CN110004404A - 一种自支撑微米铜箔的制备方法 - Google Patents

一种自支撑微米铜箔的制备方法 Download PDF

Info

Publication number
CN110004404A
CN110004404A CN201910377038.3A CN201910377038A CN110004404A CN 110004404 A CN110004404 A CN 110004404A CN 201910377038 A CN201910377038 A CN 201910377038A CN 110004404 A CN110004404 A CN 110004404A
Authority
CN
China
Prior art keywords
copper foil
self
sacrificial layer
supporting
micron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910377038.3A
Other languages
English (en)
Inventor
晏梦雨
周旸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910377038.3A priority Critical patent/CN110004404A/zh
Publication of CN110004404A publication Critical patent/CN110004404A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种自支撑微米铜箔的制备方法,该方法制备的铜箔厚度为0.1–5微米,铜箔材料自身具备一定的强度,无需基底支撑,可以自支撑使用。该自支撑微米铜箔可用于但不限于微电子器件(如手机,电脑)的电磁屏蔽,电池负极材料集流体。所述自支撑微米铜箔的制备方法,其特征在于以下步骤:将具有牺牲层的基底材料、金属铜靶材置于真空环境,通过热蒸发溅射或磁控溅射的方法,在上述基底材料沉积形成厚度为0.1–5微米的金属铜薄膜。通过腐蚀的方法,去除基底材料的牺牲层,得到自支撑的微米厚度铜箔。本发明所获得的自支撑铜箔厚度较薄,具有体积小重量轻强度高的特点,若用于电子元器件,可减少原材料需求量,降低器件整体体积和重量;若用于电池负极集流体,可降低电池重量,提升电池质量能量密度和体积能量密度。

Description

一种自支撑微米铜箔的制备方法
技术领域
本发明属于金属材料制造技术领域,特别涉及一种自支撑微米铜箔的制备方法。
背景技术
铜箔是消费电子领域(手机、笔记本电脑等)电磁屏蔽和电池(锂离子电池,钠离子电池等)负极集流体的主要材料,其生产技术的发展和产品性能的优劣直接影响了消费电子产品和电池的制作工艺,性能和生产成本。
以智能手机为例,伴随着手机的功能越来越强大,其内部的可利用空间也在逐步被越来越多的电子器件占据。同时,为了提高手机的使用感受,对手机体积(厚度)的控制成为不可或缺的一点,所以手机内部每一点空间都具有极高的价值。铜箔作为最主要的电磁屏蔽材料,在手机内多数电子元器件中都有使用。若能将铜箔厚度降低到1微米以下,则为手机性能(体积,重量)的进一步提高提供了可能。同时,铜箔也是现有碱金属离子电池负极集流体的主要材料,铜箔的重量占现有商业化锂离子软包电池重量的15%左右。如能将现有的10微米铜箔用1微米铜箔替代,锂离子电池能量密度(Wh/kg)能够提高15.6%。
目前市场上的自支撑铜箔通常采用X型六滚轧机,这种工艺设备使用繁杂,成本较高。同时铜箔的极限厚度难以减小,市场上广泛使用的铜箔厚度为10微米。在我国,5微米以下的自支撑铜箔仍然无法批量生产。
发明内容
为了进一步降低铜箔厚度,本发明的目的在于提供一种自支撑微米铜箔的制备方法,可制备出0.1– 5微米的自支撑微米铜箔,满足消费电子领域和高端电池领域的需求。
为了实现上述目的,本发明采用的技术方案是:
(1)将金属铜靶材置于镀膜腔室,并使之达到真空环境,其真空环境的真空度为10-6 –10-1 Pa;
(2)制备具有牺牲层的基底材料,将有机物,金属或无机非金属作为牺牲层,通过涂敷,旋涂,热蒸发或磁控溅射的方式覆盖在基底材料(如硅,玻璃(二氧化硅),金属材料,非金属材料)表面,获得具有牺牲层的基底材料;
(3)将步骤(2)获得的基底运送进入镀膜腔并维持真空度在10-6 – 10-1 Pa;调节镀膜工作气体气压为0.1– 40mTorr,镀膜功率为20 – 1000W。对基底(含牺牲层)进行铜箔镀制(热蒸发溅射或磁控溅射)。从而获得0.1微米到5微米厚的附着在基底(含牺牲层)上的铜箔;
(4)将步骤(3)所获得的具有铜箔的基底(含牺牲层)进行退火处理,在40 – 300 oC下对铜箔进行为时0.1 – 120小时的退火处理,后使之炉冷或室温冷却;
(5)将步骤(4)中退火处理后的具有铜箔的基底(含牺牲层)运用腐蚀的方法,去除基底材料的牺牲层,通过将基底材料,牺牲层与金属铜薄膜同时放入强腐蚀环境中,去除掉相应的牺牲层材料,使金属铜薄膜与基底材料脱离。随后,清洗掉铜箔上的强腐蚀剂,并在40 –250 oC下真空烘干,保存;
(6)对步骤(5)中所获得的铜箔分切处理:针对不同的应用需求,对获得的铜箔的品质、宽度、重量要求进行分切分类,并真空包装保存。
本发明可通过控制热蒸发或磁控溅射的时间,来生产厚度为0.1 – 5微米的自支撑铜箔。铜箔的厚度和铜箔的晶粒大小可通过场发射扫描电子显微镜(FESEM)确定,如图2、3所示,按照实施例2方法制备的铜箔厚度为1.01微米,组成铜箔的晶体颗粒大小约为20nm。通过纳米压痕测试可得,所获得铜箔的硬度为3.15GPa(纳米压痕仪,Berckvich探针),优于普通铜块的硬度;该产品的杨氏模量为146.98GPa,远高于普通铜快的杨氏模量。
附图说明
图1是本发明制备的自支撑微米铜箔产品,左图为直径为70mm的圆片,右图为6.5cm×2.5cm的长方形铜箔;
图2是实施例2中自支撑微米铜箔截面的FESEM图,由图可知铜箔厚度为1.01微米;
图3是实施例2中自支撑微米铜箔表面的FESEM图,由图可知铜箔的晶粒大小为20nm;
图4是实施例2中纳米压痕测试后铜表面的光学形貌图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅局限于以下实施例。
实施例1:
(1)将二氧化硅作为牺牲层,通过磁控溅射的方式覆盖在硅片表面,获得具有牺牲层的基底材料;
(2)将步骤(1)得到的具有牺牲层的基底材料,金属铜靶材置于真空环境,真空环境的真空度为5×10-5Pa,通过热蒸发的方法,在上述基底材料沉积形成厚度为1微米的金属铜薄膜;
(3)将步骤(2)得到的镀有金属铜的基底从真空环境中移出,在80oC下对铜箔进行退火处理1.5小时,并炉冷;
(4)将步骤(3)得到的退火处理后的镀有金属铜箔的基底放入氢氟酸中,去除掉相应的牺牲层材料,使金属铜薄膜与基底材料脱离。随后,清洗掉铜箔上的强腐蚀剂,并在60 oC下真空烘干保存;
(5)针对不同的应用需求,对步骤(4)获得的铜箔按照品质、宽度、重量的要求进行分切分类,并真空包装保存
所获得铜箔的硬度为3.15GPa,优于普通铜块的硬度;该产品的杨氏模量为146.98GPa。
实施例2:
(1)将聚甲基丙烯酸甲酯牺牲层,通过涂敷的方式覆盖在具有300nm氧化层的硅片表面,获得具有牺牲层的基底材料;
(2)将步骤(1)得到的具有牺牲层的基底材料,金属铜靶材置于真空环境,真空环境的真空度为1×10-6Pa,通过磁控溅射的方法,在上述基底材料沉积形成厚度为0.5微米的金属铜薄膜;
(3)将步骤(2)得到的镀有金属铜的基底从真空环境中移出,在100oC下对铜箔进行真空退火处理;
(4)将步骤(3)得到的退火处理后的镀有金属铜的基底放入丙酮中,去除掉相应的牺牲层材料,使金属铜薄膜与基底材料脱离。随后,清洗掉铜箔上的强腐蚀剂,并在80oC下真空烘干保存;
(5)针对不同的应用需求,对步骤(4)获得的铜箔按照品质、宽度、重量的要求进行分切分类,并真空包装保存
所获得铜箔的硬度为3.02GPa,优于普通铜块的硬度;该产品的杨氏模量为130.27GPa。
实施例3:
(1)将铝作为牺牲层,通过热蒸发的方式覆盖在基底材料玻璃片表面,获得具有牺牲层的基底材料;
(2)将步骤(1)得到的具有牺牲层的基底材料,金属铜靶材置于真空环境,真空环境的真空度为6×10-5Pa,通过磁控溅射的方法,在上述基底材料沉积形成厚度为3微米的金属铜薄膜;
(3)将步骤(2)得到的镀有金属铜的基底从真空环境中移出,在130oC下对铜箔进行退火处理;
(4)将步骤(3)得到的退火处理后的镀有金属铜的基底放入浓氢氧化钾中,去除掉相应的牺牲层材料,使金属铜薄膜与基底材料脱离。随后,清洗掉铜箔上的强腐蚀剂,并在80oC下真空烘干保存;
(5)针对不同的应用需求,对步骤(4)获得的铜箔按照品质、宽度、重量的要求进行分切分类,并真空包装保存,所获得铜箔的硬度为2.87GPa;该产品的杨氏模量为143.27GPa。
通过上述实施例的工艺步骤即可实现一种自支撑微米铜箔的制备。
本发明所述的实施例是说明性的,而不是限定性的,因此本发明并不限于具体实施方式中所述的实施例。凡是根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (10)

1.一种自支撑微米铜箔的制备方法,其制作步骤为,将具有牺牲层的基底材料和金属铜靶材置于真空环境,通过热蒸发溅射或磁控溅射的方法,在上述基底材料上沉积,形成微米级厚度的金属铜薄膜;随后,将基底从真空环境中移出,对所获得的铜箔(含基底)进行退火处理;之后,使用液相腐蚀或气相腐蚀的方法,去除基底材料和铜箔间的牺牲层,得到微米厚度铜箔,最后根据需求并对铜箔进行分切加工。
2.根据权利要求1所述的方法,所获得的铜箔特征在于:所述微米铜箔的厚度为0.1 –5微米,且能够自支撑。
3.根据权利要求2所述,自支撑微米铜箔的晶粒大小在3 – 500nm之间。
4.根据权利要求3所述,铜箔的硬度在1.5GPa以上,杨氏模量在80GPa以上。
5.根据权利要求1、4所述一种自支撑微米铜箔的制备方法,金属铜靶材需置于镀膜腔并使之达到真空环境:所述真空环境的真空度为10-6– 10-1Pa。
6.根据权利要求5所述一种自支撑微米铜箔的制备方法,其牺牲层的基底材料获取方式为:将有机物,金属或无机非金属作为牺牲层,通过涂敷,旋涂,热蒸发或磁控溅射的方式覆盖在基底材料(如硅,二氧化硅,有机高分子)表面,获得具有牺牲层的基底材料。
7.根据权利要求6所述一种自支撑微米铜箔的制备方法,将基底运送进入镀膜腔并维持真空度在10-6– 10-1Pa,调节镀膜工作气体气压至0.1– 40mTorr,镀膜功率至20 –1000W;对基底(含牺牲层)进行铜箔镀制(热蒸发溅射或磁控溅射),从而获得0.1微米到5微米厚的附着在基底(含牺牲层)上的铜箔。
8.根据权利要求7所述一种自支撑微米铜箔的制备方法,对所获得的具有铜箔的基底(含牺牲层)进行退火处理: 40 – 300oC下对铜箔进行为时0.1小时-120小时的退火处理,后使之冷却。
9.根据权利要求8所述一种自支撑微米铜箔的制备方法,需运用腐蚀的方法,去除基底材料的牺牲层:通过将基底材料,牺牲层与金属铜薄膜同时放入强腐蚀环境中,去除掉相应的牺牲层材料,使金属铜薄膜与基底材料脱离;随后,清洗掉铜箔上的强腐蚀剂,并在40 –250oC下真空烘干,保存。
10.根据权利要求9所述一种自支撑微米铜箔的制备方法,其铜箔分切处理:针对不同的应用需求,对获得的铜箔的品质、宽度、重量要求进行分切分类,并真空包装保存。
CN201910377038.3A 2019-05-07 2019-05-07 一种自支撑微米铜箔的制备方法 Pending CN110004404A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910377038.3A CN110004404A (zh) 2019-05-07 2019-05-07 一种自支撑微米铜箔的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910377038.3A CN110004404A (zh) 2019-05-07 2019-05-07 一种自支撑微米铜箔的制备方法

Publications (1)

Publication Number Publication Date
CN110004404A true CN110004404A (zh) 2019-07-12

Family

ID=67176051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910377038.3A Pending CN110004404A (zh) 2019-05-07 2019-05-07 一种自支撑微米铜箔的制备方法

Country Status (1)

Country Link
CN (1) CN110004404A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009489A (zh) * 2019-12-25 2020-04-14 厦门乾照半导体科技有限公司 一种金属衬底的制备方法
CN113235064A (zh) * 2021-04-01 2021-08-10 深圳仕上电子科技有限公司 具有牺牲层的镀腔内壁构件及其制备方法以及清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1415473A (zh) * 2001-10-29 2003-05-07 造利科技股份有限公司 具有载体的转印式铜箔制造方法
CN104995135A (zh) * 2013-02-19 2015-10-21 Jx日矿日石金属株式会社 石墨烯制造用铜箔和石墨烯的制造方法
JP2016176104A (ja) * 2015-03-19 2016-10-06 Jxエネルギー株式会社 自立した銅薄膜の製造方法
CN107142449A (zh) * 2017-05-04 2017-09-08 中国工程物理研究院激光聚变研究中心 一种高精度极小尺寸自支撑铍薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1415473A (zh) * 2001-10-29 2003-05-07 造利科技股份有限公司 具有载体的转印式铜箔制造方法
CN104995135A (zh) * 2013-02-19 2015-10-21 Jx日矿日石金属株式会社 石墨烯制造用铜箔和石墨烯的制造方法
JP2016176104A (ja) * 2015-03-19 2016-10-06 Jxエネルギー株式会社 自立した銅薄膜の製造方法
CN107142449A (zh) * 2017-05-04 2017-09-08 中国工程物理研究院激光聚变研究中心 一种高精度极小尺寸自支撑铍薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伍和云等: "自支撑Zr膜制备及软X射线透过性能研究", 《光子学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009489A (zh) * 2019-12-25 2020-04-14 厦门乾照半导体科技有限公司 一种金属衬底的制备方法
CN113235064A (zh) * 2021-04-01 2021-08-10 深圳仕上电子科技有限公司 具有牺牲层的镀腔内壁构件及其制备方法以及清洗方法

Similar Documents

Publication Publication Date Title
CN101771168B (zh) 微型锂电池的制备方法
CN103904360B (zh) 一种固态电解质及其制作方法与全固态锂电池
KR100661039B1 (ko) 리튬 2차 전지용 음극의 제조 방법
KR100454092B1 (ko) 급속 열처리법을 이용한 박막전지용 양극박막의 제조방법
TW201404902A (zh) 以低溫退火進行之電化學裝置製造製程
CN103956520A (zh) 基于三维石墨烯支架结构的高性能锂离子电池制备方法
US9136527B2 (en) Electrode thin film, all-solid lithium battery, and method of manufacturing electrode film
CN110004404A (zh) 一种自支撑微米铜箔的制备方法
CN109148894A (zh) 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件
CN104993115B (zh) 一种锂电池SiCO‑Si梯度薄膜电极体系及制备方法
CN106207099B (zh) 一种三维LiMn2O4薄膜正电极及三维全固态薄膜锂离子电池的制备方法
CN107665974A (zh) 一种锂硫电池负极及其制备和应用
CN106803570B (zh) 一种锂电池用SiCO-碳纳米管复合薄膜电极
JP2018006297A (ja) リチウムイオン伝導体
CN108468030A (zh) 一种铜触点表面镀银的磁控溅射方法
CN111129435A (zh) 一种薄膜锂电池及界面修饰层的制备方法
JP2008282687A (ja) 全固体型リチウム二次電池製造方法および全固体型リチウム二次電池
TWI676314B (zh) 薄膜電池的負極結構及其形成方法,以及使用該負極結構之薄膜電池
CN101527362A (zh) 一种全固态薄膜锂电池的制备方法
CN109818047A (zh) 具有微纳结构的全固态薄膜锂电池的制备方法
CN207624803U (zh) 一种锂离子电池正极结构和锂离子电池
CN109817972A (zh) 具有微纳结构的全固态薄膜锂电池
JP2018505515A (ja) シート状の独立した部材を有する蓄電システム、独立したシート状の部材、その製造方法、およびその使用
CN109148826A (zh) 一种负极及其制备方法、锂电池
CN108110213A (zh) 一种锂离子电池正极结构和锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190712

WD01 Invention patent application deemed withdrawn after publication