CN109999857A - 一种近红外响应空心氟化铈上转换光催化材料及其制备方法与应用 - Google Patents

一种近红外响应空心氟化铈上转换光催化材料及其制备方法与应用 Download PDF

Info

Publication number
CN109999857A
CN109999857A CN201910344178.0A CN201910344178A CN109999857A CN 109999857 A CN109999857 A CN 109999857A CN 201910344178 A CN201910344178 A CN 201910344178A CN 109999857 A CN109999857 A CN 109999857A
Authority
CN
China
Prior art keywords
cerium fluoride
infrared
responds
preparation
hollow cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910344178.0A
Other languages
English (en)
Other versions
CN109999857B (zh
Inventor
李霞章
王振东
戴达
严向玉
左士祥
姚超
罗士平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201910344178.0A priority Critical patent/CN109999857B/zh
Publication of CN109999857A publication Critical patent/CN109999857A/zh
Application granted granted Critical
Publication of CN109999857B publication Critical patent/CN109999857B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/12Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明属于光催化材料领域,公开了一种近红外响应空心氟化铈上转换光催化材料及其制备方法与应用。将硝酸铈、硝酸镱、硝酸铥、氟化铵加入到去离子水中搅拌,调节pH为2~6,并磁力搅拌混合均匀。然后转移到具有聚四氟乙烯内衬的微波水热釜内进行反应,进一步离心、干燥、烘干研磨即可得到空心球结构Yb,Tm:CeF3样品。采用该材料作为催化剂进行光催化固氮反应,在模拟近红外光照下仍展示出较好的固氮效果,最高达22ug/ml。

Description

一种近红外响应空心氟化铈上转换光催化材料及其制备方法 与应用
技术领域
本发明属于光催化材料领域,特别涉及一种近红外响应空心氟化铈上转换光催化材料及其制备方法与应用。
背景技术
自然界固定氮主要通过闪电和生物固氮,然而自然界中固定的氮远远满足不了工、农业生产的需求。目前工业上广泛应用的人工固氮方法是Haber-Bosch法工业固氮产氨,但是设备要求高,能耗大,污染严重。因此开发和发展绿色清洁,低能耗的人工固氮工艺具有重要的社会意义。人工光合成固氮即利用太阳能在温和条件下进行光催化反应将氮气和水转化为氨,目前报道的有TiO2,MoS2,BiOBr,氮化碳等光催化剂,但是目前固氮效率仍面临巨大挑战。一方面光催化合成氨过程中,氮气分子难于在光催化剂表面吸附和活化。通过在半导体光催化剂表面引入空位或者缺陷可有效地增加氮气的吸附,且很可能成为氮气分子活化并参与反应的活性中心。另一方面半导体对光的吸收主要集中在紫外和可见区域,较难扩展到近红外区域,通过上转换的方法将低能量的近红外光转化为高能量的可见或紫外光是个可行的办法。Sheng TQ等(Journal of Alloys and Compounds,2013,549,362–365)通过溶剂热法合成了CeF3:Tm3+,Yb3+材料,在红外光的激发下发射出蓝色和红色光,展示出一定上转换性质,但得到的是实心结构,而且需要大量有机溶剂。本发明利用微波水热合成稀土离子Yb,Tm双掺杂CeF3,一方面反应时间快,而且不需有机溶剂。另一方面其空心结构也有利于吸附容纳气体分子进行光固氮反应显著提升转化效率。
发明内容
本发明目的是设计合成一种近红外光响应的空心上转换发光的光催化剂。以CeF3颗粒作为基质,通过稀土离子掺杂成功将近红外光应用到光催化剂,将低能量的近红外光上转换为高能量的紫外光和可见光,充分利用太阳光能量中占多数的可见光及近红外光。
本发明以水作为溶剂,通过调节pH值微波辅助下合成空心结构纳米粒子,空心结构有较大的比表面积,低密度等显著优点,中空的内部空间可容纳一定尺寸的分子。其较大的比表面积能够提供更多的活性位点以促进光催化反应。
本发明提供的近红外响应空心氟化铈上转换光催化材料由氟化铈(CeF3)和稀土离子Yb,Tm组成,其中,催化材料通式为Ce1-x-yYbxTmyF3,x取值为0.05-0.4,y取值范围0.01-0.04。
本发明还提供了一种近红外响应空心氟化铈上转换光催化材料的制备方法,具体步骤为:
(1)将Ce(NO3)3·6H2O,Yb(NO3)3·5H2O,Tm(NO3)3·6H2O,NH4F加入到去离子水中超声波溶解,用稀盐酸调节体系pH约为2-6,使其混合均匀。然后将其转移到微波水热釜里进行微波水热反应,设定功率400W,设定温度160~180℃,时间设定为90min,得到光催化材料样品;其中,Ce(NO3)3·6H2O和NH4F的摩尔比为1:3,其中催化材料Ce1-x-yYbxTmyF3,x取值为0.05-0.4,y取值范围0.01-0.04。
(2)将步骤(1)中制备的样品用离心机离心,清洗干净,然后将样品烘干,研磨,即制得近红外响应空心氟化铈上转换光催化材料。离心是取反应后下层悬浊液离心一次,转速6000r/min,时间5min。烘干条件为:烘箱80℃烘干,10~12h。
本发明还提供了一种上述近红外响应空心氟化铈上转换光催化材料的应用,即采用该光催化材料进行光催化固氮。
本发明的有益效果在于:
本发明制备近红外响应空心氟化铈空心结构上转换发光材料,扩大了光响应范围到近红外区域,更有效的提高了自然光的利用率。
本发明中近红外响应Yb,Tm:CeF3形成的晶格缺陷作为单一半导体使光生电子与空穴有效的分离,同时近红外响应Yb,Tm:CeF3作为稀土上转换材料将近红外光转为紫外光扩大了光响应范围,以光催化固氮。与此同时,因其本身具有较大的比表面积,通过反应后形成独特的空心结构,发挥了其他半导体不具备的特有吸附性能,在光催化固氮过程中会吸附N2,从而提高光催化固氮效率。
相比于普通水热反应,微波水热反应具有制备时间短,催化剂粒径均匀较小,比表面积大的优势,并且能合成空心结构纳米粒子。采用该材料作为催化剂进行光催化固氮反应,在模拟近红外光照下仍展示出较好的固氮效果,最高达22ug/ml。
附图说明
图1为本发明对比实施例1制备的0.1Yb,0.02Tm:CeF3、实施例1制备的0.1Yb,0.02Tm:CeF3的XRD图;
图2为本发明实施例1制备的0.1Yb,0.02Tm:CeF3的TEM图。
具体实施方式
实施例1
(1)将2.20g Ce(NO3)3·6H2O,0.27g Yb(NO3)3·5H2O,0.05g Tm(NO3)3·6H2O,0.56g NH4F,加入到去离子水中超声波溶解,调节体系pH约为6,并搅拌使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定温度为180℃,时间设定90min;
(2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得近红外响应空心氟化铈上转换光催化材料0.1Yb,0.02Tm:CeF3
对所得样品进行X射线粉末衍射表征其结构和组成,并且利用透射电子显微镜观察样品的TEM图片,按照实施例1的工艺制备的0.1Yb,0.02Tm:CeF3的XRD图如图1所示,成功制备出了0.1Yb,0.02Tm:CeF3上转换光催化材料;
本实施例1所得到的0.1Yb,0.02Tm:CeF3的TEM如图2所示:粒子尺寸一致,分散均匀,具有空心结构。
本发明还提供了一种利用本实施例制备的0.1Yb,0.02Tm:CeF3光催化材料进行光催化固氮的方法:采用1000ppm的标准配置N2气体,在光催化反应装置中加入0.1Yb,0.02Tm:CeF3,气体进气量为150ml/min,暗吸附30min之后引入λ≥780nm的模拟近红外光,每隔半小时采集一次样品,利用紫外-可见分光光度计测试420nm波长下的吸光度,采用纳氏试剂法分析产物中铵离子的浓度为22μg/ml。
实施例2
(1)将2.20g Ce(NO3)3·6H2O,0.13g Yb(NO3)3·5H2O,0.02g Tm(NO3)3·6H2O,0.56g NH4F,加入到去离子水中超声波溶解,调节体系pH约为2,并搅拌使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定温度为180℃,时间设定为90min;
(2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得近红外响应空心氟化铈上转换光催化材料0.05Yb,0.01Tm:CeF3
后续检测如实施例1。光催化固氮可达4.12μg/ml。
实施例3
(1)将2.20g Ce(NO3)3·6H2O,0.61g Yb(NO3)3·5H2O,0.09g Tm(NO3)3·6H2O,0.56g NH4F,加入到去离子水中超声波溶解,调节体系pH约为4,并搅拌使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定温度为180℃,时间设定为90min;
(2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得近红外响应空心氟化铈上转换光催化材料0.2Yb,0.03Tm:CeF3
后续检测如实施例1。光催化固氮可达4.30μg/ml。
实施例4
(1)将2.20g Ce(NO3)3·6H2O,1.69g Yb(NO3)3·5H2O,0.17g Tm(NO3)3·6H2O,0.56g NH4F,加入到去离子水中超声波溶解,调节体系pH约为5,并搅拌使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定温度为180℃,时间设定为90min;
(2)将步骤(1)中制备的样品用离心机离心,再分别水洗离心一次,乙醇洗离心两次。然后将样品烘干,研磨,即制得近红外响应空心氟化铈上转换光催化材料0.4Yb,0.04Tm:CeF3
后续检测如实施例1。光催化固氮可达3.13μg/ml。
对比实施例1
(1)将2.20g Ce(NO3)3·6H2O,0.27g Yb(NO3)3·5H2O,0.05g Tm(NO3)3·6H2O,加入到20ml异丙醇溶剂中形成均匀溶液。同时将0.56g NH4F加入异丙醇中形成均匀溶液,然后将两种溶液混合均匀转移到Teflon高压釜里进行溶剂热反应,设定温度为200℃,时间设定为48h;
(2)将步骤(1)中制备的样品用离心机离心,水洗干净。然后将样品烘干,研磨,即制得实心氟化铈0.1Yb,0.02Tm:CeF3
在模拟近红外光照下,该对比实施例制备的0.1Yb,0.02Tm:CeF3的光催化固氮效率只有0.38μg/ml,远远低于本专利中制备的空心结构Yb,Tm:CeF3,这是由于本对比实施例中实心氟化铈不能高效的吸附并活化N2进行光催化固氮反应。
对比实施例2
(1)将2.20g Ce(NO3)3·6H2O,0.27g Yb(NO3)3·5H2O,0.05g Tm(NO3)3·6H2O,0.56g NH4F,加入到去离子水中超声波溶解,体系pH约为7,并搅拌使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定温度为180℃,时间设定90min;
(2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得实心氟化铈上转换光催化材料0.1Yb,0.02Tm:CeF3
后续检测如实施例1。光催化固氮只有0.67μg/ml。

Claims (6)

1.一种近红外响应空心氟化铈上转换光催化材料,其特征在于:所述材料由氟化铈(CeF3)和稀土离子Yb,Tm组成,其中,催化材料通式为Ce1-x-yYbxTmyF3,x取值范围为0.05-0.4,y取值范围为0.01-0.04。
2.一种根据权利要求1所述近红外响应空心氟化铈上转换光催化材料的制备方法,其特征在于,具体制备步骤为:
(1)将Ce(NO3)3·6H2O,Yb(NO3)3·5H2O,Tm(NO3)3·6H2O,NH4F加入到去离子水中超声波溶解,用稀盐酸调节体系pH为2-6,使其混合均匀,然后将其转移到微波水热釜里进行微波水热反应,设定功率400W,设定温度为160~180℃,时间设定为90min,得到光催化材料样品;
(2)将步骤(1)中制备的光催化材料样品用离心机离心,清洗干净,然后将样品烘干,研磨,即制得近红外响应空心氟化铈上转换光催化材料。
3.根据权利要求2所述近红外响应空心氟化铈上转换光催化材料的制备方法,其特征在于:所述Ce(NO3)3·6H2O和NH4F的摩尔比为1:3。
4.根据权利要求2所述近红外响应空心氟化铈上转换光催化材料的制备方法,其特征在于:步骤(2)离心是取反应后下层悬浊液离心一次,转速6000r/min,时间5min。
5.根据权利要求2所述近红外响应空心氟化铈上转换光催化材料的制备方法,其特征在于:烘干条件为:烘箱80℃干燥10~12h。
6.一种根据权利要求2-5任一项所制备的近红外响应空心氟化铈上转换光催化材料在光催化固氮中的应用。
CN201910344178.0A 2019-04-26 2019-04-26 一种近红外响应空心氟化铈上转换光催化材料及其制备方法与应用 Active CN109999857B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910344178.0A CN109999857B (zh) 2019-04-26 2019-04-26 一种近红外响应空心氟化铈上转换光催化材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910344178.0A CN109999857B (zh) 2019-04-26 2019-04-26 一种近红外响应空心氟化铈上转换光催化材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN109999857A true CN109999857A (zh) 2019-07-12
CN109999857B CN109999857B (zh) 2022-08-26

Family

ID=67174414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910344178.0A Active CN109999857B (zh) 2019-04-26 2019-04-26 一种近红外响应空心氟化铈上转换光催化材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109999857B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088277A (zh) * 2021-03-18 2021-07-09 山东师范大学 一种CeF3基上转换发光材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543540A (zh) * 2018-04-17 2018-09-18 常州大学 一种氟化铈/凹凸棒石上转换复合光催化材料及其制备方法与应用
CN109158117A (zh) * 2018-09-19 2019-01-08 常州大学 一种全光谱响应双掺杂氟化镧/凹凸棒石上转换复合光催化材料及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543540A (zh) * 2018-04-17 2018-09-18 常州大学 一种氟化铈/凹凸棒石上转换复合光催化材料及其制备方法与应用
CN109158117A (zh) * 2018-09-19 2019-01-08 常州大学 一种全光谱响应双掺杂氟化镧/凹凸棒石上转换复合光催化材料及其制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088277A (zh) * 2021-03-18 2021-07-09 山东师范大学 一种CeF3基上转换发光材料及其制备方法与应用

Also Published As

Publication number Publication date
CN109999857B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
CN104772158B (zh) 一种wo3/c3n4混合光催化剂的制备方法
CN107115884B (zh) 一种g-C3N4/TiO2纳米线组装结构光催化剂
CN107855130A (zh) 一种太阳能固氮光催化剂及其用途和制备方法
CN109482203A (zh) 一种Bi/BiOI纳米片状光催化剂的制备方法
CN105384193A (zh) 一种五氧化二铌海胆状纳米微球的制备方法及其作为光催化剂的应用
CN109174082A (zh) 一种制备BiVO4/MnO2复合光催化氧化剂的方法
CN106311283A (zh) 一种p‑n异质结BiVO4/MoS2复合光催化剂及其制备方法
CN105056973B (zh) 化学腐蚀法原位生长制备高效的硫化铋‑铁酸铋复合可见光催化剂及其应用
CN106944074A (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN107511154A (zh) 一种海胆状CeO2/Bi2S3复合可见光催化剂及其制备方法
CN106362742A (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
CN106391122A (zh) 一种聚吡咯功能化的钴配合物复合材料的合成方法及其应用
CN107715906A (zh) 一种氮化碳/钛酸锌/氧化钛三明治状直接z型异质结复合光催化剂的制备方法
CN102580720B (zh) 可见光响应的纳米氧化锌-氧化铋复合光催化剂及其制备方法
CN108855196A (zh) 一种氮化碳-碳-TiO2-硒纳米复合材料及其制备方法和应用
CN108816266B (zh) 一种YF/g-C3N4复合材料及其在光催化中的应用
CN106955699B (zh) 一种高效太阳能固氮光催化材料及其制备方法
CN102389787B (zh) 一种碳掺杂氧化钛中空球光催化剂及其制备方法
CN109999857A (zh) 一种近红外响应空心氟化铈上转换光催化材料及其制备方法与应用
CN104495922A (zh) 一种钇酸铋纳米棒及其制备方法和用途
CN102500406B (zh) 铁氮氟共掺杂TiO2光催化剂及在可见光降解有机污染物中的应用
CN106582768A (zh) 一种二维、三维载体增强氮化碳光催化材料的制备方法
CN111151242B (zh) 一种铈锰金属离子改性的铝酸盐光催化剂的制备方法
CN110237870A (zh) 一种聚苯酚/二氧化钛复合材料及制备方法和应用
CN110280234A (zh) 一种掺铕氧化锌光催化剂的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant