CN110016641A - 一种镜面高光洁度的硬质涂层及其制备方法 - Google Patents

一种镜面高光洁度的硬质涂层及其制备方法 Download PDF

Info

Publication number
CN110016641A
CN110016641A CN201910225220.7A CN201910225220A CN110016641A CN 110016641 A CN110016641 A CN 110016641A CN 201910225220 A CN201910225220 A CN 201910225220A CN 110016641 A CN110016641 A CN 110016641A
Authority
CN
China
Prior art keywords
hard coat
preparation
sample
cleanliness
specular lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910225220.7A
Other languages
English (en)
Inventor
彭继华
苏东艺
梁献文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Jintai Science and Technology Co., Ltd.
South China University of Technology SCUT
Original Assignee
Guangzhou New Industrial Co Ltd
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou New Industrial Co Ltd, South China University of Technology SCUT filed Critical Guangzhou New Industrial Co Ltd
Priority to CN201910225220.7A priority Critical patent/CN110016641A/zh
Publication of CN110016641A publication Critical patent/CN110016641A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种镜面高光洁度的硬质涂层及其制备方法。所述制备方法包括以下步骤:(1)将金属或陶瓷样品进行表面预处理,去除表面污染物;(2)将预处理后的样品固定在真空室的工件托架上,采用离子源获得的惰性气体离子束刻蚀活化样品表面并加热样品;(3)磁控溅射制备厚度为100‑300nm金属氮化物过渡镀层;(4)磁控溅射制备厚度为1‑5μm的硬质涂层,且采用切入角为50°‑80°的惰性气体离子束在线周期性地刻蚀硬质涂层表面,所述硬质涂层为多元合金氮化物硬质涂层或多元合金碳氮化物硬质涂层。该涂层与样品基体结合力高,表面呈镜面,表面凸起物数量和密度低。

Description

一种镜面高光洁度的硬质涂层及其制备方法
技术领域
本发明涉及金属表面处理技术领域,具体涉及一种镜面高光洁度的硬质涂层及其制备方法。
背景技术
铝合金成型加工对精密模具的要求越来越高。在饮料罐、喷雾罐、化妆品罐等产品的各种成型工艺(扩、拉、挤、镦)中使用精密模具,甚至在诸如汽车铝合金零部件(如气缸套筒)的高温高速热挤压中也大量使用精密模具。精磨涂层模具对尺寸精度、表面光洁度的要求也来越高,要求表面达到数十纳米以下的平均粗糙度,且表面不容许有微米级的颗粒出现和存在,即在100×光学显微镜下呈镜面状态。
经过几十年的发展,各种各样的模具涂层技术层出不穷,制备方法涵盖物理气相沉积(PVD)和化学气相沉积(CVD)。目前某些技术可令涂层表面达到目视光滑效果,如专利CN 108930022A采用阳极层离子源辅助双极脉冲磁控溅射沉积技术制备出的多层多元纳米复合涂层表面光滑、结构致密;CN 107338409A报道的采用磁场控制阴极电弧技术制备的涂层“大颗粒”数量少而均匀、表面光滑;CN 106868450 A采用调制高功率脉冲磁控溅射制备获得的AlTiN涂层表面光滑、组织致密等。然而,以上这些技术制备的涂层尚难以达到高精密模具表面质量要求,CVD技术制备的涂层表面仍或多或少存在反应产物堆积,导致表面在100×光学显微镜下依然有颗粒物存在。
鉴于上述需求与技术实现间存在的矛盾,急需开发合理的技术来实现硬质涂层表面镜面化、洁净化的目标。
发明内容
本发明的目的在于克服现有技术的不足之处而提供一种镜面高光洁度的硬质涂层及其制备方法,该涂层与基体结合力高,表面呈镜面效果,表面的凸起物数量和密度低。
针对精密模具要求在100×光学显微镜下观察表面无颗粒的苛刻需求,本发明采用磁控溅射为基本技术,但是磁控溅射制备涂层过程中,靶材打火、工件转架、炉壁可能释放微粒吸附于工件表面,甚至真空室内的一些悬浮物也有可能吸附到工件表面,因此颗粒物似乎难以避免,必须在涂层涂制过程中不断地进行“抛光”处理,清除涂层表面吸附的微粒。
机械、化学抛光因为增加了大量工序及成本,因此被摒弃。基于离子刻蚀具有清除表面污物的功能,本发明将将其引入到硬质涂层的成膜过程,但必须要解决的问题之一是离子刻蚀的选择性,即要求离子刻蚀主要针对表面凸起物,而不对非凸起部分造成强烈溅射,削弱薄膜的沉积厚度。
为此目的,本发明采用直流水冷铜线圈产生的磁场控制刻蚀离子束的运行,及其与工件碰撞时的切入方向,该方向以阳离子在离开线圈时的合成速度与试样表面的法向夹角θ表示。实验发现,当控制θ=50°-80°时,离子束对凸起物的“抛光”效果最佳,且对涂层的“减薄”效应极小。在Hauzer Flexcoat 850真空镀膜系统的偏制热丝弧离子源出口安装该绕线铜管,且当电流控制在0.5-1A时,可控制阳离子与转架的切入角达到θ=50°-80°,在转架中心设置辅热丝弧离子源的辅助阳极以接收离子束中的电子(以下简称辅助阳极)。本发明的制备方法正是基于该该改造的装备,以下装备名称仍使用Hauzer Flexcoat 850。
为实现上述目的,本发明采取的技术方案如下:
一种镜面高光洁度的硬质涂层的制备方法,包括以下步骤:
(1)将金属或陶瓷样品进行表面预处理,去除表面污染物;
(2)将预处理后的样品固定在真空室的工件托架上,采用离子源获得的惰性气体离子束刻蚀活化样品表面并加热样品;
(3)磁控溅射制备厚度为100-300nm金属氮化物过渡镀层;
(4)磁控溅射制备厚度为1-5μm的硬质涂层,且制备硬质涂层时采用切入角为50°-80°的惰性气体离子束在线周期性地刻蚀硬质涂层表面,所述硬质涂层为多元合金氮化物硬质涂层或多元合金碳氮化物硬质涂层。
本发明采用高效率的在线离子刻蚀方法,优化惰性气体离子束的切入角为50°-80°,以使离子刻蚀主要针对涂层表面凸起物,而不会对非凸起部分造成强烈溅射,削弱涂层的沉积厚度,实现了对涂层表面随时平整化的效果。本发明制备的硬质涂层耐腐蚀抗变色,且与样品基体结合力高,表面呈镜面,表面凸起物数量和密度低,光洁度高,将其应用与精密模具中能够提高产品质量和延长模具寿命。
作为本发明所述的镜面高光洁度的硬质涂层的制备方法的优选实施方式,所述步骤(2)中,通过离子源通入惰性气体使真空室的压强维持为0.1Pa,开启离子源轰击样品表面,施加工件偏压为100-200V,直流弧电流维持为10-30A。
作为本发明所述的镜面高光洁度的硬质涂层的制备方法的优选实施方式,所述步骤(2)中,加热温度为400℃-600℃。
作为本发明所述的镜面高光洁度的硬质涂层的制备方法的优选实施方式,所述步骤(3)中,将惰性气体通入真空室并维持压强为0.1Pa,然后通入氮气使真空室压强升高至0.3-1.0Pa;启动金属磁控溅射靶Me1,调节磁控溅射双极脉冲直流电源:负脉冲电压-600V,正脉冲电压+100V,频率3000Hz,占空比80%;同时调节双极脉冲偏压电源:负脉冲电压100V,正脉冲峰值0V,频率40kHz,占空比50%-80%;所述Me1金属磁控溅射靶为Ti靶或Cr靶。
作为本发明所述的镜面高光洁度的硬质涂层的制备方法的优选实施方式,所述步骤(4)中,通入反应气体并使真空室的压强升高至0.5-2Pa,启动合金磁控溅射靶Me2,调节磁控溅射双极脉冲直流电源:负脉冲电压-600V,正脉冲电压+100V,频率3000Hz,占空比80%;同时调节双极脉冲偏压电源:负脉冲电压50V,正脉冲峰值为0V,频率40kHz,占空比50%-80%;
作为本发明所述的镜面高光洁度的硬质涂层的制备方法的优选实施方式,所述步骤(4)中,所述反应气体为氮气。
作为本发明所述的镜面高光洁度的硬质涂层的制备方法的优选实施方式,所述步骤(4)中,所述反应气体为氮气与甲烷的混合气,优选地,所述混合气中氮气与甲烷的流量比为1:1。
作为本发明所述的镜面高光洁度的硬质涂层的制备方法的优选实施方式,所述步骤(4)中,每沉积200nm厚的硬质涂层使用惰性气体离子束以50°-80°切入角对其进行刻蚀抛光5分钟。通过控制沉积周期和抛光时间,在清除涂层表面吸附的微粒,及与涂层结合力弱的颗粒的同时,又能保证不会对非凸起部分造成强烈溅射,削弱涂层的沉积厚度,使硬质涂层表面达到在线“抛光”效果。
作为本发明所述的镜面高光洁度的硬质涂层的制备方法的优选实施方式,所述惰性气体为Ar、Kr或Xe,Ti-Al二元合金、Cr-Al二元合金、Ti-Al-Si三元合金或Cr-Al-Si三元合金。
本发明还提供了一种根据上述方法制备的得到的镜面高光洁度的硬质涂层。该涂层与样品基体结合力高,表面呈镜面,表面的凸起物数量和密度低。
与现有技术相比,本发明的有益效果为:
1)本发明能够在精密模具表面制备镜面化、高光洁度的硬质涂层;
2)本发明采用高效率的在线离子刻蚀方法使涂层表面达到在线“抛光”效果,消除表面上与涂层结合力弱的颗粒,实现了对涂层表面随时平整化的效果;
3)采用本发明制备的铝合金成形精密模具可大幅度地提高成品质量和延长模具寿命。
附图说明
图1为本发明制备的涂层结构剖视图,图中,1-样品基体,2-金属氮化物过渡镀层,3-硬质涂层。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明进一步说明。本领域技术人员应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例中,所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
以下实施例中涂层的性能测试方法:
自真空室取出的涂层后样品的结合力采用150kg洛氏压痕,按照DIN-VDI3198标准判定涂层结合力,结合力评级超过HF2判定为合格;
采用OLYMPUS 100×立体光学显微镜随机观察表面凸起物,3个随机视场内可见凸起物总数小于15个则判定为为合格。
实施例1:H13模具钢试片镜面硬质涂层涂覆处理
本实施例的H13模具钢试片镜面硬质涂层的制备方法包括以下步骤:
步骤1:尺寸为20×20×5mm的方形24K金试片在清洗线清洗使表面洁净后,用无油压缩空气烘干,装挂在卡具上放入含有低压直流弧等离子源和磁控溅射的真空镀膜系统,并开动工件托架旋转;
步骤2:真空室被抽到背底真空低于5×10-3Pa后,通过离子源通入氩气(Ar)250sccm使真空室维持压强为0.1Pa,开启离子源轰击清洗试片施加工件偏压200V;期间维持直流弧电流为30A。离子轰击清洗40分钟后关闭该离子源;刻蚀活化的同时开动加热电源加热试样到400℃,该温度一直维持到涂层沉积结束;
步骤3:通入Ar维持压强为0.1Pa;然后通入氮气使真空室压强升高到0.3Pa,制备TiN过渡层;开动纯金属磁控溅射靶Ti靶,功率5kW,调节磁控溅射双极脉冲直流电源负脉冲电压-600V,正脉冲电压+100V,频率3000Hz,占空比80%;调整脉冲偏压偏压为负脉冲电压100V,正脉冲峰值为0V,频率为40KHz,占空比80%;沉积300nm厚TiN层后关闭磁控溅射靶Ti靶;
步骤4:制备200nm厚的Ti50Al50N硬质涂层:
I.维持惰性气体的流量不变,调节氮气流量使真空室的压强升高到0.5Pa;开动合金磁控溅射靶Ti50Al50靶,功率5kW;调节磁控溅射双极脉冲直流电源负脉冲电压-600V,正脉冲电压+100V,频率3000Hz,占空比80%;同时调节双极脉冲偏压电源并调整偏压为负脉冲电压50V,正脉冲峰值为0V,频率40kHz;持续沉积时间7分钟后关闭磁控溅射电源和氮气;
II.开动热丝弧离子源并开通辅助阳极,调整线圈COIL电流为1A,调节偏压负脉冲峰值400V,对涂层表面刻蚀“抛光”5分钟;
重复上述步骤I和II共25次,耗时300分钟后关闭所有电源和气体;样品随炉冷却到150℃后取出。
如图1所示,本实施例所得H13模具钢试片从下到上依次为H13基体1、200nm厚的TiN过渡层和5μm厚Ti50Al50N硬质涂层3。
本实施例获得H13试片经洛氏压痕测试结合力达到HF1;在100×光学显微镜下观察,随机3个视场内的可见凸起物总数为7。
实施例2硬质合金YG10试片镜面硬质涂层涂覆处理
本实施例的硬质合金YG10试片镜面硬质涂层的制备方法包括以下步骤:
步骤1:尺寸为20×20×5mm的方形硬质合金YG10试片在清洗线清洗使表面洁净后,用无油压缩空气烘干,装挂在卡具上放入含有低压直流弧等离子源和磁控溅射的真空镀膜系统,并开动工件托架旋转。
步骤2:真空室被抽到背底真空低于5×10-3Pa后,通过离子源通入氪气(Kr)250sccm使真空室维持压强为0.1Pa,开启离子源轰击清洗试片施加工件偏压100V;期间维持直流弧电流为10A,离子轰击清洗40分钟后关闭该离子源;刻蚀活化的同时开动加热电源加热试样到600℃,该温度一直维持到涂层沉积结束。
步骤3:通入Kr维持压强为0.1Pa;然后通入氮气使真空室压强升高到1.0Pa,制备CrN过渡层;开动纯金属磁控溅射靶Cr靶,功率5kW,调节磁控溅射双极脉冲直流电源负脉冲电压-600V,正脉冲电压+100V,频率3000Hz,占空比80%;调整脉冲偏压偏压为负脉冲电压100V,正脉冲峰值为0V,频率为40kHz,占空比80%;沉积100nm厚的CrN层后关闭磁控溅射靶Cr靶;
步骤4:制备200nm厚的Cr65Al35N硬质涂层:
I.维持惰性气体的流量不变,调节氮气流量使真空室的压强升高到2.0Pa;开动合金磁控溅射靶Cr65Al35靶,功率5KW;调节磁控溅射双极脉冲直流电源负脉冲电压-600V,正脉冲电压+100V,频率3000Hz,占空比80%;同时调节双极脉冲偏压电源并调整偏压为负脉冲电压50V,正脉冲峰值为0V,频率40kHz;持续沉积时间8分钟后关闭磁控溅射电源和氮气;
II.开动热丝弧离子源并开通辅助阳极,调整线圈COIL电流为0.5A,调节偏压负脉冲峰值200V,对涂层表面刻蚀“抛光”5分钟;
重复上述步骤I和II共5次,耗时75分钟后关闭所有电源和气体;样品随炉冷却到150℃后取出。
如图1所示,本实施例所得试片从下到上依次为YG10基体1、100nm厚的CrN过渡层和1微米厚类Cr65Al35N涂层3。
本实施例获得试片经洛氏压痕测试结合力达到HF1;在100×光学显微镜下观察,随机3个视场内的可见凸起物总数为13。
实施例3 PZT陶瓷试片硬质涂层涂覆处理
本实施例的PZT陶瓷试片硬质涂层的制备方法包括以下步骤:
步骤1:尺寸为20×20×5mm的方形PZT陶瓷试片在清洗线清洗使表面洁净后,用无油压缩空气烘干,装挂在卡具上放入含有低压直流弧等离子源和磁控溅射的真空镀膜系统,并开动工件托架旋转。
步骤2:真空室被抽到背底真空低于5×10-3Pa后,通过离子源通入氙气(Xe)250sccm使真空室维持压强为0.1Pa,开启离子源轰击清洗试片施加工件偏压150V;期间维持直流弧电流为15A。离子轰击清洗40分钟后关闭该离子源;刻蚀活化的同时开动加热电源加热试样到450℃,该温度一直维持到涂层沉积结束;
步骤3:通入Xe维持压强为0.1Pa;然后通入氮气使真空室压强升高到0.5Pa,制备TiN过渡层;开动纯金属磁控溅射靶Ti靶,功率5kW,调节磁控溅射双极脉冲直流电源负脉冲电压-600V,正脉冲电压+100V,频率3000Hz,占空比80%;调整脉冲偏压偏压为负脉冲电压100V,正脉冲峰值为0V,频率为40kHz,占空比80%;沉积200nm厚TiN层后关闭磁控溅射靶Ti靶;
步骤4:制备200nm厚的Ti40Al50Si10NC涂层:
I.维持惰性气体的流量不变,调节流量比氮气:甲烷=1:1的混合气流量使真空室的压强升高到1.0Pa;开动合金磁控溅射靶Ti40Al50Si10靶,功率5kW;调节磁控溅射双极脉冲直流电源负脉冲电压-600V,正脉冲电压+100V,频率3000Hz,占空比80%;同时调节双极脉冲偏压电源并调整偏压为负脉冲电压50V,正脉冲峰值为0V,频率40kHz;持续沉积时间9分钟后关闭磁控溅射电源和氮气;
II.开动热丝弧离子源并开通辅助阳极,调整线圈COIL电流为0.7A,调节偏压负脉冲峰值300V,对涂层表面刻蚀“抛光”5分钟;
重复上述步骤I和II共10次,耗时140分钟后关闭所有电源和气体;样品随炉冷却到150℃后取出。
如图1所示,本实施例所得试片从下到上依次为PZT基体1、200nm厚的TiN过渡层和2微米厚类Ti40Al50Si10NC涂层3。
本实施例获得试片经洛氏压痕测试结合力达到HF1;在100×光学显微镜下观察,随机3个视场内的可见凸起物总数为11。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种镜面高光洁度的硬质涂层的制备方法,其特征在于,包括以下步骤:
(1)将金属或陶瓷样品进行表面预处理,去除表面污染物;
(2)将预处理后的样品固定在真空室的工件托架上,采用离子源获得的惰性气体离子束刻蚀活化样品表面并加热样品;
(3)磁控溅射制备厚度为100-300nm金属氮化物过渡镀层;
(4)磁控溅射制备厚度为1-5μm的硬质涂层,且采用切入角为50°-80°的惰性气体离子束在线周期性地刻蚀硬质涂层表面,所述硬质涂层为多元合金氮化物硬质涂层或多元合金碳氮化物硬质涂层。
2.根据权利要求1所述的镜面高光洁度的硬质涂层的制备方法,其特征在于,所述步骤(2)中,通过离子源通入惰性气体使真空室的压强维持为0.1Pa,开启离子源轰击样品表面,施加工件偏压为100-200V,直流弧电流维持为10-30A。
3.根据权利要求1或2所述的镜面高光洁度的硬质涂层的制备方法,其特征在于,所述步骤(2)中,加热温度为400℃-600℃。
4.根据权利要求1所述的镜面高光洁度的硬质涂层的制备方法,其特征在于,所述步骤(3)中,将惰性气体通入真空室并维持压强为0.1Pa,然后通入氮气使真空室压强升高至0.3-1.0Pa;启动金属磁控溅射靶Me1,调节磁控溅射双极脉冲直流电源:负脉冲电压-600V,正脉冲电压+100V,频率3000Hz,占空比80%;同时调节双极脉冲偏压电源:负脉冲电压100V,正脉冲峰值0V,频率40kHz,占空比50%-80%;所述Me1金属磁控溅射靶为Ti靶或Cr靶。
5.根据权利要求1或4所述的镜面高光洁度的硬质涂层的制备方法,其特征在于,所述步骤(4)中,通入反应气体并使真空室的压强升高至0.5-2Pa,启动合金磁控溅射靶Me2,调节磁控溅射双极脉冲直流电源:负脉冲电压-600V,正脉冲电压+100V,频率3000Hz,占空比80%;同时调节双极脉冲偏压电源:负脉冲电压50V,正脉冲峰值为0V,频率40kHz,占空比50%-80%。
6.根据权利要求5所述的镜面高光洁度的硬质涂层的制备方法,其特征在于,所述步骤(4)中,所述反应气体为氮气。
7.根据权利要求5所述的镜面高光洁度的硬质涂层的制备方法,其特征在于,所述步骤(4)中,所述反应气体为氮气与甲烷的混合气,优选地,所述混合气中氮气与甲烷的流量比为1:1。
8.根据权利要求1所述的镜面高光洁度的硬质涂层的制备方法,其特征在于,所述步骤(4)中,每沉积200nm厚的硬质涂层使用惰性气体离子束以50°-80°切入角对其进行刻蚀抛光5分钟。
9.根据权利要求1所述的镜面高光洁度的硬质涂层的制备方法,其特征在于,所述惰性气体为Ar、Kr或Xe,所述合金为Ti-Al二元合金、Cr-Al二元合金、Ti-Al-Si三元合金或Cr-Al-Si三元合金。
10.根据权利要求1~9任一项所述方法制备的得到的镜面高光洁度的硬质涂层。
CN201910225220.7A 2019-03-22 2019-03-22 一种镜面高光洁度的硬质涂层及其制备方法 Pending CN110016641A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910225220.7A CN110016641A (zh) 2019-03-22 2019-03-22 一种镜面高光洁度的硬质涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910225220.7A CN110016641A (zh) 2019-03-22 2019-03-22 一种镜面高光洁度的硬质涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN110016641A true CN110016641A (zh) 2019-07-16

Family

ID=67189895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910225220.7A Pending CN110016641A (zh) 2019-03-22 2019-03-22 一种镜面高光洁度的硬质涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN110016641A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831233A (zh) * 2015-03-27 2015-08-12 华南理工大学 一种装饰用蓝色陶瓷涂层及其制备方法
CN108385110A (zh) * 2018-04-04 2018-08-10 西安工业大学 一种利用原位溅射结合离子束刻蚀的抛光装置及抛光方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831233A (zh) * 2015-03-27 2015-08-12 华南理工大学 一种装饰用蓝色陶瓷涂层及其制备方法
CN108385110A (zh) * 2018-04-04 2018-08-10 西安工业大学 一种利用原位溅射结合离子束刻蚀的抛光装置及抛光方法

Similar Documents

Publication Publication Date Title
Grigoriev et al. Specific features of the structure and properties of arc-PVD coatings depending on the spatial arrangement of the sample in the chamber
Ferreira et al. Hard and dense diamond like carbon coatings deposited by deep oscillations magnetron sputtering
CN107338409B (zh) 可调控磁场电弧离子镀制备氮基硬质涂层的工艺方法
CN110643955B (zh) 一种高熵合金涂层及其制备方法
CN108251797A (zh) 一种钛合金切削刀具用TiAlN/CrN多层涂层及其制备方法
CN114351110B (zh) 一种强化处理的类金刚石薄膜及其制备方法
CN106756841B (zh) 一种刀具复合涂层的制备方法
CN108977781A (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
JP2002030413A (ja) 薄膜形成装置および薄膜形成方法
JP2002513855A (ja) 保護塗膜を有するガラス成形装置および保護塗膜の施工法
CN107675136B (zh) 一种工件表面pvd镀膜的方法
CN110016641A (zh) 一种镜面高光洁度的硬质涂层及其制备方法
CN110438421A (zh) 一种铝合金材料及铝合金固溶处理+pvd涂层同步强化方法
Leonhardt et al. Plasma enhanced surface treatments using electron beam-generated plasmas
CN106591784B (zh) 一种离子镀制备TiAlSiCN涂层的方法
Xiang et al. Investigation on preparation and properties of thick DLC film in medium-frequency dual-magnetron sputtering
Chunwei et al. Study on vanadium films deposited on concave object by conventional direct current and high power pulsed magnetron sputtering
Mei et al. Microstructure and residual stress of TiN films deposited at low temperature by arc ion plating
CN114855136A (zh) 利用可变磁控靶磁场调控薄膜结构和成分的镀膜系统及镀膜方法
KR100671422B1 (ko) 스퍼터링에 의한 알루미늄 피막 형성방법
CN110983251B (zh) 铝合金切削刀具用多元多层硬质涂层的制备方法
CN112941463A (zh) 一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN114921759B (zh) 多弧离子镀膜涂层工艺
CN210358580U (zh) 一种带有镜面硬质涂层的镶嵌式气缸套筒挤出模具
CN210117420U (zh) 一种带有镜面硬质涂层的铝合金拉罐产线用模具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200108

Address after: No. 201, building 1, No. 22-1, Jungong Road, Guangzhou Economic and Technological Development Zone, Guangdong Province

Applicant after: Guangzhou Jintai Science and Technology Co., Ltd.

Applicant after: South China University of Technology

Address before: 510000 No. 22 Jungong Road, Guangzhou Economic and Technological Development Zone, Guangdong Province

Applicant before: Guangzhou New Industrial Co. Ltd.

Applicant before: South China University of Technology

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190716