T, Johnson WB, Smith DI, Chung TK, Birrer MJ (2007). Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling. Oncogene 26, 1971-1982.
Wu L, Chang W, Zhao J, Yu Y, Tan X, Su T, Zhao L, Huang S, Liu S, Cao G (2010). Development of autoantibody signatures as novel diagnostic biomarkers of non-small cell lung cancer. Clin Cancer Res. 16, 3760-3768.
Bobos M, Hytiroglou P, Kostopoulos I, Karkavelas G, Papadimitriou CS (2006). Immunohistochemical distinction between merkel cell carcinoma and small cell carcinoma of the lung. Am. J Dermatopathol. 28, 99-104.
Mena H, Morrison AL, Jones RV, Gyure KA (2001). Central neurocytomas express photoreceptor differentiation. Cancer 91, 136-143.
Schleicher RL, Hunter SB, Zhang M, Zheng M, Tan W, Bandea CI, Fallon MT, Bostwick DG, Varma VA (1997). Neurofilament heavy chain-like messenger RNA and protein are present in benign prostate and down-regulated in prostatic carcinoma. Cancer Res. 57, 3532-3536.
Segal A, Carello S, Caterina P, Papadimitriou JM, Spagnolo DV (1994). Gastrointestinal autonomic nerve tumors: a clinicopathological, immunohistochemical and ultrastructural study of 10 cases. Pathology 26, 439-447.
Szebenyi G, Smith GM, Li P, Brady ST (2002). Overexpression of neurofilament H disrupts normal cell structure and function. J Neurosci. Res. 68, 185-198.
Tanaka Y, Ijiri R, Kato K, Kato Y, Misugi K, Nakatani Y, Hara M (2000). HMB-45/melan-A and smooth muscle actin-positive clear-cell epithelioid tumor arising in the ligamentum teres hepatis: additional example of clear cell 'sugar' tumors. Am. J Surg. Pathol. 24, 1295-1299.
<110> Immatics Biotechnologies GmbH <120> Novel immunotherapy against several tumors, such as lung cancer, including NSCLC <130> I32387WO <140> PCT/EP2014/066755 <141> 2014-08-04 <150> GB 1313987.8 <151> 2013-08-05 <150> US 61/862,213 <151> 2013-08-05 <150> GB 1403297.3 <151> 2014-02-25 <160> 92 <170> PatentIn version 3.5 <210> 1 <211> 9 <212> PRT <213> Homo sapiens <400> 1 Ile Leu Phe Glu Ile Asn Pro Lys Leu 1 5 <210> 2 <211> 9 <212> PRT <213> Homo sapiens <400> 2 Lys Ile Gln Glu Met Gln His Phe Leu 1 5 <210> 3 <211> 9 <212> PRT <213> Homo sapiens <400> 3 Ala Leu Asp Glu Asn Leu His Gln Leu 1 5 <210> 4 <211> 9 <212> PRT <213> Homo sapiens <400> 4 Asn Leu Ile Glu Lys Ser Ile Tyr Leu 1 5 <210> 5 <211> 9 <212> PRT <213> Homo sapiens <400> 5 Thr Leu Ser Ser Ile Lys Val Glu Val 1 5 <210> 6 <211> 9 <212> PRT <213> Homo sapiens <400> 6 Lys Leu Asp Glu Thr Asn Asn Thr Leu 1 5 <210> 7 <211> 9 <212> PRT <213> Homo sapiens <400> 7 Thr Leu Trp Tyr Arg Ala Pro Glu Val 1 5 <210> 8 <211> 9 <212> PRT <213> Homo sapiens <400> 8 Ser Met Ser Gly Tyr Asp Gln Val Leu 1 5 <210> 9 <211> 11 <212> PRT <213> Homo sapiens <400> 9 Ala Leu Met Asp Lys Glu Gly Leu Thr Ala Leu 1 5 10 <210> 10 <211> 9 <212> PRT <213> Homo sapiens <400> 10 Val Leu Ser Val Val Glu Val Thr Leu 1 5 <210> 11 <211> 12 <212> PRT <213> Homo sapiens <400> 11 Val Leu Leu Pro Val Glu Val Ala Thr His Tyr Leu 1 5 10 <210> 12 <211> 9 <212> PRT <213> Homo sapiens <400> 12 Ser Leu Ile Glu Asp Leu Ile Leu Leu 1 5 <210> 13 <211> 9 <212> PRT <213> Homo sapiens <400> 13 Tyr Leu Ile His Phe Pro Val Ser Val 1 5 <210> 14 <211> 9 <212> PRT <213> Homo sapiens <400> 14 Phe Gln Tyr Asp His Glu Ala Phe Leu 1 5 <210> 15 <211> 9 <212> PRT <213> Homo sapiens <400> 15 Lys Leu Ala Val Ala Leu Leu Ala Ala 1 5 <210> 16 <211> 10 <212> PRT <213> Homo sapiens <400> 16 Thr Val Ile Gly Phe Leu Leu Pro Phe Ala 1 5 10 <210> 17 <211> 14 <212> PRT <213> Homo sapiens <400> 17 Arg Leu Leu Gly Pro Ser Ala Ala Ala Asp Ile Leu Gln Leu 1 5 10 <210> 18 <211> 9 <212> PRT <213> Homo sapiens <400> 18 Thr Leu Tyr Pro His Thr Ser Gln Val 1 5 <210> 19 <211> 9 <212> PRT <213> Homo sapiens <400> 19 Ala Val Val Glu Phe Leu Thr Ser Val 1 5 <210> 20 <211> 9 <212> PRT <213> Homo sapiens <400> 20 Ala Leu Val Asp His Thr Pro Tyr Leu 1 5 <210> 21 <211> 9 <212> PRT <213> Homo sapiens <400> 21 Ala Ile Leu Asp Thr Leu Tyr Glu Val 1 5 <210> 22 <211> 9 <212> PRT <213> Homo sapiens <400> 22 Phe Leu Ile Pro Ile Tyr His Gln Val 1 5 <210> 23 <211> 9 <212> PRT <213> Homo sapiens <400> 23 Phe Leu His His Leu Glu Ile Glu Leu 1 5 <210> 24 <211> 9 <212> PRT <213> Homo sapiens <400> 24 Phe Leu Val Asp Gly Ser Trp Ser Val 1 5 <210> 25 <211> 10 <212> PRT <213> Homo sapiens <400> 25 Gly Leu Tyr Pro Asp Ala Phe Ala Pro Val 1 5 10 <210> 26 <211> 9 <212> PRT <213> Homo sapiens <400> 26 Lys Leu Phe Gly Glu Lys Thr Tyr Leu 1 5 <210> 27 <211> 9 <212> PRT <213> Homo sapiens <400> 27 Thr Val Ala Glu Val Ile Gln Ser Val 1 5 <210> 28 <211> 9 <212> PRT <213> Homo sapiens <400> 28 Ser Ile Ser Asp Val Ile Ala Gln Val 1 5 <210> 29 <211> 11 <212> PRT <213> Homo sapiens <400> 29 Arg Leu Glu Glu Asp Asp Gly Asp Val Ala Met 1 5 10 <210> 30 <211> 9 <212> PRT <213> Homo sapiens <400> 30 Lys Ile Tyr Asn Glu Phe Ile Ser Val 1 5 <210> 31 <211> 9 <212> PRT <213> Homo sapiens <400> 31 Ala Ile Asp Gly Asn Asn His Glu Val 1 5 <210> 32 <211> 9 <212> PRT <213> Homo sapiens <400> 32 Lys Leu Ser Trp Asp Leu Ile Tyr Leu 1 5 <210> 33 <211> 9 <212> PRT <213> Homo sapiens <400> 33 Ala Leu Leu Arg Thr Val Val Ser Val 1 5 <210> 34 <211> 9 <212> PRT <213> Homo sapiens <400> 34 Ala Leu Gly Ala Gly Ile Glu Arg Met 1 5 <210> 35 <211> 9 <212> PRT <213> Homo sapiens <400> 35 Val Leu Phe Pro Asn Leu Lys Thr Val 1 5 <210> 36 <211> 9 <212> PRT <213> Homo sapiens <400> 36 Thr Leu Val Ala Ile Val Val Gly Val 1 5 <210> 37 <211> 9 <212> PRT <213> Homo sapiens <400> 37 Val Leu Ala Pro Leu Phe Val Tyr Leu 1 5 <210> 38 <211> 9 <212> PRT <213> Homo sapiens <400> 38 Ser Leu His Phe Leu Ile Leu Tyr Val 1 5 <210> 39 <211> 9 <212> PRT <213> Homo sapiens <400> 39 Arg Leu Leu Asp Ser Val Ser Arg Leu 1 5 <210> 40 <211> 9 <212> PRT <213> Homo sapiens <400> 40 Gly Leu Thr Asp Asn Ile His Leu Val 1 5 <210> 41 <211> 12 <212> PRT <213> Homo sapiens <400> 41 Ser Ile Leu Thr Ile Glu Asp Gly Ile Phe Glu Val 1 5 10 <210> 42 <211> 9 <212> PRT <213> Homo sapiens <400> 42 Ser Leu Trp Gly Gly Asp Val Val Leu 1 5 <210> 43 <211> 10 <212> PRT <213> Homo sapiens <400> 43 Ala Leu Phe Pro His Leu Leu Gln Pro Val 1 5 10 <210> 44 <211> 9 <212> PRT <213> Homo sapiens <400> 44 Asn Leu Leu Ala Glu Ile His Gly Val 1 5 <210> 45 <211> 10 <212> PRT <213> Homo sapiens <400> 45 Ala Ile Met Gly Phe Ile Gly Phe Phe Val 1 5 10 <210> 46 <211> 9 <212> PRT <213> Homo sapiens <400> 46 Thr Leu Thr Asn Ile Ile His Asn Leu 1 5 <210> 47 <211> 9 <212> PRT <213> Homo sapiens <400> 47 Gly Val Leu Glu Asn Ile Phe Gly Val 1 5 <210> 48 <211> 9 <212> PRT <213> Homo sapiens <400> 48 Gly Leu Ile Glu Ile Ile Ser Asn Ala 1 5 <210> 49 <211> 9 <212> PRT <213> Homo sapiens <400> 49 Arg Leu Leu Ala Ala Glu Asn Phe Leu 1 5 <210> 50 <211> 11 <212> PRT <213> Homo sapiens <400> 50 Ser Leu Leu Pro Val Asp Ile Arg Gln Tyr Leu 1 5 10 <210> 51 <211> 9 <212> PRT <213> Homo sapiens <400> 51 Tyr Leu Ala Pro Phe Leu Arg Asn Val 1 5 <210> 52 <211> 9 <212> PRT <213> Homo sapiens <400> 52 Ala Leu Leu Glu Arg Gly Tyr Ser Leu 1 5 <210> 53 <211> 9 <212> PRT <213> Homo sapiens <400> 53 Tyr Leu Pro His Ala Pro Pro Phe Ala 1 5 <210> 54 <211> 10 <212> PRT <213> Homo sapiens <400> 54 Lys Leu Val Glu Phe Asp Phe Leu Gly Ala 1 5 10 <210> 55 <211> 9 <212> PRT <213> Homo sapiens <400> 55 Ser Leu Ala Asp Phe Met Gln Glu Val 1 5 <210> 56 <211> 9 <212> PRT <213> Homo sapiens <400> 56 Ser Leu Tyr Lys Gly Leu Leu Ser Val 1 5 <210> 57 <211> 11 <212> PRT <213> Homo sapiens <400> 57 Gly Leu Ala Glu Asp Ile Asp Lys Gly Glu Val 1 5 10 <210> 58 <211> 9 <212> PRT <213> Homo sapiens <400> 58 Ser Leu Ile Asp Ala Asp Pro Tyr Leu 1 5 <210> 59 <211> 9 <212> PRT <213> Homo sapiens <400> 59 Ile Leu Val Ser Trp Leu Pro Arg Leu 1 5 <210> 60 <211> 9 <212> PRT <213> Homo sapiens <400> 60 Val Val Asp Lys Thr Leu Leu Leu Val 1 5 <210> 61 <211> 9 <212> PRT <213> Homo sapiens <400> 61 Thr Leu Ile Ser Arg Leu Pro Ala Val 1 5 <210> 62 <211> 10 <212> PRT <213> Homo sapiens <400> 62 Ile Leu Phe Pro Asp Ile Ile Ala Arg Ala 1 5 10 <210> 63 <211> 11 <212> PRT <213> Homo sapiens <400> 63 Ser Leu Ala Gly Asp Val Ala Leu Gln Gln Leu 1 5 10 <210> 64 <211> 9 <212> PRT <213> Homo sapiens <400> 64 Ala Met Leu Ala Val Leu His Thr Val 1 5 <210> 65 <211> 9 <212> PRT <213> Homo sapiens <400> 65 Lys Val Leu Glu Ile Leu His Arg Val 1 5 <210> 66 <211> 9 <212> PRT <213> Homo sapiens <400> 66 Lys Ile Gln Glu Ile Leu Thr Gln Val 1 5 <210> 67 <211> 9 <212> PRT <213> Homo sapiens <400> 67 Ile Leu Gln Asp Arg Leu Asn Gln Val 1 5 <210> 68 <211> 9 <212> PRT <213> Homo sapiens <400> 68 Tyr Val Tyr Gln Asn Asn Ile Tyr Leu 1 5 <210> 69 <211> 9 <212> PRT <213> Homo sapiens <400> 69 Ala Met Ser Ser Lys Phe Phe Leu Val 1 5 <210> 70 <211> 9 <212> PRT <213> Homo sapiens <400> 70 Lys Ile Leu Glu Asp Val Val Gly Val 1 5 <210> 71 <211> 9 <212> PRT <213> Homo sapiens <400> 71 Lys Leu Leu Glu Tyr Ile Glu Glu Ile 1 5 <210> 72 <211> 9 <212> PRT <213> Homo sapiens <400> 72 Lys Leu Leu Thr Glu Val His Ala Ala 1 5 <210> 73 <211> 9 <212> PRT <213> Homo sapiens <400> 73 Phe Leu Leu Asp Gly Ser Ala Asn Val 1 5 <210> 74 <211> 11 <212> PRT <213> Homo sapiens <400> 74 Ser Leu Leu Ala Gln Asn Thr Ser Trp Leu Leu 1 5 10 <210> 75 <211> 9 <212> PRT <213> Homo sapiens <400> 75 Ala Leu Tyr Asp Ser Val Ile Leu Leu 1 5 <210> 76 <211> 18 <212> PRT <213> Homo sapiens <400> 76 Ile Asn Asn Tyr Thr Pro Asp Met Asn Arg Glu Asp Val Asp Tyr Ala 1 5 10 15 Ile Arg <210> 77 <211> 17 <212> PRT <213> Homo sapiens <400> 77 Thr Asn Gly Val Ile His Val Val Asp Lys Leu Leu Tyr Pro Ala Asp 1 5 10 15 Thr <210> 78 <211> 10 <212> PRT <213> Homo sapiens <400> 78 Ser Leu Tyr Asp Asn Gln Ile Thr Thr Val 1 5 10 <210> 79 <211> 10 <212> PRT <213> Homo sapiens <400> 79 Ser Leu Ala Pro Ala Gly Val Ile Arg Val 1 5 10 <210> 80 <211> 12 <212> PRT <213> Homo sapiens <400> 80 Ser Leu Phe Gly Asn Ser Gly Ile Leu Glu Asn Val 1 5 10 <210> 81 <211> 9 <212> PRT <213> Homo sapiens <400> 81 Ala Leu Tyr Gly Arg Leu Glu Val Val 1 5 <210> 82 <211> 9 <212> PRT <213> Homo sapiens <400> 82 Ala Leu Trp Glu Lys Asn Thr His Leu 1 5 <210> 83 <211> 10 <212> PRT <213> Homo sapiens <400> 83 Ala Leu Ala Asn Gln Lys Leu Tyr Ser Val 1 5 10 <210> 84 <211> 10 <212> PRT <213> Homo sapiens <400> 84 Ile Leu Met Gly Thr Glu Leu Thr Gln Val 1 5 10 <210> 85 <211> 9 <212> PRT <213> Homo sapiens <400> 85 Lys Ile Val Asp Phe Ser Tyr Ser Val 1 5 <210> 86 <211> 11 <212> PRT <213> Homo sapiens <400> 86 Ala Met Ala Thr Glu Ser Ile Leu His Phe Ala 1 5 10 <210> 87 <211> 11 <212> PRT <213> Homo sapiens <400> 87 Arg Val Leu Pro Pro Ser Ala Leu Gln Ser Val 1 5 10 <210> 88 <211> 11 <212> PRT <213> Homo sapiens <400> 88 Ser Leu Leu Glu Ser Asn Lys Asp Leu Leu Leu 1 5 10 <210> 89 <211> 9 <212> PRT <213> Homo sapiens <400> 89 Ala Leu Ala Ser Val Ile Lys Glu Leu 1 5 <210> 90 <211> 10 <212> PRT <213> Homo sapiens <400> 90 Ser Leu Val Ala Val Glu Leu Glu Lys Val 1 5 10 <210> 91 <211> 9 <212> PRT <213> Homo sapiens <400> 91 Ala Met Phe Glu Asn Phe Val Ser Val 1 5 <210> 92 <211> 9 <212> PRT <213> Homo sapiens <400> 92 His Leu Leu Glu Asp Ile Ala His Val 1 5

Claims (25)

  1. 서열번호 40 또는 92의 아미노산 서열, 또는 서열번호 40 또는 92의 약학적으로 허용가능한 염으로 이루어진 펩티드.
  2. 제 1 항에 있어서,
    펩티드가 비펩티드 결합을 포함하는, 펩티드.
  3. 제 1 항에 있어서,
    펩티드가 HLA-DR 항원-연관 불변 쇄(Ii)의 N-말단 아미노산을 포함하는 융합 단백질의 일부이거나 항체에 융합되는, 펩티드.
  4. 제 1 항에 따른 펩티드를 인코딩하는 핵산.
  5. 제 4 항에 있어서,
    DNA, cDNA, PNA, RNA 또는 이들의 조합인 핵산.
  6. 제 5 항에 따른 핵산을 발현할 수 있는 발현 벡터.
  7. 제 5 항에 따른 핵산 또는 제 6 항에 따른 발현 벡터를 포함하는 숙주 세포로서,
    상기 숙주 세포가 인간 배아 줄기 세포가 아닌, 숙주 세포.
  8. 제 7 항에 있어서,
    숙주 세포가 항원 제시 세포인, 숙주 세포.
  9. 제 7 항에 있어서,
    숙주 세포가 수지상 세포인, 숙주 세포.
  10. 제 1 항에 따른 펩티드 또는 이의 약학적으로 허용가능한 염; 및
    약학적으로 허용가능한 담체, 부형제, 완충제, 결합제, 발파제, 희석제, 향미료, 윤활제 및 면역 자극 또는 면역 조절 물질의 군으로부터 선택되는 하나 이상의 다른 성분
    을 포함하는 암의 치료 또는 예방을 위한 약학 조성물.
  11. 서열번호 40 또는 92의 아미노산 서열로 이루어진 펩티드를 생산하는 방법으로서,
    제 7 항에 따른 숙주 세포를 배양하는 단계; 및
    상기 숙주 세포 또는 이의 배양 배지로부터 상기 펩티드를 단리하는 단계
    를 포함하는, 방법.
  12. 활성화 세포독성 T 림프구 또는 T 보조 세포를 생산하는 시험관 내 방법으로서,
    세포독성 T 림프구 또는 T 보조 세포를 적절한 항원 제시 세포의 표면상에 발현된 항원-로딩된 인간 유형 I 주 조직적합 복합체 분자와 상기 세포독성 T 림프구를 항원 특이적 방식으로 활성화하는데 충분한 시간 동안 시험관 내에서 접촉시키는 단계를 포함하되, 상기 항원이 제 1 항에 따른 펩티드인, 방법.
  13. 제 12 항에 있어서,
    충분한 양의 상기 항원을 상기 항원 제시 세포와 접촉시킴으로써 상기 항원이 적절한 항원 제시 세포의 표면상에 발현된 유형 I 주 조직적합 복합체 분자에 로딩되는, 방법.
  14. 제 12 항에 있어서,
    상기 항원 제시 세포가 제 1 항에 따른 펩티드를 발현할 수 있는 발현 벡터를 포함하는, 방법.
  15. 제 12 항에 따른 방법에 의해 생산된 활성화 세포독성 T 림프구 또는 T 보조 세포로서, 제 1 항에 기재된 아미노산 서열을 포함하는 폴리펩티드를 비정상으로 발현하는 세포를 선택적으로 인식하는, 활성화 세포독성 T 림프구 또는 T 보조 세포.
  16. 제 1 항에 따른 펩티드에 특이적인 T 세포 수용체(TCR) 또는 가용성 TCR(sTCR), 또는 이의 단편을 생산하는 시험관 내 방법으로서,
    제 15 항에 따른 활성화 세포독성 T 림프구 또는 T 보조 세포로부터 가변 도메인을 클로닝하는 단계; 및
    상기 TCR 또는 sTCR, 또는 이의 단편을 적절한 숙주 및/또는 발현 체계에서 발현하는 단계
    를 포함하는, 방법.
  17. 주 조직적합 복합체(MHC)와 서열번호 40 또는 92의 아미노산 서열로 이루어진 펩티드의 MHC/펩티드 복합체에 특이적인 항체 또는 이의 단편.
  18. 서열번호 40 또는 92의 아미노산 서열로 이루어진 HLA 리간드에 결합하는 단리된 T 세포 수용체(TCR) 또는 sTCR.
  19. 활성화 세포독성 T 림프구를 포함하는, 암의 치료를 위한 약학 조성물로서,
    상기 활성화 세포독성 T 림프구가
    세포독성 T 림프구를 적절한 항원 제시 세포 또는 항원 제시 세포를 모방하는 인공 구축물의 표면상에 발현된 항원-로딩된 인간 유형 I 또는 II 주 조직적합 복합체 분자와 상기 세포독성 T 림프구를 항원 특이적 방식으로 활성화하는데 충분한 시간 동안 시험관 내에서 접촉시키는 단계를 포함하되, 상기 항원이 서열번호 40 또는 92의 아미노산 서열로 이루어진 펩티드인, 활성화 세포독성 T 림프구를 생산하는 시험관 내 방법에 의해 생산되고;
    서열번호 40 또는 92의 아미노산 서열을 포함하는 폴리펩티드를 비정상으로 발현하는 세포를 선택적으로 인식하는, 약학 조성물.
  20. 제 1 항에 따른 펩티드, 제 4 항에 따른 핵산, 제 6 항에 따른 발현 벡터, 제 7 항에 따른 숙주 세포, 제 15 항에 따른 활성화 세포독성 T 림프구, 제 17 항에 따른 항체, 또는 제 18 항에 따른 T 세포 수용체(TCR) 또는 sTCR을 포함하는 암의 치료 또는 예방을 위한 약학 조성물.
  21. 제 20 항에 있어서,
    약학 조성물이 백신인, 약학 조성물.
  22. 제 20 항에 있어서,
    상기 암이 비소세포 폐암종(NSCLC), 폐암, 위암 및 아교모세포종으로부터 선택되는, 약학 조성물.
  23. 제 20 항에 있어서,
    인간에서 입양 세포 요법을 위한 약학 조성물.
  24. 제 18 항에 따른 T 세포 수용체를 포함하는 자가 또는 동종이형 인간 세포독성 T 세포 또는 T 보조 세포.
  25. (a1) 단리된 제 1 항에 따른 펩티드,
    (a2) 제 17 항에 따른 항체,
    (a3) 제 18 항에 따른 T 세포 수용체(TCR) 또는 sTCR, 또는 이의 단편
    (a4) 제 3 항에 기재된 융합 단백질,
    (a5) 제 4 항에 따른 핵산,
    (a6) 제 6 항에 따른 발현 벡터,
    (a7) 제 7 항에 따른 숙주 세포, 및
    (a8) 제 15 항에 따른 활성화 세포독성 T 림프구 또는 T 보조 세포
    로 구성된 군으로부터 선택되는 성분; 및
    (b) 약학적으로 허용가능한 담체
    를 포함하는, 암의 치료 또는 예방을 위한 약학 조성물.
KR1020207009472A 2013-08-05 2014-08-04 Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법 KR102383710B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227010992A KR20220045085A (ko) 2013-08-05 2014-08-04 Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201361862213P 2013-08-05 2013-08-05
US61/862,213 2013-08-05
GBGB1313987.8A GB201313987D0 (en) 2013-08-05 2013-08-05 Novel immunotherapy against several tumors, such as lung cancer including NSCLC
GB1313987.8 2013-08-05
GBGB1403297.3A GB201403297D0 (en) 2014-02-25 2014-02-25 Novel immunotherapy against several tumors, such as lung cancer, including NSCLC
GB1403297.3 2014-02-25
PCT/EP2014/066755 WO2015018805A1 (en) 2013-08-05 2014-08-04 Novel immunotherapy against several tumors, such as lung cancer, including nsclc
KR1020187026995A KR102098327B1 (ko) 2013-08-05 2014-08-04 Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020187026995A Division KR102098327B1 (ko) 2013-08-05 2014-08-04 Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020227010992A Division KR20220045085A (ko) 2013-08-05 2014-08-04 Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법
KR1020207018007A Division KR102211542B1 (ko) 2013-08-05 2014-08-04 Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법

Publications (2)

Publication Number Publication Date
KR20200037457A true KR20200037457A (ko) 2020-04-08
KR102383710B1 KR102383710B1 (ko) 2022-04-08

Family

ID=60955422

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020227010992A KR20220045085A (ko) 2013-08-05 2014-08-04 Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법
KR1020207009472A KR102383710B1 (ko) 2013-08-05 2014-08-04 Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020227010992A KR20220045085A (ko) 2013-08-05 2014-08-04 Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법

Country Status (19)

Country Link
US (17) US20170320913A1 (ko)
JP (4) JP6646017B2 (ko)
KR (2) KR20220045085A (ko)
CN (3) CN110041402B (ko)
AU (1) AU2022201167A1 (ko)
CL (6) CL2018002279A1 (ko)
CY (2) CY1122453T1 (ko)
ES (1) ES2900004T3 (ko)
HR (2) HRP20211852T1 (ko)
HU (1) HUE057334T2 (ko)
IL (5) IL300761A (ko)
LT (1) LT3456339T (ko)
MX (3) MX2021001914A (ko)
MY (1) MY191939A (ko)
PH (3) PH12018501901A1 (ko)
PL (1) PL3456339T3 (ko)
PT (1) PT3456339T (ko)
RS (1) RS62602B1 (ko)
SI (1) SI3456339T1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
RS62602B1 (sr) 2013-08-05 2021-12-31 Immatics Biotechnologies Gmbh Nova imunoterapija za lečenje nekoliko tumora, kao što je rak pluća, uključujući nsclc
CA2935960C (en) 2014-01-08 2023-01-10 Bart Lipkens Acoustophoresis device with dual acoustophoretic chamber
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
SG11202003907WA (en) 2017-12-14 2020-05-28 Flodesign Sonics Inc Acoustic transducer drive and controller
CN112521484A (zh) * 2020-12-03 2021-03-19 佛山市第一人民医院(中山大学附属佛山医院) 结肠癌肿瘤特异tcr序列及其应用
CN112691195B (zh) * 2021-02-02 2023-03-14 黑龙江省科学院高技术研究院 Prpf8表达抑制剂在制备治疗肺癌的药物中的应用
CN113881707B (zh) * 2021-10-25 2023-07-14 中国人民解放军军事科学院军事医学研究院 调控脐带间充质干细胞免疫抑制作用的产品、方法及用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018633A2 (en) * 2002-08-20 2004-03-04 The Government Of The United States Of America As Represented By The Secretary, Department Of Healthand Human Services Abca13 nucleic acids and proteins, and uses thereof
US20080107668A1 (en) * 2006-08-30 2008-05-08 Immunotope, Inc. Cytotoxic t-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8212000B2 (en) 1970-02-11 2012-07-03 Immatics Biotechnologies Gmbh Tumor-associated peptides binding promiscuously to human leukocyte antigen (HLA) class II molecules
AU2205499A (en) 1997-12-31 1999-07-19 Incyte Pharmaceuticals, Inc. Human regulatory proteins
US7094890B1 (en) 2000-03-10 2006-08-22 Novartis Ag Arthritis-associated protein
US7919467B2 (en) 2000-12-04 2011-04-05 Immunotope, Inc. Cytotoxic T-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
JP2005500059A (ja) 2001-08-13 2005-01-06 ダナ−ファーバー キャンサー インスティテュート インク. ペリオスチンに基づく診断アッセイ法
DE10225144A1 (de) 2002-05-29 2003-12-18 Immatics Biotechnologies Gmbh An MHC-Moleküle bindende Tumor-assoziierte Peptide
CN1852974A (zh) * 2003-06-09 2006-10-25 密歇根大学董事会 用于治疗和诊断癌症的组合物和方法
ATE511550T1 (de) * 2003-07-17 2011-06-15 Pacific Edge Biotechnology Ltd Marker zum nachweis von magenkrebs
EP1714157A2 (en) 2004-01-28 2006-10-25 Immatics Biotechnologies GmbH Method for identifying and quantifying of tumour-associated peptides
US20060019284A1 (en) 2004-06-30 2006-01-26 Fei Huang Identification of polynucleotides for predicting activity of compounds that interact with and/or modulate protein tyrosine kinases and/or protein tyrosine kinase pathways in lung cancer cells
EP1642905B1 (en) 2004-10-02 2009-01-21 Immatics Biotechnologies GmbH Immunogenic T-helper epitopes from human tumour antigens and immunotherapeutic methods using said epitopes
SI1760088T1 (sl) 2005-09-05 2008-06-30 Immatics Biotechnologies Gmbh S tumorjem povezani peptidi, ki se veže z različnimi molekulami humanega levkocitnega antigena (HLA) razreda II
EA200801865A1 (ru) 2006-02-22 2009-02-27 Филоджен Спа Опухолевые маркеры сосудов
PL2338907T3 (pl) 2007-07-27 2016-03-31 Immatics Biotechnologies Gmbh Nowe immunogenne epitopy do immunoterapii
WO2009036246A2 (en) 2007-09-14 2009-03-19 Immunotope, Inc. Immunogens that induce cytotoxic t-lymphocytes and their use in prevention, treatment, and diagnosis of cancer
US8134459B2 (en) 2007-10-19 2012-03-13 Smiths Medical Asd, Inc. Wireless telecommunications system adaptable for patient monitoring
US20100310640A1 (en) 2007-11-01 2010-12-09 Knutson Keith L Hla-dr binding peptides and their uses
EP2250287B1 (en) 2008-02-19 2013-09-18 MDxHealth SA Detection and prognosis of lung cancer
AU2009221915A1 (en) 2008-03-03 2009-09-11 Dyax Corp. Metalloproteinase 12 binding proteins
CA2720563A1 (en) 2008-04-11 2009-10-15 China Synthetic Rubber Corporation Methods, agents and kits for the detection of cancer
TWI526219B (zh) 2008-06-19 2016-03-21 腫瘤療法 科學股份有限公司 Cdca1抗原決定位胜肽及含此胜肽的疫苗
WO2010037124A1 (en) * 2008-09-29 2010-04-01 The Trustees Of The University Of Pennsylvania Tumor vascular marker-targeted vaccines
EP2172211B1 (en) * 2008-10-01 2014-12-03 Immatics Biotechnologies GmbH Composition of tumor-associated peptides and related anti-cancer vaccine for the treatment of glioblastoma (GBM) and other cancers
WO2010045388A2 (en) 2008-10-14 2010-04-22 Dyax Corp. Use of mmp-9 and mmp-12 binding proteins for the treatment and prevention of systemic sclerosis
GB2477705B (en) 2008-11-17 2014-04-23 Veracyte Inc Methods and compositions of molecular profiling for disease diagnostics
CN101824400B (zh) * 2009-03-05 2012-08-08 中国科学院微生物研究所 一种放大增殖抗原特异性t细胞的方法
US20110033516A1 (en) 2009-08-06 2011-02-10 Medical University Of South Carolina Methods and compositions for bone healing by periostin
US8281223B2 (en) 2009-08-07 2012-10-02 Via Technologies, Inc. Detection of fuse re-growth in a microprocessor
TWI485245B (zh) 2010-01-25 2015-05-21 Oncotherapy Science Inc 經修飾之melk胜肽及含此胜肽之疫苗
GB201004551D0 (en) 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh NOvel immunotherapy against several tumors including gastrointestinal and gastric cancer
GB201006360D0 (en) 2010-04-16 2010-06-02 Immatics Biotechnologies Gmbh Method for differentially quantifying naturally processed HLA-restricted peptides for cancer, autoimmune and infectious diseases immunotherapy development
GB201009222D0 (en) 2010-06-02 2010-07-21 Immatics Biotechnologies Gmbh Improved cancer therapy based on tumour associated antigens derived from cyclin D1
US9028810B2 (en) 2010-12-20 2015-05-12 Ajou University Industry—Academic Cooperations Foundatin Composition for inducing migration of neural stem cells containing periostin as effective ingredient
TWI819228B (zh) * 2013-08-05 2023-10-21 德商伊瑪提克斯生物科技有限公司 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(八)
RS62602B1 (sr) * 2013-08-05 2021-12-31 Immatics Biotechnologies Gmbh Nova imunoterapija za lečenje nekoliko tumora, kao što je rak pluća, uključujući nsclc
GB201513921D0 (en) * 2015-08-05 2015-09-23 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers
SG10202111399YA (en) * 2015-12-22 2021-11-29 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against breast cancer and other cancers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018633A2 (en) * 2002-08-20 2004-03-04 The Government Of The United States Of America As Represented By The Secretary, Department Of Healthand Human Services Abca13 nucleic acids and proteins, and uses thereof
US20080107668A1 (en) * 2006-08-30 2008-05-08 Immunotope, Inc. Cytotoxic t-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Oncogene Letters, Vol. 5, pp. 544-548(2012.11.21.) *

Also Published As

Publication number Publication date
CL2021001794A1 (es) 2022-02-25
US10323065B1 (en) 2019-06-18
SI3456339T1 (sl) 2022-01-31
MX2021001914A (es) 2021-04-28
PH12020500433A1 (en) 2021-01-11
IL295031B2 (en) 2023-08-01
US20220064220A1 (en) 2022-03-03
US11939400B2 (en) 2024-03-26
US20200031870A1 (en) 2020-01-30
US20210253640A1 (en) 2021-08-19
US11866517B2 (en) 2024-01-09
CL2018002495A1 (es) 2018-10-26
PT3456339T (pt) 2021-12-09
US11814446B2 (en) 2023-11-14
US20190322703A1 (en) 2019-10-24
US10160786B1 (en) 2018-12-25
AU2022201167A1 (en) 2022-03-17
US20190177369A1 (en) 2019-06-13
US11859017B2 (en) 2024-01-02
CN110041402B (zh) 2024-04-16
JP2018038388A (ja) 2018-03-15
US20200031869A1 (en) 2020-01-30
IL295031B1 (en) 2023-04-01
US20200031868A1 (en) 2020-01-30
CY1124950T1 (el) 2023-01-05
JP2020010686A (ja) 2020-01-23
CN110041403B (zh) 2023-03-10
MY191939A (en) 2022-07-19
PL3456339T3 (pl) 2022-03-21
LT3456339T (lt) 2021-12-10
US10479818B2 (en) 2019-11-19
JP2022130482A (ja) 2022-09-06
US20220298207A1 (en) 2022-09-22
US20190002504A1 (en) 2019-01-03
US10316062B1 (en) 2019-06-11
US11939401B2 (en) 2024-03-26
JP7039044B2 (ja) 2022-03-22
ES2900004T3 (es) 2022-03-15
MX2018010565A (es) 2021-11-16
US20200017551A1 (en) 2020-01-16
US11161879B2 (en) 2021-11-02
HRP20211852T1 (hr) 2022-03-18
US10316063B1 (en) 2019-06-11
IL300761A (en) 2023-04-01
JP7094572B2 (ja) 2022-07-04
CN109748953B (zh) 2022-09-02
IL280565B (en) 2022-09-01
US20190169233A1 (en) 2019-06-06
JP6646017B2 (ja) 2020-02-14
KR102383710B1 (ko) 2022-04-08
MX2019011621A (es) 2019-12-05
JP2020072717A (ja) 2020-05-14
US10487116B2 (en) 2019-11-26
CN110041403A (zh) 2019-07-23
CY1122453T1 (el) 2021-01-27
PH12021551208A1 (en) 2022-02-14
IL269753B (en) 2021-03-25
CN110041402A (zh) 2019-07-23
US10793602B2 (en) 2020-10-06
KR20220045085A (ko) 2022-04-12
US20200031867A1 (en) 2020-01-30
RS62602B1 (sr) 2021-12-31
PH12018501901A1 (en) 2019-04-15
IL262509B (en) 2022-02-01
CL2018002494A1 (es) 2018-10-26
US11161880B2 (en) 2021-11-02
IL262509A (en) 2018-12-31
US20190177368A1 (en) 2019-06-13
CL2018002458A1 (es) 2018-10-12
US20190218254A1 (en) 2019-07-18
IL269753A (en) 2019-11-28
US11161877B2 (en) 2021-11-02
CL2018002493A1 (es) 2018-11-09
CN109748953A (zh) 2019-05-14
US20220281917A1 (en) 2022-09-08
US20220194984A1 (en) 2022-06-23
US11161878B2 (en) 2021-11-02
HUE057334T2 (hu) 2022-05-28
US20170320913A1 (en) 2017-11-09
IL280565A (en) 2021-03-25
IL295031A (en) 2022-09-01
CL2018002279A1 (es) 2018-09-14
HRP20192262T1 (hr) 2020-03-06

Similar Documents

Publication Publication Date Title
KR102098327B1 (ko) Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법
KR102383710B1 (ko) Nsclc를 포함하는 폐암과 같은 여러 가지 종양에 대한 면역요법

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right