CN112701268A - 柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极及其制备方法 - Google Patents

柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极及其制备方法 Download PDF

Info

Publication number
CN112701268A
CN112701268A CN202110131221.2A CN202110131221A CN112701268A CN 112701268 A CN112701268 A CN 112701268A CN 202110131221 A CN202110131221 A CN 202110131221A CN 112701268 A CN112701268 A CN 112701268A
Authority
CN
China
Prior art keywords
carbon nanotube
nanotube film
carbon
tungsten oxide
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110131221.2A
Other languages
English (en)
Other versions
CN112701268B (zh
Inventor
尹艳红
文敏
吴子平
黎业生
刘先斌
张克
邓朋
湛钦淇
高文静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN202110131221.2A priority Critical patent/CN112701268B/zh
Publication of CN112701268A publication Critical patent/CN112701268A/zh
Application granted granted Critical
Publication of CN112701268B publication Critical patent/CN112701268B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极的制备方法,属于电化学储能与转换技术领域。在制备碳纳米管薄膜的过程中,采用喷涂技术将钨盐溶液喷洒在碳纳米管管束表面,形成碳纳米管薄膜/钨盐/碳纳米管薄膜层层自组装复合前驱体;将该复合前驱体置于高压反应釜中进行溶剂热反应;反应结束后降至室温,干燥,得到复合膜;将干燥后的复合膜置于管式炉中,于氮气气氛中煅烧,得到碳包覆氧化钨/碳纳米管薄膜复合材料。将上述薄膜材料进行辊压、冲片,即可得到柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极。此电极具有柔性、质轻、无粘结剂、制备工艺简单等特点,有利于批量化生产,可应用于锂离子电池、超级电容器、燃料电池和水电解等电化学储能与转换领域。

Description

柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极及其制备 方法
技术领域
本发明属于电极材料领域,具体涉及柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极的制备方法。
背景技术
随着电极技术的快速发展,柔性可穿戴器件逐步进入了普通大众的视野。将电极材料负载在各类柔性导电基体上,使得所制备的器件具有可折叠、便携性强的特点,符合各类新型电子设备的发展趋势。氧化钨作为活性物质,可与锂离子发生独特的转换反应,其理论比容量(693 mAh g-1)比商业石墨的(372 mAh g-1)更高,同时具有成本低、固有密度高和安全无污染等特点,成为具有潜力的锂离子电池负极材料。氧化钨虽然比碳材料具有更好的储锂性能,但也存在不足之处,即氧化钨材料在首次充放电循环时,放电比容量很可观,可超过其理论比容量,但在随后循环中,其容量的稳定性较差,衰减较为明显。石墨烯薄膜和碳纳米管薄膜具有机械柔性和高电子迁移率,负载活性物质(如氧化锡、氧化铁、氧化钒、氧化钨等)可用于构建柔性电极。将氧化钨负载在碳材料薄膜等柔性基底上,形成复合物,是制备氧化钨基柔性电极的较佳选择。通常方法是利用超声波和过滤技术制备氧化钨/碳纳米管薄膜(或石墨烯)复合材料,直接作为电极材料,表现出较好的循环性能和倍率性能,然而,直接负载在柔性导电基体上的电极材料往往面临结合力差、折叠过程中易破损脱落的现实问题,使得电池容量衰减较快,甚至会引发一系列安全事故。
发明内容
本发明目的在于提供一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,通过将电极材料表面进行碳包覆并嵌入柔性导电基体网络中,可以有效提高锂离子和电子的迁移速率,缓解氧化钨的体积膨胀,增强材料的结构稳定性,从而提氧化钨材料的储锂性能和循环稳定性。
本发明另一目的在于提供一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极的制备方法。
在制备碳纳米管薄膜的过程中,采用喷涂技术将钨盐溶液喷洒在碳纳米管管束表面,形成碳纳米管薄膜/钨盐/碳纳米管薄膜层层自组装复合前驱体;将该复合前驱体置于高压反应釜中进行溶剂热反应;反应结束后降至室温,干燥,得到复合膜;将干燥后的复合膜置于管式炉中,于氮气气氛中煅烧,得到碳包覆氧化钨/碳纳米管薄膜复合材料。将上述薄膜材料进行辊压、冲片,即可得到柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极。
主要包括以下步骤:
(1)先将钨盐加入无水乙醇与蒸馏水的混合溶液中,再加入水溶性有机活化剂,配制成钨盐溶液,并对该溶液进行超声分散;
(2)将步骤(1)中的分散溶液倒入喷洒壶中,在制备碳纳米管薄膜过程中,将钨盐溶液喷洒在碳纳米管管束表面,形成碳纳米管薄膜/钨盐/碳纳米管薄膜层层自组装复合前驱体;
(3)把步骤(2)中的复合前驱体置于含有乙醇/水(体积比1:1—5:1)的聚四氟乙烯内胆的反应釜中,进行溶剂热反应,反应温度160—200oC,反应时间1—10 h,反应结束并自然降至室温后,取出复合前驱体,进行干燥;
(4)将步骤(3)中干燥的复合前驱体置于管式炉中,并在氮气气氛中进行煅烧,煅烧温度为400—600 oC,煅烧时间为0.5—4 h;
(5)自然降温至室温,得到碳包覆氧化钨/碳纳米管薄膜复合材料;
(6)将步骤(5)中的复合材料进行辊压、冲片,即可得到柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极。
步骤(1)中的钨盐为六氯化钨、偏钨酸铵、仲钨酸铵、钨酸钠等其中一种或多种组合。
步骤(1)中的水溶性有机活化剂为柠檬酸、醋酸、十二烷基苯磺酸钠、聚乙烯吡咯烷酮、脂肪醇等其中一种或多种组合。
本发明具有以下有益效果:在制备碳纳米管薄膜过程中,以碳纳米管薄膜作为模板,采用喷涂法结合溶剂热合成技术,合成了碳包覆氧化钨/碳纳米管薄膜复合电极。一方面,在制备碳纳米管薄膜时,利用喷涂法将氧化钨嵌入碳纳米管管束的导电性网络中,有益于提高氧化钨的导电性和结构稳定性;另一方面,氧化钨表面包覆了碳层,使得氧化钨具有导电性和体积膨胀空间。所得柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极具有轻质、柔性、无粘结剂、制备工艺简单等特点,可实现批量化生产,具有应用于锂离子电池、超级电容器、燃料电池和水电解等电化学储能与转换领域的潜力。
本发明所提供的柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,无需使用粘结剂,可直接作为一体化复合电极使用,大大降低了电极质量,同时减少了打浆、涂布等环节,精简了工艺步骤。有机活化剂改善了钨盐在碳纳米管薄膜中的分散性;有机活化剂热解产生的薄碳层紧紧包覆在氧化钨表面,可以有效减缓氧化钨在电化学循环过程中存在较大的体积变化问题,提升了氧化钨的电化学性能。一方面多孔结构碳纳米薄膜作为导电剂,具有良好的导电网络,提升氧化钨电极材料的导电性能,降低氧化钨的电荷转移电阻;同时碳纳米管缩短锂离子的扩散距离,提高了电池的导电性;另一方面碳纳米管薄膜作为集流体,具有轻质、柔性等特性,有助于实现传统氧化钨材料在柔性一体化电极中的应用。
附图说明
图1为实施例1中碳包覆氧化钨/碳纳米管薄膜复合材料的宏观图。
图2为实施例1中的碳包覆氧化钨/碳纳米管薄膜复合电极的宏观图。
图3 为实施例1和实施例2中复合电极的锂离子充放电性能对比图。
具体实施方式
以下内容为本发明的具体实施方式。需要指出的是,对于这些实施方式的说明用于帮助理解本发明,但本发明的保护范围不限于下述的实施例。此外,下面所描述的本发明各个具体实施方式中所涉及的技术特征只要彼此之间没有产生冲突就可以相互组合。
实施例1。
将1g六氯化钨溶于50 mL混合溶液(25 mL无水乙醇与25 mL去离子水)中,超声分散,置于喷洒壶中。在制备碳纳米管薄膜(10*30 cm2)的同时,将混合溶液均匀喷涂在碳纳米管管束表面。将喷涂完的复合膜进行静置、风干、裁剪。将裁剪好的复合薄膜置于高压反应釜中进行溶剂热反应。反应釜中溶剂为无水乙醇与水混合溶液,体积比为1:1(60 mL水:60 mL无水乙醇);反应温度为180 ℃,反应时间为4 h。反应完自然冷却,取出复合薄膜,自然晾干。将晾干的复合薄膜置于高温反应炉中,在氮气气氛下,煅烧温度为500 ℃,保温时间为1 h,冷却后即可获得一体化的碳包覆氧化钨/碳纳米管薄膜复合材料。将上述薄膜进行辊压、冲片,即可得到一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,放电比容量达到900 mAh g-1,循环50圈后比容量达到400mAh g-1,外电阻达到30欧姆。可应用于锂离子电池、超级电容器、燃料电池和水电解等领域。
实施例2。
将1g六氯化钨和1g柠檬酸溶于50 mL混合溶液(25 mL无水乙醇与25 mL去离子水)中,超声分散,置于喷洒壶中。在制备碳纳米管薄膜(10*30 cm2)的同时,将混合溶液均匀喷涂在碳纳米管管束表面。将喷涂完的复合膜进行静置、风干、裁剪。将裁剪好的复合薄膜置于高压反应釜中进行溶剂热反应。反应釜中溶剂为无水乙醇与水混合溶液,体积比为1:1(60 mL水:60 mL无水乙醇);反应温度为180 ℃,反应时间为4 h。反应完自然冷却,取出复合薄膜,自然晾干。将晾干的复合薄膜置于高温反应炉中,在氮气气氛下,煅烧温度为500℃,保温时间为1 h,冷却后即可获得一体化的碳包覆氧化钨/碳纳米管薄膜复合材料。将上述薄膜进行辊压、冲片,即可得到一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,放电比容量达到1100 mAh g-1,循环50圈后比容量达到500mAh g-1,外电阻达到20欧姆。可应用于锂离子电池、超级电容器、燃料电池和水电解等领域。
实施例3。
将1 g六氯化钨和2 g柠檬酸溶于 50 mL 混合溶液(25 mL无水乙醇与25 mL去离子水)中,超声分散,置于喷洒壶中。在制备碳纳米管薄膜(10*30 cm2)的同时,将混合溶液均匀喷涂在碳纳米管管束表面。将喷涂的复合碳膜进行静置、风干、裁剪。将裁剪好的复合薄膜置于高压反应釜中进行溶剂热反应。反应釜中溶剂为无水乙醇与水混合溶液,体积比例2:1(80 mL无水乙醇:40 mL水);反应温度为180℃,反应时间为4 h。反应完自然冷却,取出复合薄膜,自然晾干。将晾干的复合薄膜置于高温反应炉中,在氮气气氛下,煅烧温度为500 ℃,保温时间为2 h,冷却后即可获得一体化的碳包覆氧化钨/碳纳米管薄膜复合材料。将上述薄膜进行辊压、冲片,即可得到一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,放电比容量达到1000 mAh g-1,循环50圈后比容量达到450mAh g-1,外电阻达到20欧姆。可应用于锂离子电池、超级电容器、燃料电池和水电解等领域。
实施例4。
将1 g六氯化钨和3 g柠檬酸 溶于50 mL混合溶液(25 mL无水乙醇与25 mL去离子水)中,超声分散,置于喷洒壶中。在制备碳纳米管薄膜(10*30 cm2)的同时,将混合溶液均匀喷涂在碳纳米管管束表面。将喷涂的复合碳膜进行静置、风干、裁剪。将裁剪好的复合薄膜置于高压反应釜中进行溶剂热反应。反应釜中溶剂为无水乙醇与水混合溶液,体积比例3:1(90 mL无水乙醇:30 mL水);反应温度为180℃,反应时间为4 h。反应完自然冷却,取出复合薄膜,自然晾干。将晾干的复合薄膜置于高温反应炉中,在氮气气氛下,煅烧温度为500℃,保温时间为1 h,冷却后即可获碳包覆氧化钨/碳纳米管薄膜复合材料。将上述薄膜进行辊压、冲片,即可得到一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,放电比容量达到1100 mAh g-1,循环50圈后比容量达到500mAh g-1,外电阻达到25欧姆。可应用于锂离子电池、超级电容器、燃料电池和水电解等领域。
实施例5。
将2 g六氯化钨和2 g柠檬酸 溶于50 mL混合溶液(25 mL无水乙醇与25 mL去离子水)中,超声分散,置于喷洒壶中。在制备碳纳米管薄膜(10*30 cm2)的同时,将混合溶液均匀喷涂在碳纳米管管束表面。将喷涂的复合碳膜进行静置、风干、裁剪。将裁剪好的复合薄膜置于高压反应釜中进行溶剂热反应。反应釜中溶剂为无水乙醇与水混合溶液,体积比例1:1(60 mL无水乙醇:60 mL水);反应温度为180℃,反应时间为4 h。反应完自然冷却,取出复合薄膜,自然晾干。将晾干的复合薄膜置于高温反应炉中,在氮气气氛下,煅烧温度为400℃,保温时间为1 h,冷却后即可获得碳包覆氧化钨/碳纳米管薄膜复合材料。将上述薄膜进行辊压、冲片,即可得到一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,放电比容量达到1100 mAh g-1,循环50圈后比容量达到500mAh g-1,外电阻达到20欧姆。可应用于锂离子电池、超级电容器、燃料电池和水电解等领域。
实施例6。
将2 g六氯化钨和2 g葡萄糖溶于50 mL混合溶液(25 mL无水乙醇与25 mL去离子水)中,超声分散,置于喷洒壶中。在制备碳纳米管薄膜(10*30 cm2)的同时,将混合溶液均匀喷涂在碳纳米管管束表面。将喷涂的复合碳膜进行静置、风干、裁剪。将裁剪好的复合薄膜置于高压反应釜中进行溶剂热反应。反应釜中溶剂为无水乙醇与水混合溶液,体积比例1:1(60 mL无水乙醇:60 mL水);反应温度为180 ℃,反应时间为4 h。反应完自然冷却,取出复合薄膜,自然晾干。将晾干的复合薄膜置于高温反应炉中,在氮气气氛下,煅烧温度为450℃,保温时间为2 h,冷却后即可获得碳包覆氧化钨/碳纳米管薄膜复合材料。将上述薄膜进行辊压、冲片,即可得到一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,放电比容量达到1200 mAh g-1,循环50圈后比容量达到500mAh g-1,外电阻达到25欧姆。可应用于锂离子电池、超级电容器、燃料电池和水电解等领域。
实施例7。
将2 g偏钨酸铵和1 g柠檬酸溶于 50 mL 混合溶液(25 mL无水乙醇与25 mL去离子水)中,超声分散,置于喷洒壶中。在制备碳纳米管薄膜(10*30 cm2)的同时,将混合溶液均匀喷涂在碳纳米管管束表面。将喷涂的复合碳膜进行静置、风干、裁剪。将裁剪好的复合薄膜置于高压反应釜中进行溶剂热反应。反应釜中溶剂为无水乙醇与水混合溶液,体积比例1:1(60 mL无水乙醇:60 mL水);反应温度为180 ℃,反应时间为8 h。反应完自然冷却,取出复合薄膜,自然晾干。将晾干的复合薄膜置于高温反应炉中,在氮气气氛下,煅烧温度为500 ℃,保温时间为0.5 h,冷却后即可获得碳包覆氧化钨/碳纳米管薄膜复合材料。将上述薄膜进行辊压、冲片,即可得到一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,放电比容量达到1000 mAh g-1,循环50圈后比容量达到400mAh g-1,外电阻达到30欧姆。可应用于锂离子电池、超级电容器、燃料电池和水电解等领域。

Claims (10)

1.一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,其特征在于:在制备碳纳米管薄膜的过程中,采用喷涂技术将钨盐溶液喷洒在碳纳米管管束表面,形成碳纳米管薄膜/钨盐/碳纳米管薄膜层层自组装复合前驱体;将该复合前驱体置于高压反应釜中进行溶剂热反应;反应结束后降至室温,干燥,得到复合膜;将干燥后的复合膜置于管式炉中,于氮气气氛中煅烧,得到碳包覆氧化钨/碳纳米管薄膜复合材料;将上述薄膜材料进行辊压、冲片,即可得到柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极。
2.根据权利要求1所述的一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,其特征在于:包括以下步骤:
(1)先将钨盐加入无水乙醇与蒸馏水的混合溶液中,再加入水溶性有机活化剂,配制成钨盐溶液,并对该溶液进行超声分散;
(2)将步骤(1)中的分散溶液倒入喷洒壶中,在制备碳纳米管薄膜过程中,将钨盐溶液喷洒在碳纳米管管束表面,形成碳纳米管薄膜/钨盐/碳纳米管薄膜层层自组装复合前驱体;
(3)把步骤(2)中的复合前驱体置于含有乙醇/水的聚四氟乙烯内胆的反应釜中,进行溶剂热反应,反应温度160—200oC,反应时间1—10 h,反应结束并自然降至室温后,取出复合前驱体,进行干燥;
(4)将步骤(3)中干燥的复合前驱体置于管式炉中,并在氮气气氛中进行煅烧,煅烧温度为400—600 oC,煅烧时间为0.5—4 h;
(5)自然降温至室温,得到碳包覆氧化钨/碳纳米管薄膜复合材料;
(6)将步骤(5)中的复合材料进行辊压、冲片,即可得到柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极。
3.根据权利要求2所述的一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,其特征在于:步骤(1)中的钨盐为六氯化钨、偏钨酸铵、仲钨酸铵、钨酸钠等其中一种或多种组合。
4.根据权利要求2所述的一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,其特征在于:步骤(1)中的水溶性有机活化剂为柠檬酸、醋酸、十二烷基苯磺酸钠、聚乙烯吡咯烷酮、脂肪醇等其中一种或多种组合。
5.根据权利要求2所述的一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,其特征在于:步骤(3)中所述乙醇和水的体积比1:1—5:1。
6.一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极的制备方法,其特征在于:在制备碳纳米管薄膜的过程中,采用喷涂技术将钨盐溶液喷洒在碳纳米管管束表面,形成碳纳米管薄膜/钨盐/碳纳米管薄膜层层自组装复合前驱体;将该复合前驱体置于高压反应釜中进行溶剂热反应;反应结束后降至室温,干燥,得到复合膜;将干燥后的复合膜置于管式炉中,于氮气气氛中煅烧,得到碳包覆氧化钨/碳纳米管薄膜复合材料;将上述薄膜材料进行辊压、冲片,即可得到柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极。
7.根据权利要求6所述的一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极的制备方法,其特征在于:包括以下步骤:
(1)先将钨盐加入无水乙醇与蒸馏水的混合溶液中,再加入水溶性有机活化剂,配制成钨盐溶液,并对该溶液进行超声分散;
(2)将步骤(1)中的分散溶液倒入喷洒壶中,在制备碳纳米管薄膜过程中,将钨盐溶液喷洒在碳纳米管管束表面,形成碳纳米管薄膜/钨盐/碳纳米管薄膜层层自组装复合前驱体;
(3)把步骤(2)中的复合前驱体置于含有乙醇/水的聚四氟乙烯内胆的反应釜中,进行溶剂热反应,反应温度160—200oC,反应时间1—10 h,反应结束并自然降至室温后,取出复合前驱体,进行干燥;
(4)将步骤(3)中干燥的复合前驱体置于管式炉中,并在氮气气氛中进行煅烧,煅烧温度为400—600 oC,煅烧时间为0.5—4 h;
(5)自然降温至室温,得到碳包覆氧化钨/碳纳米管薄膜复合材料;
(6)将步骤(5)中的复合材料进行辊压、冲片,即可得到柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极。
8.根据权利要求7所述的一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,其特征在于:步骤(1)中的钨盐为六氯化钨、偏钨酸铵、仲钨酸铵、钨酸钠等其中一种或多种组合。
9.根据权利要求7所述的一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,其特征在于:步骤(1)中的水溶性有机活化剂为柠檬酸、醋酸、十二烷基苯磺酸钠、聚乙烯吡咯烷酮、脂肪醇等其中一种或多种组合。
10.根据权利要求7所述的一种柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极,其特征在于:步骤(3)中所述乙醇和水的体积比1:1—5:1。
CN202110131221.2A 2021-01-30 2021-01-30 柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极及其制备方法 Active CN112701268B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110131221.2A CN112701268B (zh) 2021-01-30 2021-01-30 柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110131221.2A CN112701268B (zh) 2021-01-30 2021-01-30 柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极及其制备方法

Publications (2)

Publication Number Publication Date
CN112701268A true CN112701268A (zh) 2021-04-23
CN112701268B CN112701268B (zh) 2022-03-22

Family

ID=75516500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110131221.2A Active CN112701268B (zh) 2021-01-30 2021-01-30 柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极及其制备方法

Country Status (1)

Country Link
CN (1) CN112701268B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644246A (zh) * 2021-08-15 2021-11-12 江西理工大学 一种基于持续电接触网络的自发碎化硅电极及其制备方法
CN115094432A (zh) * 2022-05-12 2022-09-23 中国科学院金属研究所 一种结构功能一体化过渡金属碳化物/单壁碳纳米管复合薄膜的制备方法
CN115636480A (zh) * 2022-10-12 2023-01-24 湖南工商大学 碳包覆氧化钨复合电极材料及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643638A (zh) * 2012-04-28 2012-08-22 中国科学院苏州纳米技术与纳米仿生研究所 三氧化钨碳纳米管复合薄膜、其制备方法及应用
JP2014534557A (ja) * 2011-10-06 2014-12-18 コリア エレクトロテクノロジー リサーチ インスティテュート 2次元ナノ素材により伝導性が向上した1次元伝導性ナノ素材基盤伝導性フィルム
CN105600825A (zh) * 2015-12-25 2016-05-25 江西理工大学 一种由碳纳米管调节氧化钨形貌与尺寸的方法
CN106449166A (zh) * 2016-11-08 2017-02-22 东华大学 基于单壁碳纳米管/氧化钨纳米线复合薄膜电极的超级电容器制备方法
CN106711413A (zh) * 2016-12-14 2017-05-24 合肥国轩高科动力能源有限公司 一种锂离子电池多壁碳纳米管/二硫化钼复合电极及制备方法
CN106920975A (zh) * 2017-04-11 2017-07-04 浙江工业大学 一种三维网络状碳化钨‑碳纳米管复合材料的制备方法
CN109894139A (zh) * 2019-04-28 2019-06-18 河北大学 一种氮掺杂碳包覆氧化钨纳米线复合材料及其制备方法与应用
CN111564620A (zh) * 2020-05-23 2020-08-21 江西理工大学 一种利用碳纳米管连续体快速制备柔性电池的方法
CN111974377A (zh) * 2020-09-01 2020-11-24 陕西科技大学 一种高活性高稳定性的碳包覆缺陷氧化钨产氢催化剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534557A (ja) * 2011-10-06 2014-12-18 コリア エレクトロテクノロジー リサーチ インスティテュート 2次元ナノ素材により伝導性が向上した1次元伝導性ナノ素材基盤伝導性フィルム
CN102643638A (zh) * 2012-04-28 2012-08-22 中国科学院苏州纳米技术与纳米仿生研究所 三氧化钨碳纳米管复合薄膜、其制备方法及应用
CN105600825A (zh) * 2015-12-25 2016-05-25 江西理工大学 一种由碳纳米管调节氧化钨形貌与尺寸的方法
CN106449166A (zh) * 2016-11-08 2017-02-22 东华大学 基于单壁碳纳米管/氧化钨纳米线复合薄膜电极的超级电容器制备方法
CN106711413A (zh) * 2016-12-14 2017-05-24 合肥国轩高科动力能源有限公司 一种锂离子电池多壁碳纳米管/二硫化钼复合电极及制备方法
CN106920975A (zh) * 2017-04-11 2017-07-04 浙江工业大学 一种三维网络状碳化钨‑碳纳米管复合材料的制备方法
CN109894139A (zh) * 2019-04-28 2019-06-18 河北大学 一种氮掺杂碳包覆氧化钨纳米线复合材料及其制备方法与应用
CN111564620A (zh) * 2020-05-23 2020-08-21 江西理工大学 一种利用碳纳米管连续体快速制备柔性电池的方法
CN111974377A (zh) * 2020-09-01 2020-11-24 陕西科技大学 一种高活性高稳定性的碳包覆缺陷氧化钨产氢催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PENG SUN等: ""Freestanding CNT–WO3 hybrid electrodes for flexible asymmetric supercapacitors"", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
PRAGATI A. SHINDE等: ""Direct growth of WO3 nanostructures on multi-walled carbon nanotubes for high-performance flexible all-solid-state asymmetric supercapacitor"", 《ELECTROCHIMICA ACTA》 *
秦玉香等: ""氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理"", 《物理学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644246A (zh) * 2021-08-15 2021-11-12 江西理工大学 一种基于持续电接触网络的自发碎化硅电极及其制备方法
CN115094432A (zh) * 2022-05-12 2022-09-23 中国科学院金属研究所 一种结构功能一体化过渡金属碳化物/单壁碳纳米管复合薄膜的制备方法
CN115094432B (zh) * 2022-05-12 2024-03-08 中国科学院金属研究所 一种结构功能一体化过渡金属碳化物/单壁碳纳米管复合薄膜的制备方法
CN115636480A (zh) * 2022-10-12 2023-01-24 湖南工商大学 碳包覆氧化钨复合电极材料及其制备方法和应用
CN115636480B (zh) * 2022-10-12 2024-03-08 湖南工商大学 碳包覆氧化钨复合电极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112701268B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN112701268B (zh) 柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极及其制备方法
CN109728246B (zh) 一种氮磷共掺杂有序介孔碳材料及其制备方法和应用
CN111199835B (zh) 分级结构镍钴硒/镍钴双氢氧化物复合电极材料制备方法
CN100492721C (zh) 高倍率锂离子电池极片及其制备方法
CN106340401B (zh) 一种复合电极材料的制备方法及其应用
WO2020006788A1 (zh) 一种金属有机框架碳纳米管复合材料的制备方法
CN109346702B (zh) 一种锂电池的负极材料及其制备方法
CN106450245B (zh) 一种柔性可充放电锂硫电池正极材料及其制备方法
CN110148716A (zh) 一种多球堆积碳包覆二氧化锰复合材料的结构及制备方法
CN112421017B (zh) 一种无粘结剂水系锌离子电池正极复合材料的制备方法
CN116621156B (zh) 一种氮掺杂多孔碳材料及其制备方法与应用
CN109686902A (zh) 锂硫电池用复合隔膜、其制备方法及应用
CN115064676A (zh) 一种钠离子电池正极材料及其制备方法与应用
CN113270577A (zh) 一种水系锌离子电池及正极材料
CN112694080A (zh) 一种具有嵌入式导电网络结构的炭微球、制备方法及其储能应用
CN104852042A (zh) 一种用于锂离子电池负极材料的钴铁复合氧化物纳米棒的制备方法及应用
CN110265644B (zh) 一种网状多孔结构的五氧化二锑/聚丙烯酸/碳布柔性钠离子电池负极材料的制备方法
CN108565448B (zh) 一种二氧化锡/石墨烯复合材料及其制备方法
CN109727783B (zh) 一种炭纸负载的碳空心球复合材料、制备方法及其应用
CN110783542A (zh) 一种纸巾衍生碳纤维负载MoS2微米花复合材料的制备方法及其在锂硫电池中的应用
CN113972375B (zh) 一种多孔碳纤维/氧化钨自支撑锂硫电池正极材料制备方法及其应用
CN116093300A (zh) 一种简单预锂金属掺杂硅氧碳负极材料及其制备方法
CN111710532B (zh) 一种三氧化二锑-碳纳米管复合材料及其制备和应用
CN109920986B (zh) 一种三维多孔结构复合电极材料的制备方法与应用
CN113066979A (zh) S@VxSy复合正极材料及其制备方法和锂硫电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant