CN109999819B - 一种制备多孔钙钛矿LaFeO3的原位碳模板法及其应用 - Google Patents

一种制备多孔钙钛矿LaFeO3的原位碳模板法及其应用 Download PDF

Info

Publication number
CN109999819B
CN109999819B CN201910273540.XA CN201910273540A CN109999819B CN 109999819 B CN109999819 B CN 109999819B CN 201910273540 A CN201910273540 A CN 201910273540A CN 109999819 B CN109999819 B CN 109999819B
Authority
CN
China
Prior art keywords
lafeo
carbon template
preparation
prepared
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910273540.XA
Other languages
English (en)
Other versions
CN109999819A (zh
Inventor
朱君江
肖萍
许雪莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Jingmu Biotechnology Co.,Ltd.
Original Assignee
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Textile University filed Critical Wuhan Textile University
Priority to CN201910273540.XA priority Critical patent/CN109999819B/zh
Publication of CN109999819A publication Critical patent/CN109999819A/zh
Application granted granted Critical
Publication of CN109999819B publication Critical patent/CN109999819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • C07D307/44Furfuryl alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于新材料的制备技术领域,具体公开了一种多孔钙钛矿LaFeO3的制备方法及该多孔钙钛矿LaFeO3在催化液相氢转移反应中的应用。该方法是将硝酸盐和碳模板前驱体溶解在水中,蒸干,干燥后,在惰性气氛中高温煅烧原位生成碳模板,随后在空气气氛下煅烧去除模板,得到多孔钙钛矿。本方法简称原位碳模板法,制备工艺简单、模板剂成本低廉、制备过程环境友好且易于工业化,所得产品性能优异,具有良好的催化液相氢转移反应应用前景。

Description

一种制备多孔钙钛矿LaFeO3的原位碳模板法及其应用
技术领域
本发明涉及新材料的制备技术领域,具体涉及一种多孔钙钛矿LaFeO3的制备方法及该多孔钙钛矿LaFeO3在催化液相氢转移反应中的应用。
背景技术
ABO3型钙钛矿复合氧化物具有稳定的晶体结构、独特的电磁性能以及氧化还原、氢解、异构化、电催化等活性,在环境保护和工业催化等领域有巨大的应用潜力。目前钙钛矿化合物的制备方法主要有高温固相法、溶胶-凝胶法、水热合成法、高能球磨法和沉淀法。材料的性质在很大程度上依赖于材料的制备方法。溶胶凝胶法和沉淀法制备得到的钙钛矿比表面积较小(<20m2/g),限制了其在催化领域的应用。为提高钙钛矿氧化物的比表面积,采用模板法制备是一条有效的策略。模板法分为硬模板法和软模板法。硬模板法一般采用无机氧化物(如:介孔二氧化硅)为模板,将目标产物塑性后,再将模板用浓碱溶液去除。该方法中使用的强碱及其废液对环境有较大的污染,且制备过程冗长,不适用于工业大批量生产。软模板法一般选用表面活性剂或预先制备的胶晶微球为模板,待目标产物生成后,再在高温条件下空气中煅烧去除。该方法中模板剂的去除相对简单且对环境的污染较小,但表面活性剂价格较高,胶晶微球制备操作繁琐,也限制了其在工业上的广泛应用。近年来有文献报道采用碳材料作为软模板用于制备钙钛矿,例如碳纳米管(J.Mater.Chem.A,2013,1,7006-7011),活性炭(Fuel,2017, 187,446-456)以及碳微球(J.Alloy.Compd.2013 576,5-12)。但碳纳米管和活性炭材料价格较高,作为模板牺牲剂,材料制备成本较高;而碳微球模板需预先经过葡萄糖水热法制备,能耗较高。因此开发一种价格低廉、简单易行且环境友好的钙钛矿制备方法具有重要的现实意义。
发明内容
针对现有技术中存在的不足,本发明的目的在于提供了一种成本低廉、操作简易、环境友好的制备多孔钙钛矿LaFeO3的方法。该方法通过原位生成碳模板、然后再燃烧去除的方式,得到多孔的钙钛矿氧化物。
实现本发明目的所采取的技术方案是:
一种制备多孔钙钛矿LaFeO3的原位碳模板法,其步骤如下:
(1)将硝酸镧、硝酸铁和碳模板前驱体按摩尔比1:1:3到1:1:6混合,加入蒸馏水搅拌至完全溶解、分散均匀,加热蒸干水溶液至胶状;
所述碳模板前驱体为柠檬酸、葡萄糖、蔗糖、可溶性淀粉和/或果糖;
所述碳模板前驱体以C6计摩尔量,如1mol柠檬酸计量为1mol,1mol蔗糖计量为2mol。
(2)将步骤(1)所得胶状物放入100℃干燥箱中烘至少24h,随后将所得样品研磨成粉末;
(3)将粉末转移至管式炉中,通入氮气,升温至600-700℃保持至少4h 后冷却至室温,再将氮气关闭、切换为空气,升温至450-550℃并保持至少2h 后冷却,即得多孔钙钛矿LaFeO3
将本发明制备的多孔钙钛矿LaFeO3应用于催化氢转移不饱和醛或酮类有机化合物加氢生成醇类有机物反应,转化率、选择性和产率等技术效果显著;
所述不饱和醛或酮类有机物包括糠醛、肉桂醛、苯甲醛、2-溴苯甲醛和/或环己酮。
与现有技术相比,本发明的优点和有益效果如下:
本方法工艺简单、成本低廉、环境友好,因而更具有工程实际应用前景;所得钙钛矿LaFeO3材料作为催化剂活性高,因而具有更广阔的应用前景。
附图说明
图1-原位碳模板法制备的LaFeO3_NA和传统溶胶凝胶法制备的LaFeO3_A 样品的XRD谱图(A)和N2-吸附脱附等温线(B);
图2-原位碳模板法制备的LaFeO3_NA(B)与传统溶胶凝胶法制备的 LaFeO3_A(A)样品的透射电镜照片;
图3-不同煅烧温度下制备的LaFeO3_N样品的XRD谱图;
图4-不同柠檬酸加入比例制备的LaFeO3_N样品的XRD谱图(A)和热重图(B);
图5-不同碳前驱体制备的LaFeO3_N样品的XRD谱图(A)和热重图(B);
图6-样品LaFeO3_NA和LaFeO3_A的CO2-/NH3-程序升温脱附(TPD)谱图。
具体实施方式
下面申请人将结合具体的实施例对本发明的方法和应用加以详细说明,以便本领域的技术人员对本发明有更进一步的理解,但以下实施例不以任何方式解释为对本发明保护范围的限制。
本发明方法所制备的多孔钙钛矿LaFeO3微结构的表征方法为:
(1)用X-射线衍射仪(日本理学,Ultima IV型)来确定样品的物相。
(2)用透射电子显微镜(TEM)(美国FEI,Tecnai G2 S-Twin)进行样品形貌观测。
(3)用物理吸附仪(美国麦克,TriStar II 3020)测试样品的比表面积和孔体积。
实施例1-4为催化剂的制备实施例。
部分主要试剂介绍如下:
硝酸镧为La(NO3)3·6H2O、硝酸铁为Fe(NO3)3·9H2O、柠檬酸为C6H8O7·H2O、葡萄糖为C6H12O6·H2O、蔗糖为C12H22O11、果糖为C6H12O6
其余均为常规市售商品试剂。
实施例1:
为了检验煅烧温度对原位碳模板法制备多孔钙钛矿LaFeO3的影响,进行对照实验。
本实施例平行做五组,每组的区别仅在于氮气气氛下的煅烧温度:将2mmol 硝酸镧、2mmol硝酸铁和8mmol柠檬酸混合后,加入蒸馏水20mL搅拌至完全溶解、分散均匀,加热蒸干水溶液至胶状;将胶状物放入100℃干燥箱中烘48h,随后将其研磨成粉末;将粉末转移至管式炉中,通入氮气,分别从室温升温至 500℃、550℃、600℃、700℃、800℃保持4h后冷却至室温,所得样品标记为LaFeO3_N-T500、LaFeO3_N-T550、LaFeO3_N-T600、LaFeO3_N-T700、 LaFeO3_N-T800,后面的数值代表氮气气氛下煅烧温度(摄氏度)的数值。X- 射线衍射(XRD)谱图显示(图3),对照标准图谱,仅在600和700℃煅烧温度下制备的样品LaFeO3_N-T600、LaFeO3_N-T700才有钙钛矿的结构。
实施例2:
为了检验柠檬酸加入比例对原位碳模板法制备多孔钙钛矿LaFeO3的影响,进行对照实验。除将柠檬酸用量调整为4mmol、6mmol、10mmol、12mmol,氮气气氛下的煅烧温度定为700℃以外,其余试剂、用量以及操作与实施例1 相同,所得样品标记为LaFeO3_N-1、LaFeO3_N-1.5、LaFeO3_N-2.5、LaFeO3_N-3。 X-射线衍射(XRD)谱图(图4A)显示(LaFeO3_N-1、LaFeO3_N-1.5、LaFeO3_N-2、 LaFeO3_N-2.5、LaFeO3_N-3对应的柠檬酸用量依次为4mmol、6mmol、8mmol、 10mmol、12mol),所有样品都生成了钙钛矿的结构,但随着柠檬酸比例的增加,衍射峰强度逐渐减弱。这是由于样品中钙钛矿含量逐渐减少,而碳模板的含量逐渐增加所致。热重分析结果(图4B)也证实了该结论。但LaFeO3_N-1样品的失重量为零,说明仅生成了钙钛矿复合氧化物LaFeO3,而预期原位生成的碳模板未能出现,说明本发明方法中柠檬酸的加入量需大于4mmol,才能实现原位碳模板法制备LaFeO3
实施例3:
为了检验碳模板前驱体种类对原位碳模板法制备多孔钙钛矿LaFeO3的影响,进行对照实验。将柠檬酸分别替换为葡萄糖、蔗糖、可溶性淀粉、果糖,保持硝酸镧、硝酸铁和各碳模板前驱体(以C6计量)按摩尔比1:1:4,氮气气氛下的煅烧温度定为700℃,其余试剂、用量以及操作均与实施例1完全相同,所得样品标记为LaFeO3_N-G(葡萄糖)、LaFeO3_N-S(蔗糖)、LaFeO3_N-SS(可溶性淀粉)、LaFeO3_N-F(果糖),LaFeO3_N代表前驱体为柠檬酸。X-射线衍射(XRD) 谱图(图5A)显示,不同碳源前驱体制备的样品都生成了钙钛矿LaFeO3的结构,但衍射峰强度不一。从热重分析结果(图5B)可知,这是因为不同碳源前驱体得到的碳模板含量不一样所致。其中,蔗糖为前驱体时得到的碳模板含量最大,为37.5%,而柠檬酸为前驱体生成模板含量最低,为16.8%。
实施例4:
为了检验原位碳模板法对所制备的多孔钙钛矿LaFeO3表面酸性与表面碱性的影响,我们进行了NH3-TPD和CO2-TPD表征实验,并与传统溶胶-凝胶法制备的LaFeO3_A样品作为对比【LaFeO3_A的制备过程与本发明方法类似。具体如下:将2mmol硝酸镧、2mmol硝酸铁和8mmol柠檬酸混合后,加入蒸馏水溶解,再在80℃加热蒸干至胶状后,将样品于烘箱中100℃干燥48h,随后在马弗炉中700℃煅烧4h,即得LaFeO3_A】。
本发明方法制备LaFeO3_NA的步骤如下:
将2mmol硝酸镧、2mmol硝酸铁和8mmol柠檬酸混合后,加入蒸馏水20 mL搅拌至完全溶解、分散均匀10min,加热蒸干水溶液至胶状;将胶状物放入 100℃干燥箱中烘48h,随后将其研磨成粉末;将粉末转移至管式炉中,通入氮气,从室温升温至700℃保持4h后冷却至室温,再将氮气关闭、切换为空气,从室温升温至500℃保持2h后冷却,即得。
比较了溶胶-凝胶法和本发明方法制备的LaFeO3_NA的X-射线衍射(XRD) 谱图(图1A),从图1A可以看出本发明方法和溶胶-凝胶法都制备生成了钙钛矿 LaFeO3,但溶胶-凝胶法制备的LaFeO3_A衍射峰强度大于本发明方法制备的 LaFeO3_NA。这是因为本发明方法制备的LaFeO3_NA有更小的晶粒尺寸。由谢乐公式计算发现,本发明方法制备的LaFeO3_NA晶粒尺寸为13nm,小于溶胶凝胶法制备的LaFeO3_A晶粒尺寸(21nm)。此外,透射电镜结果(图2)也证实本发明方法制备的LaFeO3_NA有更小的粒径。N2-吸脱附等温线图(图1B) 表明,本方法制备的LaFeO3_NA的比表面积和孔体积是传统溶胶-凝胶法制备的 LaFeO3_A近两倍。
对CO2-TPD表征步骤为:取0.2g样品装入化学吸附仪(天津先权,TP-5076) 石英管中,通入He气并升温至650℃,保持0.5h后,冷却至50℃,并将He 气切换为CO2。吸附1小时后,再将CO2切换为He气。待基线稳定后,以10℃ /min的升温速率升至800℃,热导池检测器记录信号值(图6A)。
对NH3-TPD表征步骤为:取0.1g钙钛矿样品装入化学吸附仪(美国麦克, AutoChem2920II)石英管中,通入He气并升温至650℃,保持0.5h后,冷却至50℃,并将He气切换为5vol%NH3/He。吸附1小时后,再将5vol%NH3/He 切换为He气。待基线稳定后,以10℃/min的升温速率升至800℃,热导池检测器记录信号值(图6B)。
从图6A知,本发明中原位碳模板法制备的LaFeO3_NA比传统溶胶-凝胶法制备的LaFeO3_A有更强CO2脱附信号值,且脱附峰区间的温度更高,说明 LaFeO3_NA有更多的碱性位数量且碱性更强。类似的,从图6B可知,LaFeO3_NA 具有更多的酸性位数量且更强的酸性。
实施例5-6为对催化剂催化性能的研究。
LaFeO3_NA为按照实施例4中所述方法步骤制备。
实施例5:
为检验本发明方法制备的LaFeO3_NA催化糠醛选择加氢制糠醇性能,进行对照实验。以实施例4中传统溶胶-凝胶法制备的LaFeO3_A和金属氧化物Fe2O3【由硝酸铁在马弗炉中700℃热分解2小时后制得】、La2O3【由硝酸镧在马弗炉中700℃热分解2小时后制得】为对照催化剂。
LaFeO3_A、LaFeO3_NA、Fe2O3、La2O3作为催化剂用于催化糠醛选择加氢制糠醇反应:
实验过程如下:选择加氢反应在100mL密闭的高压反应釜中进行,糠醛35 μL,十二烷(内标物)35μL,异丙醇(氢源和溶剂)15mL,催化剂的加入量为50mg,密封后,向反应釜中充入1MPa的N2。将反应釜放入加热搅拌装置,控制温度为180℃,搅拌速率为300rpm,反应3h后,停止加热、搅拌,冷却。将反应前后所取的液体样品用气相色谱-质谱联用仪(日本岛津,QP-2020)分析成分含量,糠醛的转化率(XFur,%),生成糠醇的选择性(SFol,%)及产率(YFol,%)计算公式如下:
Figure BDA0002019190360000061
Figure BDA0002019190360000062
Figure BDA0002019190360000063
式中,Fur是糠醛的简称,Fol是糠醇的简称,方括号括起来表示该物质的浓度,下角标为0时表示初始浓度、为t时表示反应时间为t时的浓度。
从表1中可知,本发明制备的LaFeO3_NA比溶胶-凝胶法制备的LaFeO3_A 以及Fe2O3、La2O3,有更好的选择催化糠醛加氢制糠醇活性。
表1.原位碳模板法制备的LaFeO3_NA、柠檬酸络合法制备的LaFeO3_A、以及硝酸盐热分解制备的La2O3和Fe2O3催化糠醛选择加氢制糠醇活性
Figure BDA0002019190360000071
--表示不加任何催化剂。
实施例6:
为检验本发明方法制备的LaFeO3_NA选择催化其他醛或酮类有机物选择加氢性能,进行对照实验。其他醛或酮类有机物为肉桂醛、苯甲醛、2-溴苯甲醛、苯乙酮、环己酮。反应条件除将底物糠醛替换为相同摩尔用量的其他醛或酮类有机物,底物为苯乙酮、环己酮时反应时间延长为5h外,其余条件与实施例5相同,结果见表2。从表中可知,本发明制备的LaFeO3_NA对不同醛、酮类底物的选择加氢也有优异的催化性能。
表2.原位碳模板法制备的LaFeO3_NA催化不同醛或酮的选择加氢活性
Figure BDA0002019190360000072

Claims (2)

1.一种原位碳模板法制备的多孔钙钛矿LaFeO3在催化氢转移不饱和醛或酮类有机化合物加氢生成醇类有机物反应中的应用;
制备所述多孔钙钛矿LaFeO3的原位碳模板法,其步骤如下:
(1)将硝酸镧、硝酸铁和碳模板前驱体按摩尔比1:1:3到1:1:6混合,加入蒸馏水搅拌至完全溶解、分散均匀,加热蒸干水溶液至胶状;
所述碳模板前驱体以C6计摩尔量;
所述碳模板前驱体为柠檬酸、葡萄糖、蔗糖、可溶性淀粉和/或果糖;
(2)将步骤(1)所得胶状物放入干燥箱中烘干,随后将所得样品研磨成粉末;
(3)将粉末转移至管式炉中,通入氮气,升温至600-700 ℃保持至少4 h后冷却,再将氮气关闭、切换为空气,升温至450-550 ℃并保持至少2 h后冷却,即得多孔钙钛矿LaFeO3
2.根据权利要求1所述的应用,其特征在于:所述不饱和醛或酮类有机化合物 为糠醛、肉桂醛、苯甲醛、2-溴苯甲醛或环己酮。
CN201910273540.XA 2019-04-05 2019-04-05 一种制备多孔钙钛矿LaFeO3的原位碳模板法及其应用 Active CN109999819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910273540.XA CN109999819B (zh) 2019-04-05 2019-04-05 一种制备多孔钙钛矿LaFeO3的原位碳模板法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910273540.XA CN109999819B (zh) 2019-04-05 2019-04-05 一种制备多孔钙钛矿LaFeO3的原位碳模板法及其应用

Publications (2)

Publication Number Publication Date
CN109999819A CN109999819A (zh) 2019-07-12
CN109999819B true CN109999819B (zh) 2021-09-24

Family

ID=67170111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910273540.XA Active CN109999819B (zh) 2019-04-05 2019-04-05 一种制备多孔钙钛矿LaFeO3的原位碳模板法及其应用

Country Status (1)

Country Link
CN (1) CN109999819B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110697799A (zh) * 2019-10-16 2020-01-17 河南电池研究院有限公司 一种多孔锂离子电池正极材料的制备方法
CN112624202A (zh) * 2021-01-13 2021-04-09 中国计量大学 一种高比表面积铁酸镧气敏材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861802A (en) * 1988-02-17 1989-08-29 E. I. Du Pont De Nemours And Company Preparation of low molecular weight olefinic hydrocarbons using a perovskite catalyst
CN101992089A (zh) * 2010-10-29 2011-03-30 中国石油大学(北京) 三维有序大孔-介孔铁基钙钛矿氧化物催化剂及其制备方法
CN102701288A (zh) * 2012-06-21 2012-10-03 北京工业大学 钙钛矿型复合氧化物LaFeO3单分散微米空心球及其制备方法
CN102976412A (zh) * 2012-11-23 2013-03-20 北京工业大学 以介孔碳和介孔二氧化硅为硬模板制备介孔LaFeO3的方法
CN106179369A (zh) * 2016-07-25 2016-12-07 牛和林 具可见光芬顿活性LaFeO3/C碳基钙钛矿半导体复合纳米材料及其制备方法和应用
CN109046379A (zh) * 2018-06-29 2018-12-21 华东师范大学 一种钙钛矿复合氧化物负载铂催化剂及其制备和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861802A (en) * 1988-02-17 1989-08-29 E. I. Du Pont De Nemours And Company Preparation of low molecular weight olefinic hydrocarbons using a perovskite catalyst
CN101992089A (zh) * 2010-10-29 2011-03-30 中国石油大学(北京) 三维有序大孔-介孔铁基钙钛矿氧化物催化剂及其制备方法
CN102701288A (zh) * 2012-06-21 2012-10-03 北京工业大学 钙钛矿型复合氧化物LaFeO3单分散微米空心球及其制备方法
CN102976412A (zh) * 2012-11-23 2013-03-20 北京工业大学 以介孔碳和介孔二氧化硅为硬模板制备介孔LaFeO3的方法
CN106179369A (zh) * 2016-07-25 2016-12-07 牛和林 具可见光芬顿活性LaFeO3/C碳基钙钛矿半导体复合纳米材料及其制备方法和应用
CN109046379A (zh) * 2018-06-29 2018-12-21 华东师范大学 一种钙钛矿复合氧化物负载铂催化剂及其制备和应用

Also Published As

Publication number Publication date
CN109999819A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
Hu et al. Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: A comparative study of the preparation methods
CN109304201B (zh) 碳包覆过渡金属纳米复合材料及其制备方法和应用
Ganji et al. Selective hydrogenation of the C [double bond, length as m-dash] C bond of α, β-unsaturated carbonyl compounds over PdNPs–SBA-15 in a water medium
Wang et al. Sn-doped Pt catalyst supported on hierarchical porous ZSM-5 for the liquid-phase hydrogenation of cinnamaldehyde
Peng et al. Fabrication of ordered mesoporous solid super base with high thermal stability from mesoporous carbons
CN111437870A (zh) 一种金属@mfi的多级孔结构的封装催化剂及其封装方法和用途
CN111115651B (zh) 纳米分子筛、合成方法及其用途
CN109999819B (zh) 一种制备多孔钙钛矿LaFeO3的原位碳模板法及其应用
Wei et al. Solid-state nanocasting synthesis of ordered mesoporous CoN x–carbon catalysts for highly efficient hydrogenation of nitro compounds
CN110152654B (zh) 有序介孔碳-TiO2复合材料负载钯催化剂及其制备方法、应用
CN104130004A (zh) 高强度块状多孔氧化铝纳米陶瓷的制备方法
Wang et al. Highly efficient hydrogenation of phenol to cyclohexanol over Ni-based catalysts derived from Ni-MOF-74
CN108097262B (zh) 催化剂及其制备方法与应用
CN109569712B (zh) 一种用于co2加氢还原生产乙醇的催化剂及其制法和用途
CN110496618B (zh) 异丁烷脱氢催化剂及其制备方法以及异丁烷脱氢制异丁烯的方法
CN115138388A (zh) 一种高分散度钴氮碳催化剂及其制备方法
Zhao et al. Enhancing the catalytic performance of Co–N–C derived from ZIF-67 by mesoporous silica encapsulation for chemoselective hydrogenation of furfural
CN110961137A (zh) 一种氮掺杂石墨化多孔碳负载的钴基催化剂及制备方法
CN108295849B (zh) My/LaxSr1-xTi1-yO3催化剂、其制法及应用
Wang et al. Catalytic dehydration of fructose to 5-hydroxymethylfurfural over a mesoscopically assembled sulfated zirconia nanoparticle catalyst in organic solvent
Zhang et al. Efficient synthesis of niobium pentoxide nanowires and application in ethanolysis of furfuryl alcohol
CN109433199B (zh) 一种用于二氧化碳还原的钌基催化剂及其制备方法和应用
CN116216715A (zh) 一种具有高氮掺杂的活性炭及其制备方法
CN111468154A (zh) 碳包覆过渡金属的纳米复合材料及其制备方法和应用
CN110614097A (zh) 载体为含有硅胶和六方介孔材料的复合材料的异丁烷脱氢催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230816

Address after: Room 10, Room 07, 26th Floor, Zhejiang International Building, No. 718 Jianshe Avenue, Jiang'an District, Wuhan City, Hubei Province, 430014

Patentee after: Wuhan Jingmu Biotechnology Co.,Ltd.

Address before: 430200 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei.

Patentee before: Wuhan Textile University

TR01 Transfer of patent right