CN110007377B - 一种皮秒激光高功率增透膜及其制备方法 - Google Patents

一种皮秒激光高功率增透膜及其制备方法 Download PDF

Info

Publication number
CN110007377B
CN110007377B CN201910297057.5A CN201910297057A CN110007377B CN 110007377 B CN110007377 B CN 110007377B CN 201910297057 A CN201910297057 A CN 201910297057A CN 110007377 B CN110007377 B CN 110007377B
Authority
CN
China
Prior art keywords
layer
sio
hfo
substrate layer
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910297057.5A
Other languages
English (en)
Other versions
CN110007377A (zh
Inventor
李全民
王泽栋
朱敏
王国力
吴玉堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Wavelength Optoelectronics Technology Co Ltd
Original Assignee
Nanjing Wavelength Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Wavelength Optoelectronics Technology Co Ltd filed Critical Nanjing Wavelength Optoelectronics Technology Co Ltd
Priority to CN201910297057.5A priority Critical patent/CN110007377B/zh
Publication of CN110007377A publication Critical patent/CN110007377A/zh
Application granted granted Critical
Publication of CN110007377B publication Critical patent/CN110007377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种皮秒激光高功率增透膜及其制备方法,一种皮秒激光高功率增透膜,包括基底层,基底层上交替沉积有HfO2层和SiO2层,HfO2层和SiO2层的层数相等。本发明皮秒激光高功率增透膜,通过膜材料及结构的改进,在1064波段透过率可达99.8%以上,650波段透过率可达98%以上,具有较高的激光损伤阈值,同时又具有高耐磨强度和高附着力,稳定性好,可满足目前激光领域的一些高端应用;制备重复性好,过程简单易操作、易控制。

Description

一种皮秒激光高功率增透膜及其制备方法
技术领域
本发明涉及一种皮秒激光高功率增透膜及其制备方法,属于皮秒激光增透膜领域。
背景技术
皮秒激光是一款脉宽为皮秒的激光器,具有皮秒级超短脉宽、重复频率可调、脉冲能量高等特点,在生物医学、光学参量振荡、生物显微成像等领域有着越来越广泛的应用,逐渐成为现代生物成像和分析系统中日益重要的工具。
在光学元件中,由于元件表面的反射作用而使光能损失,为了减少元件表面的反射损失,常在光学元件表面镀层透明介质薄膜,这种薄膜就叫增透膜。
现有的增透膜在皮秒激光应用上,多存在易烧膜,不耐用,抗激光损伤阈值低的情况。
发明内容
本发明提供一种皮秒激光高功率增透膜及其制备方法,通过对膜料的合理选择及结构的合理设计,使得到的膜层既有良好的光谱性能又有较好的机械稳性能和稳定性。
为解决上述技术问题,本发明所采用的技术方案如下:
一种皮秒激光高功率增透膜,包括基底层,基底层上交替沉积有HfO2层和SiO2层,HfO2层和SiO2层的层数相等。
上述Hf为铪。
申请人经研究发现,薄膜吸收激光能量产生热效应,使自身温度升高,且短时间内急剧加热,在局部热点周围产生热弹性压力和应力波加剧了薄膜的最终破坏;所以必须选择吸收小的材料,减少热效应的影响;低折射率材料选用SiO2(折射率=1.46),膜层结构为无定形态,在工作波长上色散较小,小光系数低,吸收少,具有较高的激光损伤阈值;高折射率材料有TiO2、ZrO2和HfO2,TiO2在电子枪加热蒸发过程中极易分解,生成低阶氧化物,使膜层的吸收明显增大,ZrO 材料在沉积过程中蒸发速率不稳定,容易形成大的颗粒,且折射率不稳定,散射损耗随之增大;HfO2阈值较高,吸收较少,但蒸镀时易喷溅,本申选用不易喷溅的金属铪在氧气环境反应蒸发的方法,即具有HfO2的良好性能,又可以避免易喷溅的缺点。
基底层优选为石英玻璃基底层。
本申请给出了一种在石英基板表面蒸镀可见光和近红外双波段具有高抗激光损伤阈的激光高功率增透膜,该增透膜在1064波段透过率可达99.8%以上,650波段透过率可达98%以上,具有较高的激光损伤阈值,可满足目前激光领域的一些高端应用;且机械性能好,稳定性强。
为了兼顾增透膜的光谱性能、机械性能和成本,优选,HfO2层和SiO2层的层数均为2-5层。
进一步优选,f层和SiO2层的层数均为2层,也即皮秒激光高功率增透膜包括基底层,基底层上依次沉积有第一HfO2层、第一SiO2层、第二HfO2层和第二SiO2层。
为了兼顾增透膜的光谱性能和机械性能,优选,第一HfO2层的厚度小于第二HfO2层的厚度;第一SiO2层的厚度大于第二SiO2层的厚度;第一HfO2层的厚度小于第二SiO2层的厚度,第二HfO2层的厚度介于第二SiO2层的厚度和第一SiO2层的厚度之间。这样膜层相互间应力互补效果好,光谱性能和机械性能能得到更好的保障。
为了兼顾增透膜的光谱性能和机械性能,进一步优选,第一HfO2层的光学厚度为319.2±10nm,第一SiO2层的光学厚度为2447.2±10nm,第二HfO2层的光学厚度为1170.4±10nm,第二SiO2层的光学厚度为1032.08±10nm。
也即优选的膜层结构设计为:SUB/ k1Hk2Lk3Hk4L /A,其中SUB代表JGS1基底、A代表空气、H代表Hf、L代表SiO2;k1-k4代表每层的四分之一参考波长(1064nm)光学厚度的系数,分别为0.3/2.3/1.1/0.97。
本申请皮秒激光高功率增透膜的制备,采用离子源辅助电子束蒸发方法在基底层依次交替沉积HfO2层和SiO2层。
为了确保增透膜的光谱性能和机械性能,本申请皮秒激光高功率增透膜的制备方法,包括如下步骤:
1)对铪和SiO2膜料进行单独预熔处理,去除膜料内部的杂质;
2)将基底层清洁后,置于真空室内,在真空室内压强为(1.8±0.2)× 10-3Pa 、烘烤温度为250-300℃的条件下,采用离子源辅助电子束蒸发方法在基底层的表面依次沉积复合层和MgF2层。
为了提高膜的附着力,步骤2)中,基底层清洁方法为:将基底层表面进行超光滑表面抛光,使表面粗糙度Ra小于5埃,镀膜前对基片表面进行超声波清洗,去除基板表面附着的微观颗粒,使膜层附着性更强。
为了提升膜质量,步骤2)中,沉积时,在真空室导入氧化能力比普通分子态氧气更强的高纯氧气(≥99.99%)使得沉积材料在高真空状态下能得到充分氧化,并在射频源的作用下,提高成膜致密性,降低了薄膜的吸收,从而提高抗激光损伤阈值。此方法不但保留了电子束热蒸发方法制备激光薄膜独有的有利的性能又同时改善了薄膜的本征吸收和缺陷密度,具有针对性强、品质高、简单易行的特点。
进一步优选,沉积HfO2层时,所用原料为高纯氧气和Hf,高纯氧气的充气量为150-180sccm;沉积SiO2时,高纯氧气的充气量为60-100sccm。
优选,离子源束流为20A。
为了确保膜质量,优选,Hf的蒸发速率为0.15±0.02nm/S,SiO2的蒸发速率为1±0.02nm/S。
本发明未提及的技术均参照现有技术。
本发明皮秒激光高功率增透膜,通过膜材料及结构的改进,在1064波段透过率可达99.8%以上,650波段透过率可达98%以上,具有较高的激光损伤阈值,同时又具有高耐磨强度和高附着力,稳定性好,可满足目前激光领域的一些高端应用;制备重复性好,过程简单易操作、易控制。
附图说明
图1 为实施例1中皮秒激光高功率增透膜的结构示意图(图中省略了基底层);
图2为实施例1中皮秒激光高功率增透膜的双面透过率设计曲线;
图3为实施例1中皮秒激光高功率增透膜的单面反射率设计曲线;
图4为实施例1中皮秒激光高功率增透膜的实测光谱曲线图(a为双面透过率,b为单面反射率);
图中,1为基底层侧,2为第一HfO2层,3为第一SiO2层,4为第二HfO2层,5为第二SiO2层,6为空气侧。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
镀膜设备选用日本昭和镀膜机(SGC-S1300Ci),配有双冷凝泵(ULVAC RBH-22),Polycold(PFC-1102 HC),双电子枪(日新技研 NEB-10WE型)以及射频离子源(SER.NO 12-4088);
实施例1
如图1所示,一种皮秒激光高功率增透膜,包括基底层,基底层上依次沉积有第一HfO2层、第一SiO2层、第二HfO2层和第二SiO2层,基底层为厚度为2mm的石英玻璃基底层。
第一HfO2层的光学厚度为319.2nm,第一SiO2层的光学厚度为2447.2nm,第二HfO2层的光学厚度为1170.4nm,第二SiO2层的光学厚度为1032.08nm。
上述皮秒激光高功率增透膜的制备方法,包括如下步骤:
1)对铪和SiO2膜料进行单独预熔处理,去除膜料内部的杂质;
2)将基底层表面进行超光滑表面抛光,使表面粗糙度Ra小于5埃,然后超声波清洗,再置于真空室内,在真空室内压强为1.8×10-3Pa 、烘烤温度为280℃的条件下,采用离子源辅助电子束蒸发方法在基底层的表面依次沉积复合层和MgF2层,沉积时,在真空室导入高纯氧气使得沉积材料在高真空状态下能得到充分氧化,并在射频源的作用下,提高成膜致密性,降低了薄膜的吸收,从而提高抗激光损伤阈值,沉积HfO2层时所用原料为高纯氧气和Hf,高纯氧气的充气量为150-180sccm;沉积SiO2时,高纯氧气的充气量为60-100sccm,离子源束流为20A;Hf的蒸发速率为0.15nm/S, SiO2的蒸发速率为1nm/S。通过在蒸发源与基底层之间加隔离挡板,阻挡并吸附无效的蒸发材料,减少了基底层附近的污染,降低了薄膜缺陷形成的几率。
采用白俄罗斯的PHOTO RT分光光度计对本例增透膜的单面反射率和双面透过率进行了测试,得到的光谱曲线达到设计要求,见图4,图2-3为设计曲线。
现有的PVD镀膜,激光损伤阈值最高可以达到28.4J/cm2(激光脉冲宽度10ns,1-on-1检测方式),而本例增透膜的实测结果为40J/cm2(委托美国Spica Technologies Inc.公司检测);本例的增透膜,用波长1064nm脉冲宽度6ps的激光在重复频率10KHZ时的激光损伤阈值达到12J/cm2
实施例2
一种皮秒激光高功率增透膜,包括基底层,基底层上依次沉积有第一HfO2层、第一SiO2层、第二HfO2层和第二SiO2层,基底层为厚度为2mm的石英玻璃基底层。第一HfO2层的光学厚度为320.5nm,第一SiO2层的光学厚度为2450.3nm,第二HfO2层的光学厚度为1172.6nm,第二SiO2层的光学厚度为1030.8nm。
上述皮秒激光高功率增透膜的制备方法参照实施例1。本例的增透膜,用波长1064nm脉冲宽度6ps的激光在重复频率10KHZ时的激光损伤阈值达到12J/cm2
将上述各例所得膜按照GJB2485-95光学膜层通用规范的要求,进行如下环境试验:
(1)耐磨强度实验:在橡皮摩擦头外裹2层干燥脱脂纱布,保持4.9 N压力下顺着同一轨迹对膜层进行摩擦,往返25次,膜层均无擦痕等损伤。
(2)附着力实验:用宽为2 cm,剥离强度I>2.94 N/cm 的胶带纸粘牢在膜层表面,将胶带纸从零件的边缘朝表面的垂直方向迅速拉起后,膜层均无脱落、无损伤。
(3)浸泡试验:将样品完全浸入蒸馏水或去离子水中,96小时后膜层均不出现新的起皮、剥离、裂纹、起泡等缺陷。
结论:上述各例采用超声波辅助清洗技术,通过膜料的合理选择与设计,使得到的膜层既有良好的光谱性能又有较好的机械稳性能和稳定性。

Claims (6)

1.一种皮秒激光高功率增透膜的制备方法,其特征在于:皮秒激光高功率增透膜包括基底层,基底层上依次沉积有第一HfO2层、第一SiO2层、第二HfO2层和第二SiO2层;
第一HfO2层的厚度小于第二HfO2层的厚度;第一SiO2层的厚度大于第二SiO2层的厚度;第一HfO2层的厚度小于第二SiO2层的厚度,第二HfO2层的厚度介于第二SiO2层的厚度和第一SiO2层的厚度之间;
基底层为石英玻璃基底层;
皮秒激光高功率增透膜制备时,采用离子源辅助电子束蒸发方法在基底层依次交替沉积HfO2层和SiO2层;
沉积HfO2层时,所用原料为高纯氧气和Hf,高纯氧气的充气量为150-180sccm,Hf的蒸发速率为0.15±0.02nm/S。
2.如权利要求1所述的制备方法,其特征在于:第一HfO2层的光学厚度为319.2±10nm,第一SiO2层的光学厚度为2447.2±10nm,第二HfO2层的光学厚度为1170.4±10nm,第二SiO2层的光学厚度为1032.08±10nm。
3.如权利要求1或2所述的制备方法,其特征在于:包括如下步骤:
1)对铪和SiO2膜料进行单独预熔处理,去除膜料内部的杂质;
2)将基底层清洁后,置于真空室内,在真空室内压强为(1.8±0.2)× 10-3Pa 、烘烤温度为250-300℃的条件下,采用离子源辅助电子束蒸发方法在基底层的表面依次沉积HfO2层和SiO2层。
4.如权利要求3所述的制备方法,其特征在于:步骤2)中,基底层清洁方法为:将基底层表面进行超光滑表面抛光,使表面粗糙度Ra小于5埃,然后超声波清洗;沉积时,在真空室导入高纯氧气使得沉积材料在高真空状态下能得到充分氧化。
5.如权利要求4所述的制备方法,其特征在于:步骤2)中,沉积SiO2时,高纯氧气的充气量为60-100sccm。
6.如权利要求3所述的制备方法,其特征在于:步骤2)中,离子源束流为20A; SiO2的蒸发速率为1±0.02nm/S 。
CN201910297057.5A 2019-04-15 2019-04-15 一种皮秒激光高功率增透膜及其制备方法 Active CN110007377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910297057.5A CN110007377B (zh) 2019-04-15 2019-04-15 一种皮秒激光高功率增透膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910297057.5A CN110007377B (zh) 2019-04-15 2019-04-15 一种皮秒激光高功率增透膜及其制备方法

Publications (2)

Publication Number Publication Date
CN110007377A CN110007377A (zh) 2019-07-12
CN110007377B true CN110007377B (zh) 2024-06-21

Family

ID=67171664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910297057.5A Active CN110007377B (zh) 2019-04-15 2019-04-15 一种皮秒激光高功率增透膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110007377B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812753B (zh) * 2020-06-01 2022-05-31 湖南麓星光电科技有限公司 一种硅基底3-6μm红外窗口片
CN112782791A (zh) * 2021-02-02 2021-05-11 南京波长光电科技股份有限公司 一种266纳米高功率激光增透膜及其制备方法
CN113684449B (zh) * 2021-08-06 2023-09-08 南京波长光电科技股份有限公司 一种低吸收高功率光纤激光增透膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882378A (zh) * 2014-02-13 2014-06-25 同济大学 一种三硼酸氧钙钇晶体(ycob)高激光损伤阈值增透膜的制备方法
CN210119589U (zh) * 2019-04-15 2020-02-28 南京波长光电科技股份有限公司 一种皮秒激光高功率增透膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292830B2 (ja) * 2013-11-13 2018-03-14 キヤノン株式会社 光学素子、光学系および光学機器
JP6347205B2 (ja) * 2014-11-28 2018-06-27 セイコーエプソン株式会社 ダイバーズウォッチ用カバーガラスおよびダイバーズウォッチ
JP2018058738A (ja) * 2016-10-07 2018-04-12 旭硝子株式会社 表示装置用カバーガラスおよび電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882378A (zh) * 2014-02-13 2014-06-25 同济大学 一种三硼酸氧钙钇晶体(ycob)高激光损伤阈值增透膜的制备方法
CN210119589U (zh) * 2019-04-15 2020-02-28 南京波长光电科技股份有限公司 一种皮秒激光高功率增透膜

Also Published As

Publication number Publication date
CN110007377A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN110007377B (zh) 一种皮秒激光高功率增透膜及其制备方法
Chhajed et al. Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics
CN101893729B (zh) 一种中红外带通滤光片及其制备方法
CN103412350A (zh) 一种多波段增强型金属反射膜及其制备方法
CN210119589U (zh) 一种皮秒激光高功率增透膜
CN111679347A (zh) 一种高损伤阈值激光薄膜工艺技术方法
CN114182226B (zh) 基于预补偿的离子源辅助镀膜的介质反射镜面型控制方法
CN112782791A (zh) 一种266纳米高功率激光增透膜及其制备方法
CN111235527B (zh) 制作光学薄膜的方法、膜系结构、镀膜方法、激光反射镜
Syed et al. Multilayer AR coatings of TiO2/MgF2 for application in optoelectronic devices
Peres et al. ZnS| Ag| TiO 2 multilayer electrodes with broadband transparency for thin film solar cells
CN112501557B (zh) 一种蓝宝石基底1-5μm超宽带增透膜及其制备方法
WO2018174049A1 (ja) 撥水性反射防止膜付きレンズ及びその製造方法
CN113721310A (zh) 一种大角度宽波段减反射膜及其制作方法
CN114609702B (zh) 一种短波近红外宽带增透膜及其制备方法
Xu et al. SiNx thickness dependence of spectral properties and durability of protected-silver mirrors
CN109991691B (zh) 一种三波段激光增透膜及其制备方法
CN113960705B (zh) 紫外光固化用宽带高反射全介质膜紫外反射镜及制备方法
CN107179569B (zh) 一种近红外到中红外宽带增透膜及其制备方法
Jiang et al. High-performance SiO2-SiNx distributed Bragg reflectors fabricated by ion-assisted reactive magnetron sputtering
Xu et al. Preparation of double-layer two wavelength infrared antireflective coating on CdSe substrate
CN218728127U (zh) 一种红外内反射金属膜
CN214225468U (zh) 一种266纳米高功率激光增透膜
CN115657190A (zh) 一种金属基底紫外宽带高反射滤光镜及制备方法
Cosar et al. Improving the laser damage resistance of oxide thin films and multilayers via tailoring ion beam sputtering parameters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant