CN109994544B - 场终止型功率器件的制造方法 - Google Patents

场终止型功率器件的制造方法 Download PDF

Info

Publication number
CN109994544B
CN109994544B CN201810003581.2A CN201810003581A CN109994544B CN 109994544 B CN109994544 B CN 109994544B CN 201810003581 A CN201810003581 A CN 201810003581A CN 109994544 B CN109994544 B CN 109994544B
Authority
CN
China
Prior art keywords
silicon wafer
field stop
power device
forming
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810003581.2A
Other languages
English (en)
Other versions
CN109994544A (zh
Inventor
高文玉
陈智勇
孙娜
斯海国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Daxin Semiconductor Co ltd
Ningbo Daxin Semiconductor Co ltd
Original Assignee
Shanghai Daxin Semiconductor Co ltd
Ningbo Daxin Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Daxin Semiconductor Co ltd, Ningbo Daxin Semiconductor Co ltd filed Critical Shanghai Daxin Semiconductor Co ltd
Priority to CN201810003581.2A priority Critical patent/CN109994544B/zh
Publication of CN109994544A publication Critical patent/CN109994544A/zh
Application granted granted Critical
Publication of CN109994544B publication Critical patent/CN109994544B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3242Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for the formation of PN junctions without addition of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种场终止型功率器件的制造方法,包括步骤:步骤一、提供一N型掺杂的单晶结构的硅片;步骤二、在硅片的正面形成正面保护层以及在硅片的背面形成背面保护层;步骤三、在硅片的正面的选定区域中进行形成终端保护环的P型离子注入;步骤四、在硅片的背面进行全面的形成场终止区的N型离子注入;步骤五、进行热扩散并分别在硅片的正面形成终端保护环以及在硅片的背面形成场终止区;步骤六、继续完成后续的正面工艺以及背面工艺。本发明能够使得场终止区和终端保护环采用相同的热扩散工艺同时退火激活,从而能降低工艺成本,还能保证场终止区和终端保护环的性能,以及不会影响到器件的其它掺杂区的性能。

Description

场终止型功率器件的制造方法
技术领域
本发明涉及一种半导体集成电路制造方法,特别是涉及一种场终止型功率器件的制造方法。
背景技术
绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)技术发展很快,已在家电、工业变频、高铁和智能电网等开始广泛应用。
场终止型(Field stop,简称FS型)功率器件如场终止型IGBT是目前流行的先进结构,具有功耗低和安全工作区(SOA)宽的优点。其关键制造技术之一是场终止区的形成技术,现有场终止区的制造方法大致可划分为三种:
现有第一种方法为:如专利号为US7538412(B2)美国专利以及专利号为ZL01811704.X的中国专利所述,在器件正面工艺完成后,背面用H+离子注入和热退火激活形成N型掺杂场终止区。
现有第二种方法为:如专利号为US7776660(B2)的美国专利以及专利号为US6559023(B2)的美国专利所述,在器件正面工艺完成后,背面用高能磷离子注入N型杂质并激光退火激活形成N型掺杂场终止区。
现有第三种方法为:如专利号为ZL201110071418.8的中国专利以及专利号为ZL201310385233.3的中国专利所述,在器件正面制作工艺前,先用离子注入和高温热扩散在背面形成场终止区的方法。
上述三种现有方法中中,场终止区的热退火激活需要独立完成,无法和功率器件的正面工艺实现工艺步骤的共享。如在现有功率器件中,通常包括主动区和终端区,主动区通常也称为有源区,是能够流动工作电流的功能区域;终端区围绕在主动区的周侧并用于降低主动区中的最外侧的主结周侧的横向电场,从而提高器件的击穿电压。通常,终端区的终端结构中包括有由P型环组成的终端保护环,终端保护环需要通过离子注入加热退火激活或称为热扩散形成。现有方法中,背面的场终止区和正面的各掺杂区的互相独立的步骤会使得工艺成本增加,如果能够实现相应的工艺共用,同时不影响各功能区的形成,则就能节约工艺成本。
发明内容
本发明所要解决的技术问题是提供一种场终止型功率器件的制造方法,能实现背面的场终止区和正面的掺杂区的工艺共用,从而能降低工艺成本。
为解决上述技术问题,本发明提供的场终止型功率器件的制造方法包括:
步骤一、提供一N型掺杂的单晶结构的硅片。
步骤二、在所述硅片的正面形成正面保护层以及在所述硅片的背面形成背面保护层。
步骤三、在所述硅片的正面的选定区域中进行形成终端保护环的P型离子注入。
步骤四、在所述硅片的背面进行全面的形成场终止区的N型离子注入。
步骤五、同时对步骤三的P型离子注入杂质和步骤四的N型离子注入杂质进行热扩散并分别在所述硅片的正面形成所述终端保护环以及在所述硅片的背面形成所述场终止区。
步骤六、继续在所述硅片的正面完成正面工艺以及在所述硅片的背面完成背面工艺。
进一步的改进是,步骤二中所述正面保护层和所述背面保护层都由二氧化硅层组成。
进一步的改进是,步骤二中所述正面保护层和所述背面保护层采用热氧化工艺同时形成。
进一步的改进是,步骤二中所述正面保护层的厚度为10nm~200nm,所述背面保护层的厚度为10nm~200nm。
进一步的改进是,步骤三中通过光刻工艺形成的光刻胶图形选定所述终端保护环的形成区域,所述光刻胶图形将所述终端保护环的形成区域打开,将所述终端保护环的形成区域外覆盖,所述终端保护环的P型离子注入穿过所述正面保护层注入到所述终端保护环的形成区域的所述硅片中;所述终端保护环的形成区域外的所述硅片中被所述光刻胶图形保护而无P型离子注入杂质;所述光刻胶图形在所述P型离子注入完成后去除。
进一步的改进是,步骤三中所述P型离子注入的注入杂质为硼,注入能量为40keV~80keV,注入剂量为2E12cm-2~2E13cm-2
进一步的改进是,步骤四中所述N型离子注入的注入杂质为磷,注入能量为100keV~160keV,注入剂量为5E11cm-2~1E13cm-2
进一步的改进是,步骤五中所述热扩散的温度为1220℃~1280℃,时间为6小时~30小时。
进一步的改进是,场终止型功率器件包括场终止型IGBT器件,场终止型快速恢复二极管。
进一步的改进是,所述终端保护环的数量为15个~20个。
本发明场终止型功率器件的制造方法中将背面的场终止区和正面的终端保护环的形成工艺进行了结合,这种结合是通过将场终止区和终端保护环的形成工艺都放置在器件的其它正面工艺以及背面工艺之前进行,这样能够采用热扩散即热退火工艺对场终止区进行充分的处理,以提高场终止区的激活效率和性能;同时,由于场终止区采用了热扩散激活,而终端保护环也能采用热扩散激活,故本发明通过将终端保护环的P型离子注入也放置在器件的其它正面工艺以及背面工艺之前后,能够使得场终止区和终端保护环采用相同的热扩散工艺同时退火激活,从而实现了背面的场终止区和正面的终端保护环的热扩散工艺共用,从而能降低工艺成本;而且由于采用了热扩散对场终止区和终端保护环进行退火激活,能使得场终止区和终端保护环都得到充分的激活,能保证场终止区和终端保护环的性能;且本发明的场终止区和终端保护环的形成工艺都放置在器件的其它正面工艺以及背面工艺之前,故也不会影响到器件的其它掺杂区的性能。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明:
图1是本发明实施例场终止型功率器件的制造方法的流程图;
图2A-图2D是本发明实施例方法各步骤中的器件结构图。
具体实施方式
如图1所示,是本发明实施例场终止型功率器件的制造方法的流程图;如图2A至图2D所示,是本发明实施例方法各步骤中的器件结构图,本发明实施例场终止型功率器件的具体参数以3300V场终止型IGBT为例进行说明,本发明实施例场终止型功率器件的制造方法包括:
步骤一、如图2A所示,提供一N型掺杂的单晶结构的硅片1。
本发明实施例中,所述硅片1的厚度为390μm~410μm,所述硅片1的电阻率为220ohm·cm~250ohm·cm,对应掺杂浓度为1.7E13cm-3~2.0E13cm-3
步骤二、如图2A所示,在所述硅片1的正面形成正面保护层2a以及在所述硅片1的背面形成背面保护层2b。
本发明实施例方法中,所述正面保护层2a和所述背面保护层2b都由二氧化硅层组成。且所述正面保护层2a和所述背面保护层2b采用热氧化工艺同时形成。所述正面保护层2a的厚度为10nm~200nm,所述背面保护层2b的厚度为10nm~200nm。较佳为,所述正面保护层2a和所述背面保护层2b的厚度都选择50nm。
步骤三、如图2B所示,在所述硅片1的正面的选定区域中进行形成终端保护环的P型离子注入,P型离子注入如标记102所示,形成的P型离子注入区即热扩散之前的终端保护环如标记3a所示。
较佳为,通过光刻工艺形成的光刻胶图形101选定所述终端保护环3a的形成区域,所述光刻胶图形101将所述终端保护环3a的形成区域打开,将所述终端保护环3a的形成区域外覆盖,所述终端保护环3a的P型离子注入穿过所述正面保护层2a注入到所述终端保护环3a的形成区域的所述硅片1中;所述终端保护环3a的形成区域外的所述硅片1中被所述光刻胶图形101保护而无P型离子注入杂质;所述光刻胶图形101在所述P型离子注入完成后去除。
本发明实施例中,所述P型离子注入的注入能量、所述正面保护层2a的厚度和光刻胶图形101的厚度要合理选择,如图2B所示,使所述P型离子注入的P型离子要求穿过所述正面保护层2a,但不穿透能量光刻胶图形101,从而所述终端保护环3a的形成区域注入P型离子。
本发明实施例中,所述光刻胶图形101的厚度选则1μm~3μm。所述P型离子注入的注入杂质为硼,注入能量为40keV~80keV,注入剂量为2E12cm-2~2E13cm-2
步骤四、如图2C所示,在所述硅片1的背面进行全面的形成场终止区的N型离子注入,N型离子注入如标记103所示,形成的N型离子注入区即热扩散之前的场终止区如标记4a所示。
较佳为,所述N型离子注入的注入杂质为磷,注入能量为100keV~160keV,注入剂量为5E11cm-2~1E13cm-2
步骤五、如图2D所示,同时对步骤三的P型离子注入杂质和步骤四的N型离子注入杂质进行热扩散并分别在所述硅片1的正面形成所述终端保护环3以及在所述硅片1的背面形成所述场终止区4。
较佳为,所述热扩散的温度为1220℃~1280℃,时间为6小时~30小时。所述终端保护环3在区域3a的基础上扩散形成,所述场终止区4则是在区域4a的基础上扩散形成。
步骤六、继续在所述硅片1的正面完成正面工艺以及在所述硅片1的背面完成背面工艺。后续的正面工艺和背面工艺都是常规工艺,在此不再赘述。较佳为,所述终端保护环的数量为15个~20个,最终能使器件的最终击穿电压都达4000V以上。
本发明实施例方法是以3300V场终止型IGBT为例进行说明,本发明实施例方法也适用于其它类别的场终止型功率器件制造,例如快恢复二极管等。
以上通过具体实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (10)

1.一种场终止型功率器件的制造方法,其特征在于,包括步骤:
步骤一、提供一N型掺杂的单晶结构的硅片;
步骤二、在所述硅片的正面形成正面保护层以及在所述硅片的背面形成背面保护层;
步骤三、在所述硅片的正面的选定区域中进行形成终端保护环的P型离子注入;
步骤四、在所述硅片的背面进行全面的形成场终止区的N型离子注入;
步骤五、同时对步骤三的P型离子注入杂质和步骤四的N型离子注入杂质进行热扩散并分别在所述硅片的正面形成所述终端保护环以及在所述硅片的背面形成所述场终止区;
步骤六、继续在所述硅片的正面完成正面工艺以及在所述硅片的背面完成背面工艺。
2.如权利要求1所述的场终止型功率器件的制造方法,其特征在于:步骤二中所述正面保护层和所述背面保护层都由二氧化硅层组成。
3.如权利要求2所述的场终止型功率器件的制造方法,其特征在于:步骤二中所述正面保护层和所述背面保护层采用热氧化工艺同时形成。
4.如权利要求2所述的场终止型功率器件的制造方法,其特征在于:步骤二中所述正面保护层的厚度为10nm~200nm,所述背面保护层的厚度为10nm~200nm。
5.如权利要求1所述的场终止型功率器件的制造方法,其特征在于:步骤三中通过光刻工艺形成的光刻胶图形选定所述终端保护环的形成区域,所述光刻胶图形将所述终端保护环的形成区域打开,将所述终端保护环的形成区域外覆盖,所述终端保护环的P型离子注入穿过所述正面保护层注入到所述终端保护环的形成区域的所述硅片中;所述终端保护环的形成区域外的所述硅片中被所述光刻胶图形保护而无P型离子注入杂质;所述光刻胶图形在所述P型离子注入完成后去除。
6.如权利要求1或5所述的场终止型功率器件的制造方法,其特征在于:步骤三中所述P型离子注入的注入杂质为硼,注入能量为40keV~80keV,注入剂量为2E12cm-2~2E13cm-2
7.如权利要求1所述的场终止型功率器件的制造方法,其特征在于:步骤四中所述N型离子注入的注入杂质为磷,注入能量为100keV~160keV,注入剂量为5E11cm-2~1E13cm-2
8.如权利要求1所述的场终止型功率器件的制造方法,其特征在于:步骤五中所述热扩散的温度为1220℃~1280℃,时间为6小时~30小时。
9.如权利要求1所述的场终止型功率器件的制造方法,其特征在于:场终止型功率器件包括场终止型IGBT器件,场终止型快速恢复二极管。
10.如权利要求1或9所述的场终止型功率器件的制造方法,其特征在于:所述终端保护环的数量为15个~20个。
CN201810003581.2A 2018-01-03 2018-01-03 场终止型功率器件的制造方法 Active CN109994544B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810003581.2A CN109994544B (zh) 2018-01-03 2018-01-03 场终止型功率器件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810003581.2A CN109994544B (zh) 2018-01-03 2018-01-03 场终止型功率器件的制造方法

Publications (2)

Publication Number Publication Date
CN109994544A CN109994544A (zh) 2019-07-09
CN109994544B true CN109994544B (zh) 2022-05-27

Family

ID=67128837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810003581.2A Active CN109994544B (zh) 2018-01-03 2018-01-03 场终止型功率器件的制造方法

Country Status (1)

Country Link
CN (1) CN109994544B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931081A (zh) * 2011-08-12 2013-02-13 上海华虹Nec电子有限公司 带场阻挡层的半导体器件的制造方法
CN104576367A (zh) * 2014-06-30 2015-04-29 上海华虹宏力半导体制造有限公司 Igbt负阻问题的改善方法
CN104637994A (zh) * 2013-11-13 2015-05-20 上海华虹宏力半导体制造有限公司 半导体器件及制造方法
US9691752B1 (en) * 2016-04-11 2017-06-27 United Microelectronics Corp. Semiconductor device for electrostatic discharge protection and method of forming the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073740A (ja) * 2004-09-01 2006-03-16 Toshiba Corp 半導体装置及びその製造方法
US8361893B2 (en) * 2011-03-30 2013-01-29 Infineon Technologies Ag Semiconductor device and substrate with chalcogen doped region
US9293465B1 (en) * 2014-09-11 2016-03-22 Northrop Grumman Systems Corporation Monolithic bi-directional current conducting device and method of making the same
CN106847909A (zh) * 2017-01-05 2017-06-13 江苏中科君芯科技有限公司 一种fs型igbt器件的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931081A (zh) * 2011-08-12 2013-02-13 上海华虹Nec电子有限公司 带场阻挡层的半导体器件的制造方法
CN104637994A (zh) * 2013-11-13 2015-05-20 上海华虹宏力半导体制造有限公司 半导体器件及制造方法
CN104576367A (zh) * 2014-06-30 2015-04-29 上海华虹宏力半导体制造有限公司 Igbt负阻问题的改善方法
US9691752B1 (en) * 2016-04-11 2017-06-27 United Microelectronics Corp. Semiconductor device for electrostatic discharge protection and method of forming the same

Also Published As

Publication number Publication date
CN109994544A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
US8343862B2 (en) Semiconductor device with a field stop zone and process of producing the same
US8450793B2 (en) Semiconductor module
KR101955055B1 (ko) 전력용 반도체 소자 및 그 소자의 제조 방법
CN107871777B (zh) 半导体装置和其制造方法以及电力变换系统
JP2009503850A (ja) スイッチモード電源用の高電圧非パンチスルーigbt
CN206697484U (zh) Igbt半导体器件以及半导体器件
CN213340375U (zh) 功率器件
JPH01155653A (ja) 高電圧併合バイポーラ/cmos集積回路
EP3195363B1 (en) Method for manufacturing a semiconductor device comprising a thin semiconductor wafer
WO2018000223A1 (zh) 一种绝缘栅双极型晶体管结构及其制造方法
JP5610595B2 (ja) 半導体素子及びその製造方法
CN109994544B (zh) 场终止型功率器件的制造方法
JP5867609B2 (ja) 半導体装置の製造方法
CN113990945B (zh) 一种绝缘栅双极型晶体管结构及其制造方法
CN216389384U (zh) 一种绝缘栅双极型晶体管结构
WO2000031800A1 (fr) Dispositif a semiconducteur et son procede de fabrication
JP4951872B2 (ja) 半導体装置の製造方法
JP7279393B2 (ja) 半導体集積回路の製造方法
JP2017188569A (ja) 半導体装置およびその製造方法
JP2006140309A (ja) 半導体装置の製造方法
JP2015041720A (ja) 半導体装置の製造方法
CN107452621B (zh) 快恢复二极管及其制造方法
JPH1055976A (ja) 種々の埋められた領域を有する半導体装置の製造方法
KR101490350B1 (ko) 전력용 반도체 장치 및 제조방법
CN117293036B (zh) Vdmos制备方法及其器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant