CN110983251B - 铝合金切削刀具用多元多层硬质涂层的制备方法 - Google Patents

铝合金切削刀具用多元多层硬质涂层的制备方法 Download PDF

Info

Publication number
CN110983251B
CN110983251B CN201911093987.5A CN201911093987A CN110983251B CN 110983251 B CN110983251 B CN 110983251B CN 201911093987 A CN201911093987 A CN 201911093987A CN 110983251 B CN110983251 B CN 110983251B
Authority
CN
China
Prior art keywords
target
cutter
coating
arc
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911093987.5A
Other languages
English (en)
Other versions
CN110983251A (zh
Inventor
马胜利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201911093987.5A priority Critical patent/CN110983251B/zh
Publication of CN110983251A publication Critical patent/CN110983251A/zh
Application granted granted Critical
Publication of CN110983251B publication Critical patent/CN110983251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种铝合金切削刀具用多元多层硬质涂层的制备方法,包括如下步骤:1)将刀具预处理后放入电弧增强磁控溅射镀膜设备内;2)对刀具进行等离子体清洗;以柱弧Ti靶作为Ti源,通过柱弧Ti靶电流控制柱弧Ti靶的溅射率,制备Ti底层;保持柱弧Ti靶电流,采用高纯N2作为反应气体,制备TiN过渡层;保持柱弧Ti靶电流,调节N2流量,以平面C靶作为C源,通过调整中频脉冲电源的功率控制平面C靶的溅射率,在TiN过渡层上制备TiCN过渡层;将N2流量降为0,调节柱弧Ti靶电流以及平面C靶的电源功率,制备TiC+a‑C复合层,最终在刀具表面沉积形成Ti/TiN/TiCN/TiC+a‑C涂层。本发明制备的涂层可有效抑制铝屑粘刀,增加刀具耐磨性能,显著提高刀具寿命。

Description

铝合金切削刀具用多元多层硬质涂层的制备方法
技术领域
本发明属于硬质涂层制备技术领域,具体涉及一种铝合金切削刀具用多元多层硬质涂层的制备方法,该涂层设计为Ti/TiN/TiCN/TiC+a-C四层复合结构,可有效抑制铝屑粘刀,增加刀具耐磨性能,刀具寿命显著提高。
背景技术
铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。相比淬火钢,钛合金及不锈钢等,切削铝合金时,往往因为粘刀、排屑等问题导致刀具快速磨损,无论刀具材料选择高速钢、硬质合金、陶瓷和聚晶金刚石(PCD),均难以从根本上改善刀具的粘刀和磨损问题。因此,选择适合的刀具涂层,将能有效降低铝合金刀具表面的积屑瘤问题,从而提高刀具使用寿命和加工效率。
铝合金刀具涂层设计总体上应具有很低的摩擦系数和良好的表面光洁度,利于排屑,不与铝合金产生化学反应,还应具有较高硬度,增加刀具的耐磨性能,也就是涂层应该兼具耐磨和减摩性能。长期以来研究者普遍认为类金刚石DLC涂层是铝合金切削刀具最理想选择,并在实践中得到了大量验证。但DLC涂层生产成本高,且涂层结合性能不高,一直限制了DLC涂层在铝合金刀具上的广泛应用。TiN、TiC是传统硬质涂层的代表,很早就已应用于各种切削刀具表面涂覆,但TiN和TiC两类涂层也有明显的性能区别。TiN是综合使用性能较好的一类刀具涂层,硬度HV2400,摩擦系数0.7,单独作为铝合金刀具涂层时效果不佳;而TiC涂层硬度很高HV3400,摩擦系数又低0.2-0.3,但脆性较大,也不能独立应用于铝合金切削刀具涂层。如何通过成分和多层结构优化设计将两者性能有效组合在一起,还是有望在铝合金切削刀具上取得新的突破,并能大幅减低涂层加工成本。
发明内容
针对现有技术中的缺陷和不足,本发明提供了一种铝合金切削刀具用多元多层硬质涂层的制备方法,克服现有DLC涂层生产成本高、结合力较差,以及TiN、TiC涂层摩擦系数高,不适合铝合金刀具涂层等难题,本发明中耐磨损的Ti/TiN/TiCN/TiC+a-C多层复合结构涂层的制备方法制备的新型涂层,有望成为铝合金切削刀具常用DLC涂层的一种替代涂层。
为达到上述目的,本发明采取如下的技术方案:
一种铝合金切削刀具用多元多层硬质涂层的制备方法,该方法通过电弧增强磁控溅射离子镀技术,采用Ar作为主要离化气体、N2作为反应气体,使用柱弧Ti靶和平面C靶,在铝合金切削刀具表面依次沉积Ti底层、TiN过渡层、TiCN过渡层和TiC+a-C复合层,最终在铝合金切削刀具表面沉积形成Ti/TiN/TiCN/TiC+a-C涂层。
本发明还包括如下技术特征:
具体的,该方法具体包括如下步骤:
1)将刀具预处理后放入电弧增强磁控溅射镀膜设备的真空室内的转架杆上;
2)所述刀具装入真空室后,进行等离子体清洗;
采用Ar作为主要离化气体;以柱弧Ti靶作为Ti源,通过柱弧Ti靶电流控制柱弧Ti靶的溅射率,制备Ti底层;
保持柱弧Ti靶电流,采用N2作为反应气体,使其离化并与Ti元素结合,制备TiN过渡层;
保持柱弧Ti靶电流,采用N2作为反应气体,以平面C靶作为C源,平面C靶以对靶的方式安置在真空室内壁上,通过调整中频脉冲电源的功率控制平面C靶的溅射率,在TiN过渡层上制备TiCN过渡层;
调节柱弧Ti靶电流以及平面C靶的电源功率,制备TiC+a-C复合层,最终在刀具表面沉积形成Ti/TiN/TiCN/TiC+a-C涂层。
具体的,所述步骤1中,刀具预处理过程为:将刀具经表面除油、抛光后浸入丙酮中超声波清洗,并酒精脱水。
具体的,所述步骤2中的制备工艺条件:
A)等离子体清洗:
刀具装入真空室后,抽真空并加热到300℃,镀膜前,通入30ml/min的Ar到真空室,当真空室气压达到6Pa时,开偏压至-1000V对真空室的刀具表面进行轰击清洗,持续30分钟;
B)制备Ti底层:
刀具等离子体清洗完成后,调节Ar流量到10ml/min,将真空室气压调至0.5Pa,打开柱弧Ti靶电弧电源,弧电流100A,调整偏压到-200V,制备Ti底层,持续10分钟;
C)制备TiN过渡层:
保持柱弧Ti靶电流为100A,调整偏压到-180V,然后通入流量为50ml/min的N2,在基体表面镀制一层TiN过渡层,持续20min;
D)制备TiCN过渡层:
随后将偏压调整为-100V,Ar流量调整为30ml/min,N2流量调整为30ml/min,保持柱弧Ti靶电流100A,打开平面C靶的控制电源,2分钟内逐渐将平面C靶的电源功率调至15kW,保持真空室气压0.3Pa不变,在TiN过渡层上进行TiCN过渡层制备,镀膜过程中真空室温度为300℃,镀膜时间30min;
E)制备TiC+a-C复合层:
2分钟内将N2流量降为0,柱弧Ti靶电流调整为50A,平面C靶的电源功率调至20kW,保持真空室气压0.3Pa和温度300℃不变,制备TiC+a-C复合层,镀膜时间120min;最终在刀具表面形成了Ti/TiN/TiCN/TiC+a-C多元多层复合结构的硬质涂层。
本发明与现有技术相比,有益的技术效果是:
采用本发明的方法制备的Ti/TiN/TiCN/TiC+a-C多元多层复合结构的硬质涂层,经测定涂层硬度HV3000,抗氧化温度600℃,在室温干摩擦和对副为GCr15情况下,其摩擦系数为0.2,通过X射线衍射晶体结构分析,发现涂层中有非晶结构的a-C出现,含量大约在20%体积比。
附图说明
图1为电弧增强磁控溅射镀膜设备结构示意图。
图中各标号表示为:1-真空室,2-转台架,3-偏压,4-转架杆,5-平面C靶,6-永磁体,7-柱弧Ti靶,8-加热器,9-泵组。
具体实施方式
申请人近年来研究发现,在TiN涂层中加入C元素会形成TiCN涂层,其中C置换部分N,形成面心固溶体结构。进一步取消N元素,则会形成TiC涂层,当C含量较高时,发现C元素在TiC涂层中析出弥散分布的非晶碳结构(a-C),而a-C(类石墨)的形成有利于降低薄膜摩擦系数,表现出良好的自润滑性能。因此,如能设计形成Ti/TiN/TiCN/TiC+a-C多元多层复合结构,将有望开发出一种兼具高硬度、低摩擦系数和抗高温氧化的新型涂层材料体系,对铝合金刀具切削将有重要的应用价值。
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
实施例1:
本发明采用电弧增强磁控溅射离子镀技术(AEMS),制备耐磨和减摩的Ti/TiN/TiCN/TiC+a-C多元多层复合结构涂层,本实施例给出一种在硬质合金刀具表面制备Ti/TiN/TiCN/TiC+a-C多元多层复合结构涂层的方法,需要说明的是,本发明的方法制备的耐磨和减摩的Ti/TiN/TiCN/TiC+a-C多元多层复合结构涂层,可以在任何刀具和模具选用的材料上进行,不限于该实施例。
本实施例的具体制备过程是:
(1)硬质合金刀具作为样品,经表面除油、抛光后浸入丙酮中超声波清洗,酒精脱水;
(2)将预处理好的样品作为基体材料放入电弧增强磁控溅射镀膜设备中。如图1所示,电弧增强磁控溅射镀膜设备至少包括真空室1、转台架2、偏压3、转架杆4、平面C靶5、永磁体6、柱弧Ti靶7、加热器8、泵组9,样品置于转架杆4上,转架杆4可以随转台架2转动,也可以自转,这样就避免了涂层只能单面镀以及镀膜不均的问题,保证了镀膜过程的均匀性;
(3)采用φ60×495mm柱弧Ti靶7作为Ti源,有效提高膜基结合力,通过柱弧电源电流控制柱弧Ti靶7的溅射率;靶材采用尺寸为435×95×10mm的平面C靶5作为相应元素的来源,如图1所示,采用平面对靶的方式将平面C靶安置在炉体内壁上,并通过调整中频脉冲电源的功率控制上述平面C靶的溅射率;采用高纯Ar作为主要离化气体,保证有效的辉光放电过程;采用高纯N2作为反应气体,使其离化并与各靶中的Ti、C元素结合,在刀具基体表面沉积形成Ti/TiN/TiCN/TiC+a-C涂层。
(4)电弧增强磁控溅射离子镀制备Ti/TiN/TiCN/TiC+a-C涂层的优化工艺条件为:
首先,抽真空并加热到300℃,通入30ml/min的Ar到真空室,当真空室气压达到6Pa时,开偏压至-1000V对真空室的刀具表面进行轰击清洗,持续30分钟。
其次,调节Ar流量到10ml/min,将真空室气压调至0.5Pa,打开Ti靶电弧电源,弧电流100A,调整偏压到-200V,制备Ti底层,持续10分钟;保持柱弧电流为100A,调整偏压到-180V,然后通入流量为50ml/min的N2,在基体表面镀制一层TiN过渡层,持续20min;随后将偏压调整为-100V,Ar流量调整为30ml/min,N2流量调整为30ml/min,保持柱弧Ti靶电流100A,打开C靶的控制电源,2分钟内逐渐将C靶的电源功率调至15kW,保持真空室气压0.3Pa不变,在TiN过渡层上进行TiCN过渡层制备,镀膜过程中真空室温度为300℃,镀膜时间30min。
最后,2分钟内将N2流量降为0,柱弧Ti靶电流调整为50A,C靶的电源功率调至20kW,保持真空室气压0.3Pa和温度300℃不变,制备TiC+a-C复合层,镀膜时间120min。
在上述工艺条件下,在刀具表面形成了Ti/TiN/TiCN/TiC+a-C三元四层复合结构的硬质涂层。经测定涂层的厚度约2.5微米,硬度HV3000,抗氧化温度600℃,在室温干摩擦和对副为GCr15情况下,其摩擦系数为0.2,通过X射线衍射晶体结构分析,发现涂层中有非晶结构的a-C出现,含量大约在20%体积比。
将上述涂层后的刀具进行了对比切削实验,试验刀具为硬质合金平头型Φ10立铣刀,加工对象为压铸铝件,水溶性切削液,刀具线速度377~471m/min。依据被工件材料的表面粗糙度、毛刺的发生频度,判断刀具使用情况。结果发现,没有涂层的刀具净切削时间500分钟,DLC涂层刀具净切削时间900分钟,本发明技术涂层刀具净切削时间1200分钟。

Claims (1)

1.一种铝合金切削刀具用多元多层硬质涂层的制备方法,其特征在于,该方法通过电弧增强磁控溅射离子镀技术,采用Ar作为主要离化气体、N2作为反应气体,使用柱弧Ti靶和平面C靶,在铝合金切削刀具表面依次沉积Ti底层、TiN过渡层、TiCN过渡层和TiC+a-C复合层,最终在铝合金切削刀具表面沉积形成Ti/TiN/TiCN/TiC+a-C涂层;
该方法具体包括如下步骤:
1)将刀具预处理后放入电弧增强磁控溅射镀膜设备的真空室内的转架杆上;
2)所述刀具装入真空室后,进行等离子体清洗;
采用Ar作为主要离化气体;以柱弧Ti靶作为Ti源,通过柱弧Ti靶电流控制柱弧Ti靶的溅射率,制备Ti底层;
保持柱弧Ti靶电流,采用N2作为反应气体,使其离化并与Ti元素结合,制备TiN过渡层;
保持柱弧Ti靶电流,采用N2作为反应气体,以平面C靶作为C源,平面C靶以对靶的方式安置在真空室内壁上,通过调整中频脉冲电源的功率控制平面C靶的溅射率,在TiN过渡层上制备TiCN过渡层;
调节柱弧Ti靶电流以及平面C靶的电源功率,制备TiC+a-C复合层,最终在刀具表面沉积形成Ti/TiN/TiCN/TiC+a-C涂层;
所述步骤2中的制备工艺条件:
A)等离子体清洗:
刀具装入真空室后,抽真空并加热到300℃,镀膜前,通入30ml/min的Ar到真空室,当真空室气压达到6Pa时,开偏压至-1000V对真空室的刀具表面进行轰击清洗,持续30分钟;
B)制备Ti底层:
刀具等离子体清洗完成后,调节Ar流量到10ml/min,将真空室气压调至0.5Pa,打开柱弧Ti靶电弧电源,弧电流100A,调整偏压到-200V,制备Ti底层,持续10分钟;
C)制备TiN过渡层:
保持柱弧Ti靶电流为100A,调整偏压到-180V,然后通入流量为50ml/min的N2,在基体表面镀制一层TiN过渡层,持续20min;
D)制备TiCN过渡层:
随后将偏压调整为-100V,Ar流量调整为30ml/min,N2流量调整为30ml/min,保持柱弧Ti靶电流100A,打开平面C靶的控制电源,2分钟内逐渐将平面C靶的电源功率调至15kW,保持真空室气压0.3Pa不变,在TiN过渡层上进行TiCN过渡层制备,镀膜过程中真空室温度为300℃,镀膜时间30min;
E)制备TiC+a-C复合层:
2分钟内将N2流量降为0,柱弧Ti靶电流调整为50A,平面C靶的电源功率调至20kW,保持真空室气压0.3Pa和温度300℃不变,制备TiC+a-C复合层,镀膜时间120min;最终在刀具表面形成了Ti/TiN/TiCN/TiC+a-C多元多层复合结构的硬质涂层;
所述步骤1中,刀具预处理过程为:将刀具经表面除油、抛光后浸入丙酮中超声波清洗,并酒精脱水。
CN201911093987.5A 2019-11-11 2019-11-11 铝合金切削刀具用多元多层硬质涂层的制备方法 Active CN110983251B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911093987.5A CN110983251B (zh) 2019-11-11 2019-11-11 铝合金切削刀具用多元多层硬质涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911093987.5A CN110983251B (zh) 2019-11-11 2019-11-11 铝合金切削刀具用多元多层硬质涂层的制备方法

Publications (2)

Publication Number Publication Date
CN110983251A CN110983251A (zh) 2020-04-10
CN110983251B true CN110983251B (zh) 2021-04-13

Family

ID=70083678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911093987.5A Active CN110983251B (zh) 2019-11-11 2019-11-11 铝合金切削刀具用多元多层硬质涂层的制备方法

Country Status (1)

Country Link
CN (1) CN110983251B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700494A (zh) * 2021-12-14 2022-07-05 河南晶锐新材料股份有限公司 一种聚晶金刚石复合片的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209606A (zh) * 2007-12-25 2008-07-02 浙江大学 自润滑耐磨类石墨/TiC梯度复合薄膜
CN101596799A (zh) * 2009-06-25 2009-12-09 浙江大学 一种含钛非晶碳高硬耐磨薄膜
CN101787520A (zh) * 2010-03-24 2010-07-28 中国地质大学(北京) 钨钛共掺杂类金刚石涂层材料及其制备技术
CN108645061A (zh) * 2018-03-15 2018-10-12 兰州交大常州研究院有限公司 多层复合太阳光谱选择性吸收涂层及其制备方法
CN109023243A (zh) * 2018-09-18 2018-12-18 岭南师范学院 一种超强韧、低摩擦碳基刀具涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209606A (zh) * 2007-12-25 2008-07-02 浙江大学 自润滑耐磨类石墨/TiC梯度复合薄膜
CN101596799A (zh) * 2009-06-25 2009-12-09 浙江大学 一种含钛非晶碳高硬耐磨薄膜
CN101787520A (zh) * 2010-03-24 2010-07-28 中国地质大学(北京) 钨钛共掺杂类金刚石涂层材料及其制备技术
CN108645061A (zh) * 2018-03-15 2018-10-12 兰州交大常州研究院有限公司 多层复合太阳光谱选择性吸收涂层及其制备方法
CN109023243A (zh) * 2018-09-18 2018-12-18 岭南师范学院 一种超强韧、低摩擦碳基刀具涂层及其制备方法

Also Published As

Publication number Publication date
CN110983251A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
JP3590579B2 (ja) ダイヤモンド被覆部材およびその製造方法
CN109182984B (zh) 一种用于丝锥表面制备TiCN涂层的方法
CN100460555C (zh) 一种电弧离子镀低温沉积高质量装饰薄膜的设备和方法
CN108642449A (zh) 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法
JP2006152424A (ja) 硬質被膜および硬質被膜被覆加工工具
CN104131250A (zh) 一种梯度成分设计的纳米复合刀具涂层及其制备方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN104131256A (zh) 一种多层纳米复合刀具涂层及其制备方法
CN108165925B (zh) 一种低负偏压高能Ar+刻蚀清洗改善AlTiSiN涂层性能的方法
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
CN108251797A (zh) 一种钛合金切削刀具用TiAlN/CrN多层涂层及其制备方法
CN109182983B (zh) 一种用于硬质合金旋转锉表面制备TiAlSiN涂层的方法
CN111647851A (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN111155064A (zh) 高功率脉冲磁控溅射制备TiAlSiN复合涂层的方法
CN110983251B (zh) 铝合金切削刀具用多元多层硬质涂层的制备方法
CN109023243B (zh) 一种超强韧、低摩擦碳基刀具涂层及其制备方法
CN103317793A (zh) 一种类金刚石基纳米复合涂层刀具及其制备方法
CN106835036A (zh) 一种调制高功率脉冲磁控溅射制备AlCrN涂层的方法
CN108441825B (zh) 掺杂金属类金刚石涂层制备方法及其制品
CN112941463B (zh) 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN109267005A (zh) 一种w-n纳米复合结构小径刀涂层及其制备方法
CN114150269A (zh) 切削刀具涂层及其制备方法
Chang et al. The effect of a buffer layer on the structure and the performance of cutting-tools for ZrWN films that are deposited using DCMS and HIPIMS
CN112921275A (zh) 一种刀具Ti35Al47Cr10Si5W3N五元复合新型超硬涂层涂覆方法
KR20040058650A (ko) 티아이 에이엘 에스아이 엔계 경질코팅막의 증착방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant