CN110015682B - 形态可控氧化锌纳米材料的绿色制备方法 - Google Patents

形态可控氧化锌纳米材料的绿色制备方法 Download PDF

Info

Publication number
CN110015682B
CN110015682B CN201910359373.0A CN201910359373A CN110015682B CN 110015682 B CN110015682 B CN 110015682B CN 201910359373 A CN201910359373 A CN 201910359373A CN 110015682 B CN110015682 B CN 110015682B
Authority
CN
China
Prior art keywords
zinc oxide
aqueous solution
thiocyanate
oxide nano
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910359373.0A
Other languages
English (en)
Other versions
CN110015682A (zh
Inventor
徐伟
王涛
笪仕旭
徐琳绮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201910359373.0A priority Critical patent/CN110015682B/zh
Publication of CN110015682A publication Critical patent/CN110015682A/zh
Application granted granted Critical
Publication of CN110015682B publication Critical patent/CN110015682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于精细纳米化工技术领域,具体为形态可控氧化锌纳米材料的绿色制备方法。本发明以不同配比的“锌离子‑硫氰酸根”体系为前体,通过与碱溶液反应来合成形态可控的氧化锌纳米材料;氧化锌纳米材料的形态包括:纳米片、纳米颗粒、纳米结构氧化锌组装的微球等。这些不同形态的氧化锌纳米材料可以采用类似的方法合成,且工艺流程和设备能够通用。本发明的合成工艺简单、绿色环保,容易规模化集中生产。本发明制备的氧化锌纳米材料有广泛的应用价值。

Description

形态可控氧化锌纳米材料的绿色制备方法
技术领域
本发明属于精细纳米化工技术领域,具体涉及形态可控氧化锌纳米材料的绿色制备方法。
背景技术
绿色化工是实现可持续发展的必然趋势。氧化锌(ZnO)纳米材料具有广泛的应用领域,可作为精细纳米化工产品。最近的研究发现,氧化锌纳米粒子也有一定毒性。因此,氧化锌纳米材料在实现规模化生产的同时,需要做到绿色合成和清洁生产。
氧化锌纳米材料还可以组装成具有多层次结构的组装体,可提升功能和应用性能。例如,氧化锌三维多孔结构和微米球就可以提高气体传感的敏感性。虽然用于合成纳米氧化锌组装体的方法已有很多,但是仍然需要发展简单可行的、容易实际生产的合成方法。
[(1)A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, B.Buszewski. Zinc oxide nanoparticles: Synthesis, antiseptic activityandtoxicity mechanism. Advances in Colloid and Interface Science 249:37-52(2017); (2)Salvatore GianlucaLeonardi. Two-Dimensional Zinc OxideNanostructures for GasSensor Applications. Chemosensors5: 17 (2017).]。
氧化锌纳米材料的形态有多种,比如:氧化锌纳米粒子、氧化锌纳米片以及纳米结构的微米球等。通常,每一种纳米材料都需要发展一种相对应的合成方法。能否将不同形态氧化锌纳米材料的合成方法整合到一起。能否采用通用的方法来合成不同形态氧化锌纳米材料。若能实现通用合成,预计可以促进纳米材料的规模化甚至工业化集中生产。
发明人前期已证明“金属离子-硫氰酸根”体系可用于液相沉淀法,制备金属氧化物纳米材料,包括ZnO纳米片材料。这种合成方法非常简单,越是简单的技术路线就越容易工业化规模生产。[(3)徐伟,孙倩,肖星星,夏鹏,田果. 一种片状氧化锌纳米材料的简易制备方法. 发明专利申请号:2014100412374;(4)徐伟,夏鹏,孙倩,张辉. 金属氧化物纳米材料的绿色制备方法.发明专利申请号:2018101703002.] 。
本发明证明,“锌离子-硫氰酸根”体系还可以用于合成形态可控的氧化锌纳米材料,并且还可以进一步降低成本。
发明内容
本发明的目的在于提出一种环保、低能耗、低成本的形态可控氧化锌纳米材料的绿色制备方法。
本发明提出的形态可控氧化锌纳米材料的绿色制备方法,以不同配比的“锌离子-硫氰酸根”体系为前体,通过与碱溶液反应来合成形态可控的氧化锌纳米材料。其中,不同配比的“锌离子-硫氰酸根”体系采用不同配比的二价锌盐和硫氰酸盐的混合水溶液。具体流程是:按用量比例配制二价锌盐水溶液,再和硫氰酸盐水溶液混合,分别制备不同配比的“锌离子-硫氰酸根”前驱体系;室温下再分别与碱水溶液反应1~24小时,过滤洗涤,再经过干燥或者烘烤处理,即得不同形态的氧化锌纳米材料。
进一步,所述二价锌盐可采用硫酸锌;所述硫氰酸盐水溶液采用硫氰酸钠水溶液、硫氰酸钾水溶液、硫氰酸铵水溶液之一种,或者其中几种的混合水溶液;所述碱溶液可采用氢氧化钠水溶液;所述干燥处理,具体可采用50~70℃烘干、自然晾干或者真空干燥;所述烘烤处理为:先在50~70℃烘干,再在300℃烘烤。
进一步,所述硫氰酸盐与二价锌盐的用量按摩尔数比计,为0.02~ 3。
进一步,所述碱与二价锌盐的用量按摩尔数比计,为2 ~ 4。
本发明中,所述二价锌盐和硫氰酸盐的混合水溶液中,二价锌盐的浓度为0.05~2摩尔/升;硫氰酸盐的浓度为0.05 ~ 2摩尔/升;所述碱水溶液的浓度为0.05 ~2摩尔/升。
本发明制备的氧化锌纳米材料,其形态包括:纳米片、纳米颗粒、纳米结构氧化锌组装的微球等。
本发明提出的形态可控氧化锌纳米材料的绿色制备方法,可以通过控制硫氰酸盐的用量比例来调控氧化锌纳米材料的形态变化,比如,可以制备形态微调的氧化锌纳米片。
本发明提出的形态可控氧化锌纳米材料的绿色制备方法,可以通过控制硫氰酸盐的种类来调控氧化锌纳米材料的形态变化。其中的硫氰酸盐可采用硫氰酸钠、硫氰酸钾和硫氰酸铵之一种,或者采用其中几种按一定比例的混合硫氰酸盐。例如:采用硫氰酸钠水溶液可以制备氧化锌纳米片材料;采用硫氰酸铵水溶液可以制备氧化锌纳米颗粒材料。由于工艺流程都一样,因此不同形态的氧化锌纳米材料可以采用通用方法合成。
另外,将前述方法制备得到的氧化锌纳米片,先在50~70℃烘干,放置备用,然后再在300℃温度下烘烤,可得到由氧化锌纳米片组装堆积而成的、具有纳米结构的微球。微球的尺寸(球直径)在微米尺度。这种“先低温烘干-再高温烘烤”的工艺属于通用工艺流程的一部分。
需要指出的是,国外曾有研究人员采用不同于本发明的方法合成氧化锌纳米片,在300~500℃温度下仍然为纳米片,温度达到700℃时才形成微球。采用本发明的方法,可以在相对较低的温度下合成纳米结构氧化锌微球。
进一步地,本发明提出的形态可控氧化锌纳米材料的绿色制备方法,对各类氧化锌纳米材料进行密封包装或者真空包装,既形成产品,又实现绿色环保和清洁生产的目标。
采用本发明的制备方法,某些原料可以进行回收和重复利用。
本发明是一种绿色、低能耗、低成本的制备方法。
本发明制备得到的氧化锌纳米材料可以在广泛领域取得应用价值,包括:催化和光催化领域,日用化工领域的填料、颜料和杀菌剂,陶瓷材料,以及橡胶和复合材料等领域。
附图说明
图1为实施例1制备的材料样品的XRD(A)及SEM图像(B)。
图2为实施例2制备的材料样品的XRD(A)及SEM图像(B)。
图3为实施例3制备的材料样品的XRD(A)及SEM图像(B)。
图4为实施例4制备的材料样品的XRD(A)及SEM图像(B)。
图5为实施例5制备的材料样品的SEM图像(A)及高分辨SEM图像(B)。
图6为实施例6制备的材料样品的SEM图像(A)及高分辨SEM图像(B)。
具体实施方式
下面通过实施例进一步描述本发明提出的形态可控氧化锌纳米材料的绿色制备方法。
实施例1
将40毫升0.5摩尔/升的硫氰酸钠(NaSCN)溶液加入到20毫升0.5摩尔/升的硫酸锌(ZnSO4)溶液中,混合均匀,再加入80毫升0.5摩尔/升的氢氧化钠水溶液,摇匀,室温下超声1小时,抽滤,洗涤,于60℃烘干。即得氧化锌纳米材料。
X-射线衍射分析(XRD)分析证明产物为氧化锌,见图1(A);扫描电子显微镜图像(SEM)显示产物为纳米片,见图1(B)。
实施例2
将20毫升0.5摩尔/升的硫氰酸钠(NaSCN)溶液与20毫升0.5摩尔/升的硫酸锌(ZnSO4)溶液混合均匀,再加入80毫升0.5摩尔/升的氢氧化钠水溶液,摇匀,室温下超声1小时,抽滤,洗涤,干燥。即得氧化锌纳米材料。
X-射线衍射分析(XRD)分析证明产物为氧化锌,见图2(A);扫描电子显微镜图像(SEM)显示产物为纳米片,见图2(B)。
实施例3
将10毫升0.5摩尔/升的硫氰酸钠(NaSCN)溶液与20毫升0.5摩尔/升的硫酸锌(ZnSO4)溶液混合均匀,再加入80毫升0.5摩尔/升的氢氧化钠水溶液,摇匀,室温下超声1小时,抽滤,洗涤,干燥。即得氧化锌纳米材料。
X-射线衍射分析(XRD)分析证明产物为氧化锌,见图3(A);扫描电子显微镜图像(SEM)显示产物为纳米片,见图3(B)。
实施例4
将4毫升0.5摩尔/升的硫氰酸钠(NaSCN)溶液与20毫升0.5摩尔/升的硫酸锌(ZnSO4)溶液混合均匀,再加入80毫升0.5摩尔/升的氢氧化钠水溶液,摇匀,室温下超声1小时,抽滤,洗涤,干燥。即得氧化锌纳米材料。
X-射线衍射分析(XRD)分析证明产物为氧化锌,见图4(A);扫描电子显微镜图像(SEM)显示产物为纳米片,见图4(B)。
实施例5
在5毫升0.1摩尔/升的硫酸锌(ZnSO4)水溶液中,滴加5滴0.1摩尔/升的硫氰酸铵(NH4SCN)水溶液(约0.2~0.25毫升),混合均匀(其中,硫酸锌与硫氰酸铵的用量比按摩尔数计约为25:1)。再加入1毫升1摩尔/升的氢氧化钠(NaOH)水溶液,摇匀,静置1~5小时,抽滤,洗涤,干燥。即得氧化锌纳米颗粒材料。SEM图像显示氧化锌颗粒的尺寸约60纳米,但是这种纳米颗粒存在弱团聚现象。说明采用不同的硫氰酸盐,可以调控纳米材料的形态。
SEM图像和高分辨SEM图像显示产物为纳米颗粒,见图5(A)和图5(B)。
实施例6
100毫升0.5摩尔/升的硫酸锌(ZnSO4)水溶液与100毫升1.0摩尔/升的硫氰酸钠(NaSCN)水溶液混合均匀,再加入200毫升1.0摩尔/升的氢氧化钠(NaOH)水溶液,摇匀,静置1~5小时,抽滤,洗涤。60℃烘干,即得氧化锌纳米片。保存备用。研究已证明这种氧化锌纳米片具备很好的光催化解降有机物性能。这类氧化锌纳米片也可以填充到涂料和复合材料中。
将上述经过60℃烘干的氧化锌纳米片,在300℃烘烤1小时后,再用扫描电子显微镜观察,SEM图像显示ZnO纳米片团聚成ZnO微球。ZnO纳米片厚度约为20纳米,ZnO微球的尺寸(直径)在1~5微米。
SEM图像和高分辨SEM图像显示产物为纳米片组装堆积形成的微球,见图6(A)和图6(B)。

Claims (3)

1.形态可控氧化锌纳米材料的绿色制备方法,其特征在于,以不同配比的“锌离子-硫氰酸根”体系为前体,通过与碱溶液反应,合成形态可控的氧化锌纳米材料;其中,所述“锌离子-硫氰酸根”体系采用不同配比的二价锌盐和硫氰酸盐的混合水溶液;具体流程是:按用量比例配制二价锌盐水溶液,再和硫氰酸盐水溶液混合,分别制备不同配比的“锌离子-硫氰酸根”前驱体系,室温下再分别与碱水溶液反应1~24小时,过滤洗涤;再经过干燥或者烘烤处理,即得不同形态的氧化锌纳米材料;
其中,所述硫氰酸盐水溶液采用硫氰酸钠水溶液、硫氰酸钾水溶液、硫氰酸铵水溶液之一种,或者其中几种的混合水溶液;所述硫氰酸盐与二价锌盐的用量按摩尔数比计为0.02~ 3;碱与二价锌盐的用量按摩尔数比计为2 ~ 4;所述二价锌盐水溶液的浓度为0.05~2摩尔/升;所述硫氰酸盐水溶液的浓度为0.05 ~ 2摩尔/升;所述碱水溶液的浓度为0.05 ~2摩尔/升;
并且,通过控制硫氰酸盐的种类来调控氧化锌纳米材料的形态变化。
2.根据权利要求1所述的绿色制备方法,其特征在于,所述二价锌盐采用硫酸锌;所述碱溶液采用氢氧化钠水溶液;所述干燥处理采用50~70℃烘干、自然晾干、或者真空干燥;烘烤处理为:先在50~70℃烘干,再在300℃烘烤。
3.根据权利要求1所述的绿色制备方法,其特征在于,将化学合成得到的氧化锌纳米片先在50~70℃烘干,然后再在300℃温度下烘烤,得到由氧化锌纳米片组装堆积而成的、具有纳米结构的微球;微球的尺寸为微米尺度。
CN201910359373.0A 2019-04-30 2019-04-30 形态可控氧化锌纳米材料的绿色制备方法 Active CN110015682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910359373.0A CN110015682B (zh) 2019-04-30 2019-04-30 形态可控氧化锌纳米材料的绿色制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910359373.0A CN110015682B (zh) 2019-04-30 2019-04-30 形态可控氧化锌纳米材料的绿色制备方法

Publications (2)

Publication Number Publication Date
CN110015682A CN110015682A (zh) 2019-07-16
CN110015682B true CN110015682B (zh) 2022-04-12

Family

ID=67192931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910359373.0A Active CN110015682B (zh) 2019-04-30 2019-04-30 形态可控氧化锌纳米材料的绿色制备方法

Country Status (1)

Country Link
CN (1) CN110015682B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111268652A (zh) * 2020-01-24 2020-06-12 复旦大学 金属氧化物及其水合物纳米化工材料及其绿色合成方法
CN111302320A (zh) * 2020-02-01 2020-06-19 复旦大学 一类纳米化工材料及其通用合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771492A (zh) * 2014-01-28 2014-05-07 复旦大学 一种片状氧化锌纳米材料的简易制备方法
CN108383150A (zh) * 2018-03-01 2018-08-10 复旦大学 一种硫化锌纳米材料的制备方法
CN108408694A (zh) * 2018-03-01 2018-08-17 复旦大学 金属氧化物纳米材料的绿色制备方法
CN108502910A (zh) * 2018-03-01 2018-09-07 复旦大学 不溶性无机盐微纳米材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771492A (zh) * 2014-01-28 2014-05-07 复旦大学 一种片状氧化锌纳米材料的简易制备方法
CN108383150A (zh) * 2018-03-01 2018-08-10 复旦大学 一种硫化锌纳米材料的制备方法
CN108408694A (zh) * 2018-03-01 2018-08-17 复旦大学 金属氧化物纳米材料的绿色制备方法
CN108502910A (zh) * 2018-03-01 2018-09-07 复旦大学 不溶性无机盐微纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110015682A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
US11027259B2 (en) Preparation method for hollow molybdate composite microspheres and method for catalyzing ammonia borane hydrolysis to produce hydrogen
CN110015682B (zh) 形态可控氧化锌纳米材料的绿色制备方法
CN105731535B (zh) 一种氧化锌/二氧化钛复合纳米材料的制备方法
CN101302032B (zh) 氧化铜纳米材料的制备方法
CN102502783B (zh) 具有六角薄片状结构的碱式氯化锌纳米粉体的制备方法
CN107936505B (zh) 一种聚乳酸抗菌薄膜及其制备方法
Kim et al. Control of TiO2 structures from robust hollow microspheres to highly dispersible nanoparticles in a tetrabutylammonium hydroxide solution
Zhang et al. NiCo2O4 hierarchical structure coated mesh with long-term stable underwater superoleophobicity for high-efficient, high-flux oil-water separation
CN103936074A (zh) 一种水热法合成超细三氧化钨全纳米棒的方法
CN111268652A (zh) 金属氧化物及其水合物纳米化工材料及其绿色合成方法
Li et al. Anisotropic overgrowth of metal heterostructures regulated by a hydrophobic grafting layer towards self-cleaning and oil/water separation applications
Zhou et al. ZnO spheres and nanorods formation: their dependence on agitation in solution synthesis
CN102718255B (zh) 一种二氧化钛空心纳米结构的制备方法
CN101696028B (zh) 油水两相界面间制备氧化锌纳米晶的方法
CN112337491B (zh) 一种双功能光催化应用的磷化镍/氧化铟纳米复合材料制备方法及用途
CN105170050B (zh) 微纳结构LaNiO3花球的制备方法
CN108502910B (zh) 不溶性无机盐微纳米材料及其制备方法和应用
Jie et al. Enhanced photocatalytic properties of hierarchical nanostructured TiO2 spheres synthesized with titanium powders
CN103787402B (zh) 一种氧化亚铜纳米线材料的制备方法
CN108383150B (zh) 一种硫化锌纳米材料的制备方法
CN106916757B (zh) 单细胞生物基高疏水微米粉体材料及其制备方法
CN111362303B (zh) 由纳米晶组装的中空多孔微球状BiOCl光催化材料及制备方法
JP4214226B2 (ja) 酸化チタンナノシート構造体
CN103121704A (zh) 大量合成纳米氧化亚铜空心立方体结构的方法
CN104071827B (zh) 一种十二烷基磺酸钠为模板合成有序层状纳米氧化锌的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant