CN110021483B - 一种π-d共轭Cu-MOF柔性透明电极的制备方法与储能应用 - Google Patents

一种π-d共轭Cu-MOF柔性透明电极的制备方法与储能应用 Download PDF

Info

Publication number
CN110021483B
CN110021483B CN201910278715.6A CN201910278715A CN110021483B CN 110021483 B CN110021483 B CN 110021483B CN 201910278715 A CN201910278715 A CN 201910278715A CN 110021483 B CN110021483 B CN 110021483B
Authority
CN
China
Prior art keywords
flexible transparent
transparent electrode
ito
hhtp
mof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910278715.6A
Other languages
English (en)
Other versions
CN110021483A (zh
Inventor
赵为为
陈田田
赵强
彭佳丽
王维康
金贝贝
刘淑娟
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201910278715.6A priority Critical patent/CN110021483B/zh
Publication of CN110021483A publication Critical patent/CN110021483A/zh
Application granted granted Critical
Publication of CN110021483B publication Critical patent/CN110021483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明公开了一种π‑d共轭Cu‑MOF柔性透明电极的制备方法与储能应用,主要利用一种层层自组装(Layer‑by‑Layer Self‑Assembly,LbL)技术,以ITO/PET柔性透明材料为基底制备π‑d共轭Cu‑MOF(Cu‑HHTP)柔性透明电极。与现有技术相比,本发明公开的方法操作简单,常温常压条件下即可完成;选用ITO/PET柔性透明材料作为基底,具有良好的柔性和透明度;制备出的Cu‑MOF具有较大的比表面积、较高的活性位点、高导电率、优异的储能性质、好的光学透光性和导电性。

Description

一种π-d共轭Cu-MOF柔性透明电极的制备方法与储能应用
技术领域
本发明涉及电容技术领域,具体是涉及一种π-d共轭Cu-MOF柔性透明电极的制备方法及其在储能方面的应用。
背景技术
近年来,随着电子技术的快速进步,传统的电子设备已经不能满足人们的需求。新型电子设备逐渐向轻薄化、柔性化、高透明化和便携式的方向发展,这就对透明柔性电子学器件提出了更高的要求,要求为电子产品提供能量的储存器件具有轻、薄、柔等特点。超级电容器由于具有充电时间短、工作温度范围宽、充放电循环寿命长、特殊的功率密度和适度能量密度以及贮存寿命长等优势一直是移动电子设备中应用最为广泛的储能器件。
碳纳米材料、金属氧化物和聚合物是常见电极材料,但其低密度的特点导致体积能量密度有限。导电金属有机框架(Metal-Organic Framework,MOF)材料是新出现的一类集多孔与半导体特性于一体的晶体材料,因其具备超大比表面积(>7000m2/g)、高孔隙率、均匀的孔径、较高的活性位点、可调节的电子能带结构等优势使其在柔性透明超级电容器领域具有较高的研究价值和应用潜力,进而受到各界的广泛关注。
目前为止,关于直接在柔性透明基底上制备π-d共轭MOF用作超级电容器电极材料的研究仍鲜有报道。为了进一步促进电极材料的开发和柔性透明储器件及相关学科的发展,有必要在该领域做更为深入的探索。
发明内容
本发明的目的在于提出一种新的思路,直接选择ITO/PET柔性透明材料作为合成π-d共轭Cu-MOF柔性透明电极的基底,采用低成本、低能耗、工艺简单的LbL技术来制备柔性透明超级电容器。
本发明的技术方案为:一种π-d共轭Cu-MOF柔性透明电极的制备方法,具体制备步骤为:
步骤一、Cu-HHTP/ITO/PET柔性透明电极的制备
(1)将ITO/PET(规格:1cm×2cm,ITO层厚度:0.175mm)依次用去离子水、乙醇、丙酮、乙醇在300W的频率下超声清洗,N2吹干后,再用等离子体处理;
(2)配制0.05mol/L的Cu(OAc)2·H2O的水溶液;
(3)配制2×10-4mol/L HHTP的乙酸乙酯溶液;
(4)利用提拉机将经步骤1处理过的ITO/PET在步骤2、3配制的溶液中交替浸渍,过程中用乙醇漂洗去除未反应的金属离子和配体,并用N2干燥;
(5)在真空石墨炉中退火得到Cu-HHTP/ITO/PET柔性透明电极。
进一步地,所述Cu-HHTP薄膜的结构式为
Figure GDA0002065357190000021
进一步地,所述步骤5中的退火温度为70-80℃,退火时间为90-100min,升温速度为1.5℃/min。
Cu-HHTP/ITO/PET柔性透明电极的组装,具体步骤为:
1、将聚乙烯醇(PVA)加入20mL H2O中,在搅拌条件下向PVA水溶液中加入浓H2SO4,之后在85℃水浴条件下搅拌反应2h制备PVA/H2SO4凝胶;
2、在一片Cu-HHTP/ITO/PET柔性透明电极的一面上涂覆步骤1制备的PVA/H2SO4凝胶,将另一片相同的Cu-HHTP/ITO/PET柔性透明电极覆盖在涂有凝胶的一面,静置2-3h完成二电极的组装。
进一步地,所述π-d共轭Cu-MOF柔性透明电极可应用在电化学储能中,在10mV/s的扫速下面积比电容可达102.5μF·cm-2
本发明的有益效果为:
(1)利用本发明公开方法制备的π-d共轭Cu-MOF柔性透明电极采用LbL法制备,操作简单,常温常压条件下即可完成;
(2)本发明直接选用ITO/PET柔性透明材料作为制备π-d共轭Cu-MOF柔性透明电极的基底,具有良好的柔性和透明度;
(3)利用本发明公开方法制备的Cu-MOF柔性透明电极具有较大的比表面积、较高的活性位点和高导电率等优点;
(4)利用本发明公开方法制备的π-d共轭Cu-MOF柔性透明电极具有优异的储能性质、光学透光性和导电性;
(5)将该π-d共轭Cu-MOF柔性透明电极用于制备全固态超级电容器,超级电容器具备优异的储能性质和光学透光性。
附图说明
图1为实施例1得到的Cu-HHTP薄膜的SEM照片;
图2为实施例1得到的Cu-HHTP/ITO/PET柔性透明电极的紫外吸收谱图;
图3为实施例1得到的Cu-HHTP/ITO/PET柔性透明电极的透光率谱图;
图4为实施例1得到的Cu-HHTP/ITO/PET柔性透明电极的平铺图;
图5为实施例1得到的Cu-HHTP/ITO/PET柔性透明电极的弯曲图;
图6为实施例4得到的Cu-HHTP/ITO/PET柔性透明电极CV图;
图7为实施例5得到的Cu-HHTP/ITO/PET柔性透明电极GCD图。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
实施例1:Cu-HHTP/ITO/PET柔性透明电极的制备
(1)将ITO/PET基底依次用去离子水、乙醇、丙酮、乙醇在300W的频率下超声清洗,超声时间均为5min,各清洗2次,N2吹干后,等离子体处理20min;
(2)配制Cu(OAc)2·H2O的水溶液(0.05mol/L):称Cu(OAc)2·H2O(0.2g,0.25mmol)溶于20mL H2O中,取8mL加入10mL小瓶中;
(3)配制50mL HHTP的乙酸乙酯溶液(2×10-4mol/L):称HHTP(0.0032g,0.01mmol)溶于50mL乙酸乙酯中,取8mL加入10mL小瓶中;
(4)用提拉机(升速:2mm/s;降速:2mm/s;行程:16mm;浸渍时间:20min)将清洁的ITO/PET在步骤2、3配制的溶液中交替浸渍3次,过程中用乙醇漂洗去除未反应的金属离子和配体,并用N2干燥;
(5)在真空石墨炉中退火,退火温度为75℃,退火时间为90min,升温速度为1.5℃/min。
Cu-HHTP/ITO/PET柔性透明电极的紫外吸收图谱,如图2所示,光谱在362nm和611nm处呈现两个独特的峰。362nm处的最强吸收峰对应金属位点的π-π跃迁,而611nm处的吸收峰对应于Cu(II)-HHTP金属-配体电荷转移跃迁。
Cu-HHTP/ITO/PET柔性透明电极的透射图谱,如图3所示,峰的位置与紫外吸收峰一致,在611nm处透光率为90%,有良好的光学透光性。
实施例2:PVA/H2SO4凝胶的制备
(1)将2g PVA加入50mL圆底烧瓶中,再加入20mL H2O;
(2)在搅拌条件下向PVA的水溶液中缓慢滴加1.1mL浓H2SO4
(3)用封口膜将圆底烧瓶密封好,在85℃水浴条件下搅拌反应2h完成制备。
实施例3:Cu-HHTP/ITO/PET柔性透明电极的组装
(1)在一片Cu-HHTP/ITO/PET柔性透明电极上滴2滴PVA/H2SO4凝胶,并涂匀;
(2)将另一片相同的Cu-HHTP/ITO/PET柔性透明电极覆盖在涂有凝胶处,静置2h后用透明胶带将其固定好,进行二电极测试,测试前先在100mV/s下活化至曲线重合。
实施例4:Cu-HHTP/ITO/PET柔性透明电极的循环伏安测试
(1)工作电极:Cu-HHTP/ITO/PET柔性透明电极(原始尺寸:1cm×2cm;组装尺寸:1.0cm×1.3cm);电解质凝胶:PVA/H2SO4;电压范围:0~0.6V。测试前先在100mV/s下活化至曲线完全重合。
结果如图6所示,Cu-HHTP/ITO/PET柔性透明电极在10mV/s的扫速下面积比电容可达102.5μF·cm-2,Cu-HHTP/ITO/PET柔性透明电极具有较好的储能性质。
实施例5:Cu-HHTP/ITO/PET柔性透明电极的恒流充放电测试
(1)工作电极:Cu-HHTP/ITO/PET柔性透明电极(原始尺寸:1cm×2cm;组装尺寸:1.0cm×1.3cm);电解质凝胶:PVA/H2SO4;电压范围:0~0.6V。
Cu-HHTP/ITO/PET柔性透明电极在不同电流密度下的充放电曲线如图7所示,从图中可知,面积比电容达59μF·cm-2,Cu-HHTP/ITO/PET柔性透明电极具有较好的储能性质。
以上显示和描述了本发明的基本原理、主要特征及优点。但是以上所述仅为本发明的具体实施例,本发明的技术特征并不局限于此,任何本领域的技术人员在不脱离本发明的技术方案下得出的其他实施方式均应涵盖在本发明的专利范围之中。

Claims (5)

1.一种π-d共轭Cu-MOF柔性透明电极的制备方法,其特征在于,具体制备步骤如下,
步骤一、Cu-HHTP/ITO/PET柔性透明电极的制备:
(1)将ITO/PET基底依次用去离子水、乙醇、丙酮、乙醇在300W的频率下超声清洗,N2吹干后,再用等离子体处理;
(2)配制0.05mol/L的Cu(OAc)2·H2O的水溶液;
(3)配制2×10-4mol/L HHTP的乙酸乙酯溶液;
(4)利用提拉机将经步骤1处理过的ITO/PET在步骤2、3配制的溶液中交替浸渍,过程中用乙醇漂洗去除未反应的金属离子和配体,并用N2干燥;
(5)在真空石墨炉中退火得到Cu-HHTP/ITO/PET柔性透明电极。
2.如权利要求1所述的一种π-d共轭Cu-MOF柔性透明电极的制备方法,其特征在于,所述Cu-HHTP薄膜的结构式为
Figure FDA0002020943490000011
3.如权利要求1所述的一种π-d共轭Cu-MOF柔性透明电极的制备方法,其特征在于,所述步骤5中的退火温度为70-80℃,退火时间为90-100min,升温速度为1.5℃/min。
4.根据权利要求1所述的一种π-d共轭Cu-MOF柔性透明电极的二电极组装方法,其特征在于,具体步骤为:
1、将聚乙烯醇(PVA)加入20mL H2O中,在搅拌条件下向PVA水溶液中加入浓H2SO4,之后在85℃水浴条件下搅拌反应2h制备PVA/H2SO4凝胶;
2、在一片Cu-HHTP/ITO/PET柔性透明电极的一面上涂覆步骤1制备的PVA/H2SO4凝胶,将另一片相同的Cu-HHTP/ITO/PET柔性透明电极覆盖在涂有凝胶的一面,静置2-3h完成二电极的组装。
5.如权利要求1-3中任一项所述的一种π-d共轭Cu-MOF柔性透明电极在电化学储能中的应用,其特征在于,在10mV/s的扫速下面积比电容可达102.5μF·cm-2
CN201910278715.6A 2019-04-09 2019-04-09 一种π-d共轭Cu-MOF柔性透明电极的制备方法与储能应用 Active CN110021483B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910278715.6A CN110021483B (zh) 2019-04-09 2019-04-09 一种π-d共轭Cu-MOF柔性透明电极的制备方法与储能应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910278715.6A CN110021483B (zh) 2019-04-09 2019-04-09 一种π-d共轭Cu-MOF柔性透明电极的制备方法与储能应用

Publications (2)

Publication Number Publication Date
CN110021483A CN110021483A (zh) 2019-07-16
CN110021483B true CN110021483B (zh) 2020-11-17

Family

ID=67190794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910278715.6A Active CN110021483B (zh) 2019-04-09 2019-04-09 一种π-d共轭Cu-MOF柔性透明电极的制备方法与储能应用

Country Status (1)

Country Link
CN (1) CN110021483B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146014A (zh) * 2020-01-10 2020-05-12 华东师范大学 一种Cu@Cu-CAT@PANI复合电极材料及制备方法和其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2013140772A (ru) * 2011-02-04 2015-03-10 Те Риджентс Оф Те Юниверсити Оф Калифорния Получение каркасных структур на основе пирокатехолятов металлов
CN104021947B (zh) * 2014-06-20 2017-04-12 贵州中航聚电科技有限公司 一种混合型超级电容器氧化钌电极的制备方法
CN109326459A (zh) * 2018-11-09 2019-02-12 南京邮电大学 一种金属卟啉框架/碳化钛复合柔性全固态超级电容器的制备方法和应用

Also Published As

Publication number Publication date
CN110021483A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
Zhao et al. A self-healing hydrogel electrolyte for flexible solid-state supercapacitors
CN111508724B (zh) 一种超级电容器用MOFs复合电极材料及制备方法与工作电极
CN107275121B (zh) 一种具有自愈合的超级电容器及其制备方法
US20060174936A1 (en) Water-based electrolyte gel for dye-sensitized solar cells and manufacturing methods
Masud et al. Polymer gel electrolytes based on PEG-functionalized ABA triblock copolymers for quasi-solid-state dye-sensitized solar cells: Molecular engineering and key factors
CN106450245B (zh) 一种柔性可充放电锂硫电池正极材料及其制备方法
CN108258322B (zh) 一种可自愈合柔性电池及其制备方法
CN108550469B (zh) 一种金属卟啉框架/聚吡咯复合柔性电极的制备方法和应用
CN107221447B (zh) 一种石墨烯柔性复合电极、其制备方法及柔性超级电容器
CN110423358A (zh) 一维管状mof材料的制备方法及一维氮掺杂的多孔碳纳米管材料的制备和应用
CN106898492A (zh) 一种共轭微孔聚合物薄膜的制备方法及其应用
CN109585177A (zh) 一种核壳结构的镍钴磷整体式电极材料的制备方法
CN114664569B (zh) 硼掺杂钴镍柔性电极材料及其制备方法
JP5194893B2 (ja) 色素増感光電変換素子及び太陽電池
CN110021483B (zh) 一种π-d共轭Cu-MOF柔性透明电极的制备方法与储能应用
CN110808180B (zh) 一种微型非对称超级电容器的制备方法、微型非对称超级电容器及其应用
CN112701268A (zh) 柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极及其制备方法
CN105489899A (zh) 一种锂离子电池负极及其制备方法
Yong et al. An all-in-one flexible supercapacitor based on redox ionogel electrolyte with high cycle performance
CN102800488B (zh) 一种Ni基NiO纳米片阵列薄膜电极的制备方法
CN114360927B (zh) 一种氢氧化镍电极材料的制备方法
CN109741972A (zh) 一种超级电容器复合电极的制备方法及超级电容器
CN109755038A (zh) 基于二维褶皱金属卟啉框架超薄纳米片的柔性全固态超级电容器的制备方法及应用
CN111739738B (zh) 一体化两电极光充电电容器
CN206098166U (zh) 一种柔性染料敏化太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant