CN110003081B - 一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法 - Google Patents

一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法 Download PDF

Info

Publication number
CN110003081B
CN110003081B CN201910331563.1A CN201910331563A CN110003081B CN 110003081 B CN110003081 B CN 110003081B CN 201910331563 A CN201910331563 A CN 201910331563A CN 110003081 B CN110003081 B CN 110003081B
Authority
CN
China
Prior art keywords
nmr
cdcl
polyfluoroalkyl
product
tetrahydroisoquinoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910331563.1A
Other languages
English (en)
Other versions
CN110003081A (zh
Inventor
李丹丹
王艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuchang University
Original Assignee
Xuchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuchang University filed Critical Xuchang University
Priority to CN201910331563.1A priority Critical patent/CN110003081B/zh
Publication of CN110003081A publication Critical patent/CN110003081A/zh
Application granted granted Critical
Publication of CN110003081B publication Critical patent/CN110003081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/12Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
    • C07D217/14Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • C07D217/24Oxygen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Indole Compounds (AREA)

Abstract

本发明提供一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法,其通过非活化烯烃多氟烷基化合成多氟烷基吲哚啉和多氟烷基四氢异喹啉类化合物,该方法可以实现以非环原料合成吲哚啉及四氢异喹啉,同时具有良好的官能团耐受性。相对于现有技术,本发明是首例通过廉价的铜催化实现N‑烯丙基苯胺类化合物与多氟卤代烃的串联环化反应生成多氟烷基吲哚啉以及多氟烷基四氢异喹啉,本发明的合成方法简单、直接,且具有操作简单和适用底物范围广等优点。

Description

一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法
技术领域
本发明属于化学技术领域,具体地说涉及一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法。
背景技术
含氟烷基化合物在药物、农用化学品和材料中发挥着独特作用,因为氟化基团的引入可以明显改变目标分子的溶解度,代谢稳定性和生物利用度。因此,在过去几年中,化学工作者不断努力开发有效的合成含氟化合物的方法。最近,烯烃通过的双官能化引入全氟烷基(Rf)基团的方法引起了相当多的关注,并且已经成为构建官能化的含全氟烷基Rf化合物的有力策略。然而,目前的反应大都集中在活化烯烃的双官能团化,未活化烯烃的全氟烷基化双官能化的仍然是一个挑战。
吲哚类化合物,包括吲哚啉和氧化吲哚类,是生物活性天然产物和临床药物中广泛存在的有价值的结构单元。开发便捷、有效的构建吲哚骨架的方法长期受到工业界和学术界的广泛关注。与吲哚的方法相比,合成二氢吲哚支架的途径相当有限,主要局限于吲哚的去芳香化,例如:文献1:C.Zheng and S.-L.You,Chem,2016,1,830;文献2:X.-W.Liang,C.Zheng and S.-L.You,Chemistry–A European Journal,2016,22,11918;文献3:Q.Ding,X.Zhou and R.Fan,Org.Bio.Chem.,2014,12,4807.。此外,另一种通过还原氧代吲哚制备二氢吲哚酯的方法需要使用苛刻的反应条件,存在官能团容忍性差等问题,例如:文献4:L.Wang,S.Li,M.Blümel,R.Puttreddy,A.Peuronen,K.Rissanen and D.Enders,Angewandte Chemie International Edition,2017,56,8516;文献5:B.-L.Zhao and D.-M.Du,Chemical Communications,2016,52,6162;文献6:S.Kayal and S.Mukherjee,Organic&Biomolecular Chemistry,2016,14,10175;文献7:D.Du,Y.Jiang,Q.Xu,X.-Y.Tang and M.Shi,ChemCatChem,2015,7,1366.。因此,本领域亟需开发新颖且高效的合成二氢吲哚支架的方法。
2017年,袁耀锋和成佳佳课题组通过钯催化,全氟烷基卤代烃为氟烷基化试剂,实现了3-多氟烷基吲哚啉的制备,反应方程式如下所示:
Figure BDA0002037265470000011
这种方法的反应条件为:四三苯基膦钯为催化剂,4,5-双(二苯基膦)-9,9-二甲基氧杂蒽(Xantphos)为配体,2倍当量的碳酸铯为碱,溶剂为1,4-二氧六环,反应温度为100℃。该传统方法存在以下不足:1、四三苯基膦钯为催化剂,价格昂贵,增加工业生成的成本。2、4,5-双(二苯基膦)-9,9-二甲基氧杂蒽配体的价格更昂贵一些,在一定程度上增加工业生成的成本。3、碳酸铯作为碱,不仅价格昂贵,在空气中放置还会迅速吸湿,会进一步影响它的碱性以及反应效果。同时,大规模生产中大量碳酸铯的干燥保存也存在一定的困难。4、该反应的体系相对比较复杂,不利于工业大规模的生产。
发明内容
为解决上述问题,本发明提供了一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法,其通过廉价铜的催化作用,实现了N-烯丙基苯胺类化合物与多氟卤代烃的串联环化反应生成多氟烷基吲哚啉以及多氟烷基四氢异喹啉。
本发明的目的是以下方式实现的:
一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法,将N-烯丙基苯胺类化合物、催化剂、多氟卤代烃溶于溶剂中,加热反应制得多氟烷基取代的吲哚啉或者四氢异喹啉化合物,其反应方程式为:
Figure BDA0002037265470000021
其中,
A为C或者N;
R为甲基,甲氧基,卤素,苯基,或者杂芳基;
R1为甲基或氢;
PG为保护基团;
Rf为多氟烷基;
X为卤素;
所述催化剂为CuBr、CuCl、CuI、Cu中的任一项或至少两项混合。
所述X基团中的卤素为溴或碘;R基团中的卤素为氟、氯、溴或碘。
所述保护基团包括:氢、甲基,R2CO或R3SO2
所述多氟烷基为C4-8全氟饱和的直链烷基,即n-C4F9、n-C6F13、n-C8F17或者CF2CO2Et中的任一种。
所述R2选自甲基、乙基、丙基、异丙基、叔丁基、n-C7H15、叔丁氧基中的任一种。
所述R3选自甲基、乙基、N,N-二甲基、苯基、对甲苯基、邻甲苯基、间氯苯基中的任一种。
所述催化剂为Cu或CuI。
所述溶剂为二甲基亚砜、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。
所述N-烯丙基苯胺类化合物与多氟卤代烃的摩尔比为1:(1.5-3.5),N-烯丙基苯胺类化合物与催化剂的摩尔比为1:(1.1-1.5)。
反应过程中反应的温度为80-130℃,反应时间3-8h。
有益效果:相对于现有技术,本发明采用廉价的铜为催化剂,通过自由基串联环化一步直接得到了多氟烷基取代的吲哚啉或者多氟烷基取代的四氢异喹啉类化合物,反应的选择性强,合成过程简单高效,反应成本低,反应操作简便,适用于工业化大规模生产;而且该反应可以兼容不同的官能团,底物的使用范围广,本发明为多氟烷基取代的吲哚啉和四氢异喹啉类化合物的合成提供了一种简便、高效的新方法。
具体实施方式
一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法,将N-烯丙基苯胺类化合物、催化剂、多氟卤代烃溶于溶剂中,加热反应制得多氟烷基取代的吲哚啉或者四氢异喹啉化合物,其反应方程式为:
Figure BDA0002037265470000031
其中,
A为C或者N;
R为甲基,甲氧基,卤素,苯基,或者杂芳基;
R1为甲基或氢;
PG为保护基团;
Rf为多氟烷基;
X为卤素;
所述催化剂为CuBr、CuCl、CuI、Cu中的任一项或至少两项混合。
所述吲哚啉或四氢喹啉类化合物可以为下述的任何一种物质,在下述方程式的条件下,其分离产率百分比如下所示:
Figure BDA0002037265470000041
注:方程式中的反应条件为:1(0.5mmol),2(1.0mmol),Cu(0.75mmol),溶剂DMSO(3mL);所述3aa,3ba,4ba等均为底物吲哚啉或四氢喹啉类化合物的编号。
进一步地,所述X基团中的卤素为溴或碘;R基团中的卤素为氟、氯、溴或碘。
进一步地,所述保护基团包括:氢、甲基,R2CO或R3SO2
进一步地,所述多氟烷基为C4-8全氟饱和的直链烷基,即n-C4F9、n-C6F13、n-C8F17或者CF2CO2Et中的任一种。
更进一步地,所述R2选自甲基、乙基、丙基、异丙基、叔丁基、n-C7H15、叔丁氧基中的任一种。
更进一步地,所述R3选自甲基、乙基、N,N-二甲基、苯基、对甲苯基、邻甲苯基、间氯苯基中的任一种。
优选地,所述催化剂为Cu或CuI。
进一步地,所述溶剂为二甲基亚砜、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。
进一步地,所述N-烯丙基苯胺类化合物与多氟卤代烃的摩尔比为1:(1.5-3.5),N-烯丙基苯胺类化合物与催化剂的摩尔比为1:(1.1-1.5)。
进一步地,反应过程中反应的温度为80-130℃;反应时间3-8h。
下面结合具体实施例对本发明作进一步说明:
实施例1:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000051
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲基亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率74%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.22(d,J=8.1Hz,1H),7.29-7.25(m,1H),7.14(d,J=6.1Hz,1H),7.09(td,J=7.4,1.1Hz,1H),4.10(d,J=10.9Hz,1H),3.89(dd,J=10.9,1.5Hz,1H),2.58–2.40(m,2H),2.25(s,3H),1.53(d,J=2.4Hz,3H);13C NMR(101MHz,CDCl3)δ168.81,141.28,137.98,128.98,124.27,122.10,117.49,61.50(d,J=6.2Hz),41.83,39.41(t,J=20.6Hz),26.78(d,J=3.8Hz),24.38.19F NMR(376MHz,CDCl3)δ-81.01(t,J=12.3Hz,3F),-107.46–-114.59(m,2F),-124.46–-124.58(m,2F),-125.60–-125.83(m,2F);HRMS(ESI):m/z[M+H]+calcd for C16H15F9NO:408.1004;found:408.1007。
实施例2:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000061
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率80%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.09(d,J=8.2Hz,1H),7.07(dd,J=8.4,1.6Hz,1H),6.93(s,1H),4.07(d,J=10.8Hz,1H),3.88(dd,J=10.9,1.6Hz,1H),2.52-2.40(m,2H),2.34(s,3H),2.23(s,3H),1.51(d,J=2.4Hz,3H);13C NMR(101MHz,CDCl3)δ168.45,138.98,138.15,133.97,129.44,122.62,117.23,61.64(d,J=6.3Hz),41.81,39.41(t,J=20.4Hz),26.67(d,J=3.7Hz),24.25,21.24;19F NMR(376MHz,CDCl3)δ-81.01(t,J=11.4Hz,3F),-107.82–-114.39(m,2F),-124.47–-124.56(m,2F),-125.59–-125.85(m,2F);HRMS(ESI):m/z[M+H]+calcd for C17H17F9NO:433.1161;found:433.1163。
实施例3:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000062
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率82%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.16(d,J=8.6Hz,1H),7.22(dd,J=8.6,2.2Hz,1H),7.10(d,J=2.2Hz,1H),4.11(d,J=10.9Hz,1H),3.91(dd,J=10.9,1.6Hz,1H),2.55–2.39(m,2H),2.24(s,3H),1.53(d,J=2.3Hz,3H);13C NMR(101MHz,CDCl3)δ168.74,139.97,139.73,129.09,128.94,122.52,118.50,61.57(d,J=6.2Hz),41.86,39.28(t,J=20.5Hz),26.77(d,J=3.7Hz),24.18;19F NMR(376MHz,CDCl3)δ-81.05(t,J=11.4Hz,3F),-108.02–-114.08(m,2F),-124.41–-124.55(m,2F),-125.70–-125.80(m,2F);HRMS(ESI):m/z[M+H]+calcd for C16H14ClF9NO:442.0615;found:442.0619。
实施例4:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000071
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率58%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.28(d,J=8.4Hz,1H),7.56(dd,J=8.3,1.3Hz,2H),7.51(dd,J=8.4,1.9Hz,1H),7.44(t,J=7.6Hz,2H),7.37–7.31(m,2H),4.14(d,J=10.8Hz,1H),3.94(dd,J=10.8,1.6Hz,1H),2.63–2.46(m,2H),2.27(s,3H),1.58(d,J=2.4Hz,3H);13C NMR(101MHz,CDCl3)δ168.74,140.73,140.64,138.68,137.57,128.96,127.92,127.33,127.02,120.78,117.63,61.75(d,J=6.5Hz),41.90,39.44,26.82(d,J=3.7Hz),24.31;19F NMR(376MHz,CDCl3)δ-81.02(t,J=11.4Hz,3F),-107.80–-114.22(m,2F),-124.40–-124.50(m,2F),-125.59–-125.82(m,2F);HRMS(ESI):m/z[M+H]+calcd forC22H19F9NO:484.1317;found:484.1319。
实施例5:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000072
在25mL的耐压管中加入N-烯丙基胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率71%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.51–8.36(m,2H),8.04(d,J=5.6Hz,1H),4.14(d,J=10.9Hz,1H),3.93(d,J=10.9Hz,1H),2.67–2.46(m,2H),2.27(s,3H),1.59(s,3H);13C NMR(101MHz,CDCl3)δ169.70,150.86,147.94,144.22,133.26,111.69,65.38–60.33(m),41.11,39.46(t,J=20.4Hz)27.37(d,J=3.1Hz),24.33;19F NMR(376MHz,CDCl3)δ-81.05(t,J=11.7Hz,3F),-108.16–-113.86(m,2F),-124.41–-124.51(m,2F),-125.62–-125.82(m,2F);HRMS(ESI):m/z[M+H]+calcd for C15H14F9N2O:409.0957;found:409.0958。
实施例6:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000081
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率78%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.24(d,J=8.2Hz,1H),7.19(dd,J=8.3,1.8Hz,1H),7.05(s,1H),4.19(d,J=10.8Hz,1H),3.99(d,J=10.8Hz,1H),2.63–2.53(m,4H),2.46(s,3H),1.36(t,J=7.4Hz,3H);13C NMR(101MHz,CDCl3)δ171.88,139.21,138.05,133.81,129.45,122.60,117.17,60.69(d,J=6.4Hz),41.81,39.37(t,J=20.3Hz),29.26,26.59(d,J=3.6Hz),21.22,8.84;19F NMR(376MHz,CDCl3)δ-80.90(t,J=11.5Hz,3F),-107.95–-114.06(m,2F),-124.39–-124.49(m,2F),-125.56–-125.77(m,2F);HRMS(ESI):m/z[M+H]+calcdfor C18H19F9NO:436.1317;found:436.1319。
实施例7:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000082
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率60%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.19(d,J=8.7Hz,1H),7.23(dd,J=8.7,2.2Hz,1H),7.09(d,J=2.3Hz,1H),4.10(d,J=10.8Hz,1H),3.89(d,J=10.9Hz,1H),2.50–2.40(m,4H),1.51(s,3H),1.24(t,J=7.3Hz,3H);13C NMR(101MHz,CDCl3)δ172.18,140.19,139.62,128.96,128.92,122.50,118.43,60.65(d,J=6.5Hz),41.87,39.25(t,J=20.4Hz),29.28,26.73(d,J=3.6Hz),8.73.19F NMR(376MHz,CDCl3)δ-81.01(t,J=12.0Hz,3F),-107.95–-114.06(m,2F),-124.39–-124.53(m,2F),-125.57–-125.77(m,2F);HRMS(ESI):m/z[M+H]+calcd for C17H16ClF9NO:456.0771;found:456.0776。
实施例8:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000091
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率86%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.17(d,J=8.7Hz,1H),7.22(dd,J=8.8,2.2Hz,1H),7.09(d,J=2.2Hz,1H),4.30(d,J=10.8Hz,1H),4.07(dd,J=10.8,1.6Hz,1H),2.50–2.31(m,2H),1.52(d,J=2.6Hz,3H),1.37(s,9H);13C NMR(101MHz,CDCl3)δ176.71,141.74,139.62,129.22,128.73,122.12,120.02,61.65(d,J=6.6Hz)42.53,40.28,38.14(t,J=20.6Hz),27.67,24.80,24.76.19F NMR(376MHz,CDCl3)δ-81.02(t,J=11.2Hz,3F),-107.73–-114.73(m,2F),-124.44–-124.53(m,2F),-125.38–-126.08(m,2F);HRMS(ESI):m/z[M+H]+calcdfor C19H20ClF9NO:484.1084;found:484.1087。
实施例9:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000092
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL)。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率66%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.19(d,J=8.7Hz,1H),7.22(dd,J=8.6,2.2Hz,1H),7.09(d,J=2.2Hz,1H),4.11(d,J=10.8Hz,1H),3.90(d,J=10.8Hz,1H),2.57–2.27(m,4H),1.76–1.69(m,2H),1.52(d,J=2.3Hz,3H),1.42–1.25(m,8H),0.92–0.85(m,3H);13C NMR(101MHz,CDCl3)δ171.66,140.19,139.68,128.93,122.47,118.52,60.80(d,J=6.4Hz),41.85,39.22(t,J=20.5Hz),36.03,31.82,29.41,29.26,26.65(d,J=3.7Hz),24.65,22.76,14.19.19F NMR(376MHz,CDCl3)δ-81.02(t,J=11.4Hz,3F),-107.96–-114.07(m,2F),-124.33–-124.56(m,2F),-125.57–-125.79(m,2F);HRMS(ESI):m/z[M+H]+calcd forC22H26ClF9NO:526.1554;found:526.1557。
实施例10:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000101
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率59%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.14(d,J=8.7Hz,1H),7.37(dd,J=8.6,2.0Hz,1H),7.24(d,J=2.0Hz,1H),4.10(d,J=10.8Hz,1H),3.89(d,J=10.8Hz,1H),2.57–2.30(m,4H),1.73(p,J=7.4Hz,2H),1.51(s,3H),1.42–1.25(m,8H),0.93–0.84(m,3H);13C NMR(101MHz,CDCl3)δ171.71,140.68,140.06,131.88,125.37,118.99,116.33,60.76(d,J=6.2Hz),41.84,39.26(t,J=20.5Hz),36.07,31.83,29.41,29.26,26.69(d,J=3.4Hz),24.64,22.76,14.19;19F NMR(376MHz,CDCl3)δ-80.86–-81.17(m,3F),-107.93–-114.06(m,2F),-124.37–-124.47(m,2F),-125.56–-125.77(m,2F);HRMS(ESI):m/z[M+H]+calcd forC22H26BrF9NO:570.1049;found:570.1050。
实施例11:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000102
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率84%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.80(s,1H),7.18(dd,J=8.6,2.2Hz,1H),7.06(d,J=2.2Hz,1H),4.01(d,J=11.7Hz,1H),3.84(d,J=11.9Hz,1H),2.56–2.29(m,2H),1.57(s,9H),1.48(d,J=2.3Hz,3H);13C NMR(101MHz,CDCl3)δ152.30,140.08,139.52,128.71,127.66,122.79,116.23,81.61,60.60(d,J=5.9Hz),41.08,39.39(t,J=20.5Hz),28.50,26.84(d,J=2.9Hz);19F NMR(376MHz,CDCl3)δ-81.09(t,J=10.2Hz,3F),-107.99–-114.18(m,2F),-124.46–-124.55(m,2F),-125.70–-125.83(m,2F);HRMS(ESI):m/z[M+H]+calcdfor C19H20F9NO2:500.1033;found:500.1037。
实施例12:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000111
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率62%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.14(s,1H),7.54(t,J=1.4Hz,1H),7.50–7.47(m,1H),7.41(d,J=5.0Hz,2H),7.29–7.16(m,2H),7.12(d,J=7.4Hz,1H),4.12(d,J=11.4Hz,1H),4.02–3.70(m,1H),2.66–2.29(m,2H),1.55(d,J=2.0Hz,3H);13C NMR(101MHz,CDCl3)δ167.30,140.77,138.95,138.02,134.91,130.83,130.14,128.56,127.46,125.21,124.81,122.47,117.66,62.58,41.54,38.84(t,J=20.6Hz),26.08;19F NMR(376MHz,CDCl3)δ-80.04(t,J=10.5Hz,3F),-108.63–-114.06(m,2F),-124.42–-124.52(m,2F),-125.60–-125.80(m,2F).HRMS(ESI):m/z[M+H]+calcd for C21H16ClF9NO:504.0771;found:504.0776。
实施例13:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000112
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率65%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.36(d,J=8.6Hz,1H),7.23(dd,J=8.6,2.1Hz,1H),7.14(d,J=2.1Hz,1H),3.99(dd,J=10.7,0.9Hz,1H),3.85(dd,J=10.6,1.7Hz,1H),2.93(s,3H),2.58–2.39(m,2H),1.54(d,J=2.1Hz,3H);13C NMR(101MHz,CDCl3)δ139.49,139.19,129.33,129.31,123.63,114.72,62.43(d,J=5.9Hz),41.81,38.75(t,J=20.6Hz),35.19,26.44(d,J=3.1Hz);19F NMR(376MHz,CDCl3)δ-81.06(t,J=10.9Hz,3F),-108.08–-113.61(m,2F),-124.38–-124.44(m,2F),-125.62–-125.79(m,2F).HRMS(ESI):m/z[M+H]+calcdfor C15H14ClF9NO2S:478.0285;found:478.0288。
实施例14:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000121
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率75%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.57–7.51(m,2H),7.49(d,J=1.2Hz,2H),7.44(t,J=7.6Hz,2H),7.38–7.32(m,2H),4.02(dd,J=10.6,0.9Hz,1H),3.89(dd,J=10.6,1.7Hz,1H),2.96(s,3H),2.66–2.44(m,2H),1.59(d,J=2.2Hz,3H);13C NMR(101MHz,CDCl3)δ140.43,139.83,138.41,137.70,129.05,128.31,127.54,127.04,121.94,113.87,62.58(d,J=5.9Hz),41.85,38.96,35.08,26.48(d,J=3.5Hz);19F NMR(376MHz,CDCl3)δ-81.02(t,J=11.7Hz,3F),-107.91–-113.66(m,2F),-124.32–-124.40(m,2F),-125.57–-125.74(m,2F);HRMS(ESI):m/z[M+H]+calcd for C21H19F9NO2S:520.0987;found:520.0989。
实施例15:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000122
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率78%。
1H NMR(400MHz,CDCl3)δ7.33(d,J=8.6Hz,1H),7.20(dd,J=8.5,2.1Hz,1H),7.12(d,J=2.1Hz,1H),4.09–4.01(m,1H),3.90(dd,J=10.6,1.7Hz,1H),3.14(q,J=7.4Hz,2H),2.57–2.39(m,2H),1.53(d,J=2.2Hz,3H),1.42(t,J=7.4Hz,3H);;13C NMR(101MHz,CDCl3)δ139.49,139.29,129.14,128.83,123.51,114.69,62.41(d,J=6.1Hz),44.88,41.90,38.79(t,J=20.5Hz),26.40(d,J=3.5Hz),7.84;19F NMR(376MHz,CDCl3)δ-81.06(t,J=11.3Hz,3F),-107.97–-113.79(m,2F),-124.40–-124.49(m,2F),-125.61–-125.79(m,2F);HRMS(ESI):m/z[M+H]+calcd for C16H16ClF9NO2S:492.0441;found:492.0446。
实施例16:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000131
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率74%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.57–7.50(m,2H),7.50–7.40(m,4H),7.35(d,J=7.2Hz,2H),4.09(d,J=10.6Hz,1H),3.95(dd,J=10.6,1.7Hz,1H),3.18(q,J=7.4Hz,2H),2.65–2.44(m,2H),1.58(d,J=2.2Hz,3H),1.45(t,J=7.4Hz,3H);13C NMR(101MHz,CDCl3)δ140.51,140.10,138.23,137.24,129.02,128.15,127.45,127.00,121.85,113.80,62.56(d,J=6.1Hz),44.71,41.92,39.00(t,J=20.5Hz),26.44(d,J=3.4Hz),7.89;19F NMR(376MHz,CDCl3)δ-80.03(t,J=11.3Hz,3F),-107.80–-113.84(m,2F),-124.36–-124.42(m,2F),-125.57–-125.75(m,2F);HRMS(ESI):m/z[M+H]+calcd for C22H21F9NO2S:534.1144;found:534.1147。
实施例17:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000132
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率72%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.35(d,J=1.8Hz,1H),7.00(d,J=1.8Hz,1H),4.17(d,J=10.8Hz,1H),3.90(d,J=10.7Hz,1H),3.22–3.13(m,2H),2.89–2.65(m,2H),1.65(d,J=1.6Hz,3H),1.43(t,J=7.4Hz,3H);13C NMR(101MHz,CDCl3)δ143.84,135.81,131.52,130.82,124.64,112.48,62.20(dd,J=4.9,2.7Hz),45.37,42.77,36.56,25.64(d,J=2.8Hz),7.79;19F NMR(376MHz,CDCl3)δ-81.05(t,J=12.0Hz,3F),-109.29–-113.66(m,2F),-124.51–-124.62(m,2F),-125.67–-125.80(m,2F);HRMS(ESI):m/z[M+H]+calcd forC16H15Cl2F9NO2S:526.0051;found:526.0051。
实施例18:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000141
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率71%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.58–7.51(m,2H),7.50–7.39(m,4H),7.37–7.30(m,2H),4.05(d,J=10.5Hz,1H),3.88(dd,J=10.5,1.8Hz,1H),2.94(s,6H),2.63–2.43(m,2H),1.58(d,J=2.3Hz,3H);13C NMR(101MHz,CDCl3)δ140.98,140.68,138.07,136.86,129.00,128.00,127.34,127.01,121.47,114.35,62.81(d,J=6.4Hz),41.92,39.20,39.00,38.80,38.39,26.15(d,J=3.4Hz);19F NMR(376MHz,CDCl3)δ-80.90–-81.00(m,J=10.9Hz,3F),-107.78–-114.40(m,2F),-124.40–-124.50(m,2F),-125.57–-125.78(m,2F);HRMS(ESI):m/z[M+H]+calcd for C22H22F9N2O2S:549.1253;found:549.1253。
实施例19:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000142
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率74%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.90–7.79(m,2H),7.71(d,J=8.1Hz,1H),7.56(t,J=7.4Hz,1H),7.46(dd,J=8.5,7.0Hz,2H),7.29–7.24(m,1H),7.10–6.99(m,2H),3.99–3.90(m,1H),3.80(dd,J=11.1,1.6Hz,1H),2.41–2.07(m,2H),1.26(d,J=2.5Hz,3H);13C NMR(101MHz,CDCl3)δ140.31,138.19,136.99,133.55,129.29,129.09,127.30,124.25,122.96,114.97,61.84(d,J=6.2Hz),41.75,39.07,26.21(d,J=3.6Hz);19F NMR(376MHz,CDCl3)δ-81.12(t,J=10.9Hz,3F),-107.75–-114.16(m,2F),-124.46–-124.56(m,2F),-125.69–-125.90(m,2F);HRMS(ESI):m/z[M+H]+calcd for C20H17F9NO2S:506.0831;found:506.0836。
实施例20:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000151
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率79%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.70(t,J=8.4Hz,3H),7.26(t,J=8.9Hz,3H),7.04(q,J=3.8Hz,2H),3.92(d,J=11.1Hz,1H),3.78(dd,J=11.1,1.5Hz,1H),2.46–2.02(m,5H),1.28(d,J=2.4Hz,3H);13C NMR(101MHz,CDCl3)δ144.55,140.46,138.19,134.01,129.89,129.05,127.36,124.13,122.94,115.01,61.85(d,J=6.1Hz),41.73,39.09,26.14(d,J=3.3Hz),21.55;19F NMR(376MHz,CDCl3)δ-81.12(t,J=11.3Hz,3F),-107.78–-114.19(m,2F),-124.48–-124.57(m,2F),-125.15–-125.91(m,2F);HRMS(ESI):m/z[M+H]+calcd forC21H19F9NO2S:520.0987;found:520.0988。
实施例21:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000152
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率32%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.99(d,J=8.1Hz,1H),7.52–7.39(m,2H),7.32(t,J=8.1Hz,2H),7.21(t,J=7.7Hz,1H),7.11(d,J=7.5Hz,1H),7.04(t,J=7.4Hz,1H),3.99(d,J=10.9Hz,1H),3.82(d,J=11.6Hz,1H),2.73–2.50(m,3H),2.48–2.22(m,2H),1.39(d,J=2.4Hz,3H);13C NMR(101MHz,CDCl3)δ141.05,138.26,137.93,137.32,133.40,133.11,129.62,128.96,126.50,123.88,122.88,114.89,61.58(d,J=6.3Hz),41.89,38.94(t,J=20.6Hz),25.95(d,J=3.8Hz)20.87;19F NMR(376MHz,CDCl3)δ-81.05(t,J=11.3Hz,3F),-107.76–-114.36(m,2F),-124.45–-124.52(m,2F),-125.64-125.84(m,2F);HRMS(ESI):m/z[M+H]+calcd for C21H19F9NO2S:520.0987;found:520.0988。
实施例22:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000161
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率39%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.97(dd,J=8.2,1.2Hz,1H),7.50–7.42(m,1H),7.36–7.27(m,3H),7.02–7.01(m,1H),6.89(d,J=1.7Hz,1H),3.96(dd,J=11.0,1.0Hz,1H),3.80(dd,J=11.0,1.7Hz,1H),2.61(s,3H),2.45–2.21(m,5H),1.36(d,J=2.5Hz,3H);13C NMR(101MHz,CDCl3)δ138.66,138.24,138.19,137.34,133.71,133.29,133.07,129.62,129.47,126.45,123.40,114.80,61.70(d,J=6.7Hz),41.92,38.95(t,J=20.4Hz),29.85,25.84,21.02(d,J=15.8Hz);19F NMR(376MHz,CDCl3)δ-80.97–-81.06(t,J=11.3Hz,3F),-107.70–-114.42(m,2F),-124.47–-124.56(m,2F),-125.64–-125.84(m,2F);HRMS(ESI):m/z[M+H+calcd for C22H21F9NO2S:534.1144;found:534.1147。
实施例23:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000171
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率51%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.96(dd,J=7.9,1.5Hz,1H),7.48(td,J=7.5,1.4Hz,1H),7.40(d,J=8.6Hz,1H),7.33(t,J=7.8Hz,2H),7.18(dd,J=8.6,2.1Hz,1H),7.07(d,J=2.1Hz,1H),3.97(dd,J=10.9,0.9Hz,1H),3.80(dd,J=11.0,1.7Hz,1H),2.60(s,3H),2.42–2.24(m,2H),1.37(d,J=2.4Hz,3H);13C NMR(101MHz,CDCl3)δ139.81,139.71,138.25,136.90,133.62,133.20,129.65,129.07,129.01,126.60,123.33,115.98,61.71(d,J=6.4Hz),41.98,38.78(t,J=20.5Hz),25.92(d,J=3.7Hz),20.89;19F NMR(376MHz,CDCl3)δ-81.04(t,J=11.6Hz,3F),-107.82–-114.23(m,2F),-124.42–-124.48(m,2F),-125.63–-125.82(m,2F);HRMS(ESI):m/z[M+H]+calcd for C21H18ClF9NO2S:554.0598;found:554.0599。
实施例24:
多氟取代的四氢异喹啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000172
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率25%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.99(dd,J=7.9,1.4Hz,1H),7.48(td,J=7.5,1.4Hz,1H),7.37(d,J=7.8Hz,1H),7.32(dd,J=8.0,3.8Hz,2H),7.27–7.18(m,2H),7.07–7.05(m,1H),4.52(d,J=15.1Hz,1H),4.31(d,J=15.1Hz,1H),3.67(d,J=12.5Hz,1H),3.10(d,J=12.5Hz,1H),2.67(s,3H),2.67–2.45(m,1H),2.39–2.25(m,1H),1.48(d,J=2.4Hz,3H);13CNMR(101MHz,CDCl3)δ140.39,138.32,135.35,133.36,133.11,130.84,130.56,127.62,127.23,126.85,126.49,126.38,53.72(d,J=4.3Hz),47.59,38.08(t,J=20.0Hz),37.59,25.33(d,J=4.4Hz),20.93;19F NMR(376MHz,CDCl3)δ-81.12(t,J=10.7Hz,3F),-107.72–-114.42(m,2F),-124.04–-124.24(m,2F),-125.65–-125.83(m,2F);HRMS(ESI):m/z[M+H]+calcd for C22H21F9NO2S:534.1144;found:534.1144。
实施例25:
多氟取代的多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000181
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率48%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.17(d,J=8.7Hz,1H),7.23(dd,J=8.7,2.1Hz,1H),7.17–7.10(m,1H),4.41–4.28(m,1H),3.97–3.79(m,2H),2.61(dt,J=30.9,12.7Hz,1H),2.45–2.30(m,1H),2.24(s,3H);13C NMR(101MHz,CDCl3)δ168.68,141.33,133.77,129.04,123.85,118.33,55.41(d,J=4.4Hz)36.05(t,J=21.0Hz),34.10–32.85(m),24.22;19F NMR(376MHz,CDCl3)δ-80.96(t,J=11.3Hz,3F),-111.86–-114.15(m,2F),-124.22–-124.33(m,2F),-125.75–-125.90(m,2F);HRMS(ESI):m/z[M+H]+calcd for C15H12ClF9NO:428.0458;found:428.0460。
实施例26:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000182
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率57%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ7.33(dd,J=8.6,1.5Hz,1H),7.21(dd,J=8.6,2.2Hz,1H),7.17(d,J=2.0Hz,1H),4.38–4.23(m,1H),3.90–3.75(m,2H),3.16–3.10(m,2H),2.70–2.50(m,1H),2.48–2.27(m,1H),1.46–1.34(m,3H);13C NMR(101MHz,CDCl3)δ140.74,133.81,129.25,129.00,124.79,114.87,(d,J=4.6Hz),45.53–44.40(m),35.42(t,J=21.4Hz),33.59(d,J=3.2Hz),7.85;19F NMR(376MHz,CDCl3)δ-81.06(t,J=11.3Hz,3F),-111.93–-114.14(m,2F),-124.24–-124.36(m,2F),-125.81–-125.96(m,2F);HRMS(ESI):m/z[M+H]+calcd for C15H14ClF9NO2S:478.0285;found:478.0287。
实施例27:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000191
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代己烷1.0mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率83%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.22(d,J=8.1Hz,1H),7.31–7.23(m,1H),7.14(s,1H),7.09(dd,J=7.4,1.1Hz,1H),4.10(d,J=10.8Hz,1H),3.94–3.85(m,1H),2.57–2.40(m,2H),2.25(s,3H),1.53(d,J=2.4Hz,3H);13C NMR(101MHz,CDCl3)δ168.79,141.29,138.00,128.96,124.26,122.09,117.49,61.50(d,J=6.4Hz),41.85,39.52(t,J=20.4Hz),26.75(d,J=3.7Hz),24.32;19F NMR(376MHz,CDCl3)δ-80.59–-80.89(t,J=11.3Hz,3F),-107.64–-113.92(m,2F),-121.47–-12163,(m,2F),-122.73–-122.86(m,2F),-123.53–-123.64(m,2F),-126.01–-126.18(m,2F);HRMS(ESI):m/z[M+H]+calcd for C18H15F13NO:508.0941;found:508.0947。
实施例28:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000192
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代辛烷1.0mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率50%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.22(d,J=8.1Hz,1H),7.30–7.24(m,1H),7.13(s,1H),7.09(dd,J=7.4,1.1Hz,1H),4.08(s,1H),3.94–3.85(m,1H),2.61–2.38(m,2H),2.25(s,3H),1.53(d,J=2.4Hz,3H);13C NMR(101MHz,CDCl3)δ168.79,141.29,138.01,128.97,124.26,122.09,117.50,61.51(d,J=6.3Hz),41.86,39.53(t,J=20.4Hz),26.75(d,J=3.6Hz),24.33;19F NMR(376MHz,CDCl3)δ-80.73(t,J=11.3Hz,3F).-107.63–-113.90(m,2F),-121.30–-121.86(m,2F),-122.30–-123.56(m,6F),-123.54(d,J=15.0Hz,2F),-126.07(dd,J=20.1,11.7Hz,2F).–-80.85(m,3F);HRMS(ESI):m/z[M+H]+calcd forC20H15F17NO:608.0877;found:608.0879。
实施例29:
多氟取代的吲哚啉化合物的合成,其反应方程式如下:
Figure BDA0002037265470000201
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,二氟溴乙酸乙酯1.0mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率55%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.20(d,J=8.1Hz,1H),7.26–7.21(m,1H),7.11(d,J=1.4Hz,1H),7.05(td,J=7.5,1.1Hz,1H),4.24–4.11(m,3H),3.82(d,J=10.7Hz,1H),2.63–2.37(m,2H),2.24(s,3H),1.47(d,J=1.6Hz,3H),1.30(t,J=7.1Hz,3H);13C NMR(101MHz,CDCl3)δ164.36,144.35,138.80,134.81,132.83,130.19,129.43,128.70,128.15,128.06,127.89,126.83,124.22,55.68(d,J=3.9Hz),50.38,38.35–35.53(m)22.86;13C NMR(101MHz,CDCl3)δ168.83,164.31,163.99,163.67,141.65,137.82,128.75,124.01,122.40,118.58,117.37,116.08,113.57,63.38,61.45(d,J=4.5Hz),43.59(t,J=22.0Hz),41.71,27.08(d,J=2.6Hz),24.36,13.96;19F NMR(376MHz,CDCl3)δ-100.40–-104.22(m,2F);HRMS(ESI):m/z[M+H]+calcd for C16H20F2NO3:312.1406;found:312.1409。
实施例30:
多氟取代的四氢异喹啉的合成,其反应方程式如下:
Figure BDA0002037265470000202
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率57%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.14(dd,J=7.8,1.5Hz,1H),7.52(td,J=7.6,1.6Hz,1H),7.40(td,J=7.5,1.2Hz,1H),7.36–7.30(m,1H),3.58(d,J=13.0Hz,1H),3.49(d,J=13.0Hz,1H),3.18(s,3H),2.57-2.42(m,1H),2.30-2.16(m,1H),1.62(d,J=2.4Hz,3H);13CNMR(101MHz,CDCl3)δ164.52,144.76,132.49,129.07,128.08,127.91,123.85,57.52(d,J=4.2Hz),37.15,36.95(t,J=20.4Hz),35.12,22.73(d,J=5.0Hz);19F NMR(376MHz,CDCl3)δ-81.04(t,J=10.9Hz,3F),-110.61–-113.28(m,2F),-124.29–-124.40(m,2F),-125.69–-125.82(m,2F);HRMS(ESI):m/z[M+H]+calcd for C16H15F9NO:408.1004;found::408.1006。
实施例31:
多氟取代的四氢异喹啉的合成,其反应方程式如下:
Figure BDA0002037265470000211
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率25%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.18(d,J=2.4Hz,1H),7.47(dd,J=8.3,2.4Hz,1H),7.38–7.23(m,6H),4.90(d,J=14.4Hz,1H),4.65(d,J=14.4Hz,1H),3.38(q,J=13.1Hz,2H),2.35–2.09(m,2H),1.51(d,J=1.9Hz,3H);13C NMR(101MHz,CDCl3)δ163.08,142.24,136.34,134.25,132.45,129.79,129.26,128.94,128.76,128.05,126.14,55.72(d,J=3.2Hz),50.76,36.89(t,J=20.2Hz),35.76,22.85(t,J=2.9Hz);19F NMR(376MHz,Chloroform-d)δ-81.13(t,J=10.5Hz,3F),-109.91–-113.38(m,2F),-124.27–-124.37(m,2F),-125.69–-125.82(m,2F);HRMS(ESI):m/z[M+H]+calcd for C22H18ClF9NO:518.0928;found::518.0931。
实施例32:
多氟取代的四氢异喹啉的合成,其反应方程式如下:
Figure BDA0002037265470000221
在25mL的耐压管中加入N-烯丙基苯胺0.5mmol,Cu 0.75mmol,全氟碘代丁烷1.5mmol,溶剂二甲亚砜3.0mL。该混合液在120℃反应6h,反应结束后,用乙酸乙酯和水萃取,无水硫酸钠干燥,得到产物。产物通过柱色谱分离提纯,分离收率56%。其分离提纯后的产物的核磁共振谱以及高分辨质谱信息如下:
1H NMR(400MHz,CDCl3)δ8.23–8.18(m,1H),7.54(td,J=7.6,1.6Hz,1H),7.47–7.40(m,2H),7.37–7.32(m,2H),7.30–7.26(m,1H),7.26–7.22(m,1H),4.99(d,J=14.6Hz,1H),4.53(d,J=14.6Hz,1H),3.51–3.37(m,2H),2.43–2.07(m,2H),1.56(d,J=2.3Hz,3H);13C NMR(101MHz,CDCl3)δ164.36,144.35,138.80,134.81,132.83,130.19,129.43,128.70,128.15,128.06,127.89,126.83,124.22,55.68(d,J=3.9Hz),50.38,36.91(t,J=20.3Hz),36.09,22.86(d,J=2.0Hz);19F NMR(376MHz,CDCl3)δ-81.06(t,J=11.9Hz,3F),-110.00–-113.50(m,2F),-124.00–-124.33(m,2F),-125.54–-125.95(m,2F);HRMS(ESI):m/z[M+H]+calcd for C22H18ClF9NO:518.0928;found:518.0932。
实施例33-54的反应方程式、反应条件及分离产率如下表1所示:
Figure BDA0002037265470000222
表1不同催化剂、溶剂、温度、时间条件下的分离产率
Figure BDA0002037265470000223
Figure BDA0002037265470000231
注:a反应条件:1a(0.5mmol),2a(1.0mmol),催化剂(0.75mmol),溶剂3mL,反应温度120℃;
b分离产率;
cCu的用量为0.55mmol;
dCu的用量为0.6mmol;
e2a的用量为0.75mmol;
f2a的用量为1.5mmol;
g2a的用量1.75mmol。
由上表1可以看出,对于本发明的反应,当无催化剂或溶剂为DCE、MeCN、PhMe时,均不会发生反应;当催化剂为CuBr、CuCl、CuI、Cu时,均发生反应,且催化剂为Cu时,产率最高;当催化剂为Cu,溶剂为DMF、DMSO、DMAc或1,4-dioxane时,均能发生反应;而且本发明的产率可高达75%。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的技术人员来说,在不脱离本发明整体构思前提下,还可以做出若干改变和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。

Claims (6)

1.一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法,其特征在于:将N-烯丙基苯胺类化合物、催化剂、多氟卤代烃溶于溶剂中,加热反应制得多氟烷基取代的吲哚啉或者四氢异喹啉化合物,其反应方程式为:
Figure FDA0003516136020000011
其中,A为C或者N;R为甲基,甲氧基,卤素,苯基,或者杂芳基;R1为甲基或氢;
PG为保护基团;Rf为多氟烷基;X为卤素;
所述催化剂为CuBr、CuCl、Cu中的任一项或至少两项混合;所述X基团中的卤素为溴或碘;R基团中的卤素为氟、氯、溴或碘;所述保护基团包括:氢、甲基,R2CO或R3SO2;所述溶剂为二甲基亚砜、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。
2.根据权利要求1所述的多氟烷基取代的吲哚啉和四氢异喹啉的合成方法,其特征在于:所述多氟烷基为C4-8全氟饱和的直链烷基,即n-C4F9、n-C6F13、n-C8F17或者CF2CO2Et中的任一种。
3.根据权利要求1所述的多氟烷基取代的吲哚啉和四氢异喹啉的合成方法,其特征在于:所述R2选自甲基、乙基、丙基、异丙基、叔丁基、n-C7H15、叔丁氧基中的任一种。
4.根据权利要求1所述的多氟烷基取代的吲哚啉和四氢异喹啉的合成方法,其特征在于:所述R3选自甲基、乙基、N,N-二甲基、苯基、对甲苯基、邻甲苯基、间氯苯基中的任一种。
5.根据权利要求1所述的多氟烷基取代的吲哚啉和四氢异喹啉的合成方法,其特征在于:N-烯丙基苯胺类化合物与多氟卤代烃的摩尔比为1:(1.5-3.5),N-烯丙基苯胺类化合物与催化剂的摩尔比为1:(1.1-1.5)。
6.根据权利要求1所述的多氟烷基取代的吲哚啉和四氢异喹啉的合成方法,其特征在于:反应过程中反应的温度为80-130℃,反应时间3-8h。
CN201910331563.1A 2019-04-23 2019-04-23 一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法 Active CN110003081B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910331563.1A CN110003081B (zh) 2019-04-23 2019-04-23 一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910331563.1A CN110003081B (zh) 2019-04-23 2019-04-23 一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法

Publications (2)

Publication Number Publication Date
CN110003081A CN110003081A (zh) 2019-07-12
CN110003081B true CN110003081B (zh) 2022-06-17

Family

ID=67174018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910331563.1A Active CN110003081B (zh) 2019-04-23 2019-04-23 一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法

Country Status (1)

Country Link
CN (1) CN110003081B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845411B (zh) * 2019-11-07 2021-09-24 江苏理工学院 一种多氯甲基取代二氢异喹啉酮化合物的合成方法
CN111675654A (zh) * 2020-07-22 2020-09-18 南开大学 一种以惰性环丙烷为原料合成四氢喹啉类化合物的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965093A (zh) * 2014-04-04 2014-08-06 华南理工大学 2-全氟烷基吲哚类化合物及其制备方法和应用
CN109081800A (zh) * 2018-07-05 2018-12-25 昆明学院 含cf3吲哚啉和1,2,3,4-四氢异喹啉的合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965093A (zh) * 2014-04-04 2014-08-06 华南理工大学 2-全氟烷基吲哚类化合物及其制备方法和应用
CN109081800A (zh) * 2018-07-05 2018-12-25 昆明学院 含cf3吲哚啉和1,2,3,4-四氢异喹啉的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Alkene Trifluoromethylation Coupled with C-C Bond Formation: Construction of Trifluoromethylated Carbocycles and Heterocycles;Hiromichi Egami et al.;《Angew. Chem. Int. Ed.》;20130226;第52卷;第4002页第1栏表3,第4000页scheme 1 *
手性吲哚啉衍生物合成方法的研究进展;张宝乐 等;《有机化学》;20120815;第32卷(第08期);权利要求书 *

Also Published As

Publication number Publication date
CN110003081A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
KR102292928B1 (ko) 축합 헤테로사이클릭 화합물의 제조 방법
CN110003081B (zh) 一种多氟烷基取代的吲哚啉和四氢异喹啉的合成方法
WO2001083421A1 (fr) Procédé de preparation d'acides 2-halobenzoïques
CN109206335B (zh) 制备邻三氟甲基苯胺类化合物的方法及其中间体
CN108503552B (zh) 一种三氟甲基芳香胺的制备方法
CN104892485B (zh) 2‑全氟烷基吲哚衍生物及其合成方法
CN106543081B (zh) 一种1-二氟烷基异喹啉的制备方法
CN108017581B (zh) 一种含氮杂环氮氧化物衍生物及其制备方法
CN104447336B (zh) 一种三碟烯衍生物及其制备方法
CN105646327A (zh) 2-全氟烷基吲哚衍生物及其合成方法
CN106397377B (zh) 一种富电子五元杂环酸及其衍生物脱羧上氟的方法
CN101687783B (zh) 4-(三氯甲硫基)苯胺类及其制造方法、以及4-(三氟甲硫基)苯胺类的制造方法
CN115215814A (zh) 异恶唑烷类化合物的合成方法
CN109081800A (zh) 含cf3吲哚啉和1,2,3,4-四氢异喹啉的合成方法
CN108383872A (zh) 一种-1,1-二氟-3-磺酰基-2,4-戊二烯膦酸酯类化合物及其合成方法和应用
CN103992261A (zh) 2-溴咔唑工业化制备工艺
CN111004164B (zh) 一种多取代2-芳基吲哚衍生物的制备方法
CN107021968B (zh) 多取代bodipy有机光催化剂催化吲哚啉类化合物氧化脱氢合成吲哚类化合物的方法
CN106977455A (zh) 一种医药中间体异喹啉酮化合物的制备方法
CN105566221A (zh) 一种稠环酰胺化合物的合成方法
CN112457314A (zh) 手性吲哚并吲哚里西啶类化合物及其制备方法
CN107915663A (zh) 铜催化保护邻硝基苯胺类化合物的合成方法
CN107935913B (zh) 咔唑类化合物及其合成方法和应用
CN105820168A (zh) 一种依鲁替尼中间体的制备方法
CN107954886A (zh) 一种制备抗心衰脑啡肽酶抑制剂沙库必曲中间体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant