CN109971758B - 东乡野生稻oru-miR1861h在提高植物耐盐性上的应用 - Google Patents

东乡野生稻oru-miR1861h在提高植物耐盐性上的应用 Download PDF

Info

Publication number
CN109971758B
CN109971758B CN201910247978.0A CN201910247978A CN109971758B CN 109971758 B CN109971758 B CN 109971758B CN 201910247978 A CN201910247978 A CN 201910247978A CN 109971758 B CN109971758 B CN 109971758B
Authority
CN
China
Prior art keywords
oru
mir1861h
rice
wild rice
salt tolerance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910247978.0A
Other languages
English (en)
Other versions
CN109971758A (zh
Inventor
张帆涛
艾彬
谢建坤
陈勇
张朦
杨晚铃
陈玺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201910247978.0A priority Critical patent/CN109971758B/zh
Publication of CN109971758A publication Critical patent/CN109971758A/zh
Application granted granted Critical
Publication of CN109971758B publication Critical patent/CN109971758B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了东乡野生稻oru‑miR1861h在提高植物耐盐性上的应用。本发明人从东乡野生稻中获得了东乡野生稻oru‑miR1861h的前体序列片段编码基因,并将东乡野生稻oru‑miR1861h的前体序列片段编码基因通过载体导入目的植物中,使得目的植物的耐盐性得以提高。

Description

东乡野生稻oru-miR1861h在提高植物耐盐性上的应用
技术领域
本发明涉及植物生物工程和植物改良基因工程领域,具体涉及非编码RNA(核糖核酸)在提高植物耐盐性上的应用。
背景技术
水稻(Oryza sativa L.)是人类赖以生存的重要粮食作物,是世界上一半以上人口的主食。近年来,由于全球气候变化的不利影响,水稻生产受到干旱、寒冷、炎热、洪水等非生物胁迫因素的严重影响。野生稻作为栽培稻的祖先,已被公认为改良栽培稻的重要遗传资源。起源于江西省东乡县(北纬28o14’)的东乡野生稻是迄今发现的中国乃至全球分布最北的普通野生稻,富含众多优异特性和丰富的抗逆基因,利用东乡野生稻优异基因资源改良栽培稻,是提高栽培稻耐逆性的有效途径。
microRNA作为非编码RNA(non-coding RNA)家族新成员之一,是一类长度约为22个核苷酸的调控性小RNA分子,被认为是转录后基因表达的重要调节因子。目前,研究表明某些microRNA在压力环境下会上调或者下调,这意味着它们可能在植物对非生物和生物压力的抵抗中发挥重要作用。在拟南芥、土豆和水稻中过量表达mir408(microRNA408的简写)可以提高植物辐射利用效率和二氧化碳固定的能力,从而增强植物的光合作用,加快植物生长速度,也提高了水稻种子的产量。通过定位编码铜/锌超氧化物歧化酶的基因,研究者发现mir398与拟南芥对非生物胁迫的反应有关。miR319已经证明靶向编码植物特异转录因子TCP基因,通过改变植物叶片的形状,并增加叶片腊质含量和保水性来增强植物的耐旱耐盐性。mir528在调节植物生长和发育以及植物对盐分和氮缺乏的反应中起关键的作用,可以提高植物抗非生物胁迫的能力。
目前,虽然在模式植物中已报道了一些microRNA,但是在其他非模式植物中仍有大量的物种特异microRNA没有被发现。植物microRNA为改良植物的耐盐性提供了一条新思路。东乡野生稻具有强耐盐特性,然而调控东乡野生稻耐盐性的分子机制还很落后。针对东乡野生稻的耐盐性,对其开展相关microRNA分子调控机制研究,不仅能丰富现有microRNA领域的研究成果,而且对于更加深入全面地阐明microRNA特征、功能和种间进化等科学问题具有重要意义,并为培育水稻抗盐新品种奠定理论基础和提供优质基因资源。
发明内容
本发明的目的之一在于提供东乡野生稻oru-miR1861h的应用,以提高植物的耐盐性。本发明的目的之二在于提供东乡野生稻oru-miR1861h的前体序列片段。本发明的目的之三在于提供东乡野生稻oru-miR1861h的前体序列片段编码基因。本发明的目的之四在于提供一种载体,其包含东乡野生稻oru-miR1861h的前体序列片段编码基因。本发明的目的之五在于提供一种提高植物的耐盐性的方法。
在本发明的第一方面,提供东乡野生稻oru-miR1861h在提高植物耐盐性上的应用。所述的东乡野生稻oru-miR1861h来源于稻属野生稻(Oryza rufipogon),其核苷酸序列为序列表中的序列1。
在一个优选例中,所述的植物为单子叶植物或双子叶植物。
在另一个优选例中,所述的单子叶植物具体为水稻。
在本发明的第二方面,提供东乡野生稻oru-miR1861h的前体序列片段,其核苷酸序列为序列表中的序列2。
在本发明的第三方面,提供东乡野生稻oru-miR1861h的前体序列片段编码基因,其核苷酸序列为序列表中的序列3。
在本发明的第四方面,提供一种载体,其包含东乡野生稻oru-miR1861h的前体序列片段编码基因。
在一个优选例中,所述的载体为将所述东乡野生稻oru-miR1861h的前体序列片段编码基因插入pCAMBIA1300-35s载体的KpnI和SalI之间得到的重组载体。
在本发明的第五方面,提供一种提高植物的耐盐性的方法,包括如下步骤:
(1)从东乡野生稻中获取东乡野生稻oru-miR1861h的前体序列片段编码基因;
(2)将东乡野生稻oru-miR1861h的前体序列片段编码基因导入到载体中,得到重组载体;
(3)将重组载体导入目的植物中,目的植物的耐盐性得以提高。
在一个优选例中,所述的植物为单子叶植物或双子叶植物。
在另一个优选例中,所述的单子叶植物具体为水稻。
本发明的有益效果:本发明将东乡野生稻oru-miR1861h应用于提高植物的耐盐性,有利于提高植物在盐胁迫环境下的存活率。本发明提供了东乡野生稻oru-miR1861h的前体序列片段编码基因,并将其导入到载体中,得到的重组载体再导入目的植物中,能够有效地提高提高植物的耐盐性。
附图说明
图1为表达载体pCAMBIA1300-35s空载体示意图。
图2为东乡野生稻oru-miR1861h过量表达转基因水稻株系miROE2-6、miROE3-4的阳性检测琼脂糖凝胶电泳图。
图3为转基因水稻的oru-miR1861h表达量鉴定图。
图4A为oru-miR1861h过量表达转基因水稻表型对比图。
图4B为oru-miR1861h过量表达转基因水稻表型统计图。
具体实施方式
下述实施方式中所使用的实验方法,如无特殊说明,均为常规方法;所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本发明人在东乡野生稻中发现了oru-miR1861h,并获得了oru-miR1861h的前体序列片段编码基因,具体操作过程如下:
(1)植物基因DNA的提取:
选取0.5g四叶期东乡野生稻水稻的幼苗为材料,放入研钵中,加入液氮研磨成粉末,装入2ml离心管;离心管中加入600μL抽提液CTAB(0.012g CTAB、0.06ml 1M Tris-HCl(PH8.0)、0.024ml 0.5M EDTA(pH8.0)、0.049g NaCl),充分混合,65℃水浴加热30min;12000rpm离心10min,将上清液转入新的1.5ml离心管中;加入600μL的氯仿/异戊醇(24:1),缓慢混匀,冰浴20-30min;12000rpm离心10min,取上清,加入700μL预冷的异丙醇,-20℃沉淀90min;12000rpm离心10min,倒掉液体,用75%乙醇洗涤沉淀两次,自然风干后加入100μLddH2O溶解,得到基因组DNA。
(2)PCR扩增:
提取的基因组DNA用作模板,按以下体系进行PCR反应:2μL模板DNA、0.5μL Q5高保真聚合酶、10μL 5×Q5反应缓冲液、4μL dNTPs(10mmol/L)、0.7μL左端引物(10μM)、0.7μL右端引物(10μM),加ddH2O至终体积为50μL。
左端引物:5’-ACAGGTACCTCTTTCCAATCACGGGACAT-3’(下划线序列为KpnI位点);
右端引物:5’-ACAGTCGACGTACGCGGCTACGAGAAGAA-3’(下划线序列为SalI位点)。
PCR程序为:95℃预变性30s后进入PCR循环,循环参数为95℃10s→65℃30s→72℃30s,38个循环后在72℃继续合成5min,10℃保存。
扩增得到的目的片段经过1.5%的琼脂糖凝胶电泳分离,得到大约481bp的条带,在紫外投射切胶台上将含有目的基因的胶块用干净的刀片切下,放入2mL离心管中,用北京索莱宝科技有限公司(Solarbio Science&Techonlogy co.,ltd.)生产的琼脂糖凝胶DNA回收试剂盒回收产物。进行测序分析,测序结果显示该PCR片段的核苷酸序列为序列表中的序列3,该PCR产物为oru-miR1861h前体序列片段编码基因,其编码的oru-miR1861h前体序列片段的核苷酸序列为序列表中的序列2。oru-miR1861h的前体序列片段剪切成熟体为oru-miR1861h,其核苷酸序列为序列表中的序列1。
在获得oru-miR1861h前体序列片段编码基因后,本发明人将其插入到pCAMBIA1300-35s中,得到重组载体,具体操作过程如下:
(1)目的片段与T载体连接:
使用宝日医生物技术(北京)有限公司(Takara公司)生产的pMDTM18-T VectorCloning Kit试剂盒回收产物,将回收所得DNA与T载体按以下体系进行连接:2μL DNA、0.5μL T载体、2.5μL Solution、5μL ddH2O,终体积为10μL,16℃4h或室温放置过夜。
(2)T载体连接产物的转化
a)配置相应1L LB液体培养基(5g细菌用酵母提取物,10g细菌用胰蛋白胨,10gNaCl,超纯水定容至1L)和1L LB固体培养基(5g细菌用酵母提取物,10g细菌用胰蛋白胨,10g NaCl,15g琼脂粉,超纯水定容至1L)若干。高温高压灭菌配置培养基,待培养基冷却至50℃时加入相应抗生素(1L培养基加入Ampicillin 100mg/mL 1mL,1L培养基加入Kanamycin 50mg/mL 1mL),将固体培养基倒平板,两种培养基可置于4℃冰箱密封保存备用。
b)使用北京全式金生物技术有限公司(Transgen Biotech公司)生产的Trans5αChemically Competent Cell试剂进行转化。转化前取感受态细胞(大肠杆菌,100μL/管)冰上化冻,然后将目的基因与T载体的连接产物加入其中,轻轻混匀,再放回冰上冷置30min;然后,迅速将离心管放入42℃的恒温水浴锅中热激90s,立即取出放回冰上5min;向离心管中加入600μL不含抗生素的LB培养基于37℃150rpm振荡培养1h(待菌液成浑浊状);最后,在经紫外杀菌后的超净工作台上将已经转化的感受态细胞加到含有Ampicillin抗生素的LB固体培养基上,用涂布器将其均匀涂开、晾干,倒置平板于37℃恒温培养箱培养过夜。
(3)重组质粒的筛选与检测(T载体):
挑取单克隆,通过以下反应体系进行菌液PCR鉴定:2μL菌液、0.5μL左端引物(10μM)、0.5μL右端引物(10μM)、1.5μL 10×Taq Buffer(含Mg+)、0.2μL Taq聚合酶、0.3μLdNTPs(10mmol/L)、10μL ddH2O,终体积为15μL。引物序列左端引物:5’-TCTTTCCAATCACGGGACAT-3’,右端引物:5’-GTACGCGGCTACGAGAAGAA-3’;通过1.5%琼脂糖凝胶电泳结果挑选阳性克隆的PCR产物送到上海生工生物工程公司(Sangon Biotech公司)测序。
(4)目的片段与pCAMBIA1300-35s载体连接:
a)质粒的回收:挑取成功构建的T载体阳性克隆,于5mL LB液体培养基(含有Ampicillin)中37℃摇床培养过夜后回收质粒,与水稻过表达载体pCAMBIA1300-35s经KpnI、SalI双酶切再连接成复合载体。质粒回收采用美国Genview公司(GEN-VIEWSCIENTIFIC INC)生产的GV-Plasmid DNA Mini Extraction kit试剂盒,步骤如下:多次移取菌液于2.0mL离心管中,12000rpm离心1min,收集菌体(尽可能清除上清以免影响质粒纯度);弃上清,加入250mL溶液GS1并剧烈摇晃使菌体悬浮;加入250μL溶液GS2,温和摇晃4-6次直至管内溶液逐渐清澈,放置不能超过2min;加入350μL溶液GS3,颠倒混匀并放置2min;待液体变浑浊后,12000rpm离心10min;将200μL溶液BL加入吸附柱并放入收集管中,12000rpm离心30s,弃收集管中渗流液体;然后放入收集管中,放置2min,12000rpm离心1min(此时质粒DNA吸附于吸附柱中);加入500μL洗液W1于吸附柱,静置2min,12000rpm离心1min;加入500μL洗液W2于吸附柱中二次洗涤后12000rpm离心2min;将吸附柱放入1.5mL离心管,开盖10min自然风干后,加入50μL 65℃水浴加热的ddH2O,12000rpm离心2min后,质粒即在离心管中。
b)酶切体系和酶连体系的构建:
参考Takara公司的限制性内切酶说明书设计,酶切体系如下:5μL质粒DNA、5μL 10×NEBuffer2.1、1μL KpnI、1μL SalI-HF、38μL ddH2O,终体积为50μL,37℃恒温过夜。
参考纽英伦生物技术(北京)有限公司(Biolabs公司)的T4DNA Ligase说明书设计,酶连体系如下:1μL T载体阳性质粒酶切产物、3μL pCAMBIA1300-35s酶切载体片段、0.5μL T4DNA Ligase、1μL 10×Buffer、4.5μL ddH2O,终体积为10μL,室温过夜。
(5)pCAMBIA1300-35s-oru-miR1861h过表达载体质粒转化:
同T载体质粒转化过程,将已经转化的pCAMBIA1300-35s-oru-miR1861h过表达载体质粒感受态细胞加到含有Kanamycin抗生素的LB固体培养基上,用涂布器将其均匀涂开、晾干,倒置平板于37℃恒温培养箱培养过夜。
此后,本发明人将重组载体导入目的植物(水稻品种“中花11”)中,获得转基因水稻,具体操作过程如下:
将上述pCAMBIA1300-35s-oru-miR1861h质粒转化农杆菌EHA105。经含卡那霉素的抗性平板筛选得到阳性克隆的过量表达工程菌,提取阳性克隆的过量表达工程菌的质粒,为pCAMBIA1300-35s-oru-miR1861h,将该阳性克隆的过量表达工程菌命名为EHA105/pCAMBIA1300-35s-oru-miR1861h。
将EHA105/pCAMBIA1300-35s-oru-miR1861h侵染水稻品种“中花11”(Oryzasativa L.cv Zhonghua11,以下简称为野生型水稻)的愈伤组织,再将导入EHA105/pCAMBIA1300-35s-oru-miR1861h的愈伤组织用含300mg/L头孢霉素的无菌水洗涤5遍,无菌滤纸吸干后转至N6D2S1培养基上,筛选一代;两周后,转移至N6D2S2培养基上筛选二代(2周/代);取出经过3代筛选生长旺盛的抗性愈伤组织,转移至分化培养基(1),上,在培养箱(12小时光周期,白天28℃,夜晚25℃)中培养7天;然后转移至分化培养基(2)上,在培养箱中培养至产生再生苗。再生的植株在生根壮苗培养基上生根壮苗;待小苗长至10厘米左右时,打开容器封口膜,炼苗2-3天,然后将小苗移入人工气候室栽培,获得T0代oru-miR1861h转基因水稻株系。
所用培养基如下表1:
表1所用培养基配方
Figure BDA0002011574270000061
Figure BDA0002011574270000071
为了验证获得的转基因水稻中oru-miR1861h已成功过量表达,本发明人执行了以下操作过程:
(1)阳性克隆检测:
从上述获得的T0代oru-miR1861h转基因水稻中提取总DNA,使用潮霉素(HYG)扩增引物(引物序列左端引物:5’-CGAGAGCCTGACCTATTGCAT-3’,右端引物:5’-CTGCTCCATACAAGCCAACCAC-3’),按以下体系进行PCR反应:2μL模板DNA、0.2μL Taq DNA聚合酶、1.5μL 10×Buffer(含Mg2+)、0.3μL dNTPs(10mmol/L)、1μL左端引物(10μM)、1μL右端引物(10μM),加ddH2O至终体积为20μL。扩增得到的目的片段经过1.5%的琼脂糖凝胶电泳分离,从图2中可以看出,miROE2-6和miROE3-4的oru-miR1861h转基因水稻中得到大约481bp的条带。将阳性T0代oru-miR1861h转基因水稻移至温室栽培,按照不同株系收种,得到T1代转基因种子,在此基础上经过繁种得到纯合T2代种子,在以后的实验中选取编号为miROE2-6、miROE3-4的T2代oru-miR1861h转基因水稻作为材料。
(2)荧光定量PCR鉴定:
从编号为miROE2-6、miROE3-4的T2代oru-miR1861h转基因水稻的幼苗中提取总RNA,利用Primer 6.0程序(PREMIER Biosoft International)设计基因茎环引物,引物序列:5’-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTCAGTT-3’,并以U6引物为内标参照,引物序列:5’-ATTTGGACCATTTCTCGATTTGT-3’,使用miRNAFirst Strand CdnaSymthesis(Stem-loop Method)(Sangon Biotech公司)混合好体系,进行16℃30min,37℃30min,85℃5min反应,反转录成cDNA。
将反转录产物稀释10倍,取2μl做模板,利用Primer 6.0程序(PREMIER BiosoftInternational)设计基因引物,引物序列,左端引物:5’-GCGGTCTTGAGGCAGGA-3’,右端引物:5’-GTGCAGGGTCCGAGGTATT-3’。用U6引物作为内参,U6引物序列,左端引物:5’-CGATAAAATTGGAACGATACAGA-3’,右端引物:5’-ATTTGGACCATTTCTCGATTTGT-3’。利用TBGreenTM Premix Ex TaqTM II(Tli RNaseH Plus)试剂盒(TaKaRa公司)进行反应溶液的配置,在实时定量PCR仪StepOneTM上运行PCR程序,95℃30s;95℃5s,60℃30s;共40循环;95℃15s,60℃1min,95℃15s。根据CT值计算基因的相对表达量。
结果如图3所示,与野生型水稻(Zhonghua11)相比,miROE2-6和miROE3-4的T2代转基因水稻幼苗中oru-miR1861h的表达水平均有不同程度的升高,说明目的基因(oru-miR1861h)已经过量表达。
采用同样的方法将空载体pCAMBIA1300-35s转入野生型水稻中,得到T0代转空载体水稻,按照上述方法鉴定,oru-miR1861h基因没有过量表达,将T0代转空载体水稻播种传代得到T2代转空载体水稻。
为了验证获得的转基因水稻的耐盐性,本发明人执行了以下操作过程:
将编号为miROE2-6和miROE3-4的T2代oru-miR1861h转基因水稻种子和野生型水稻(Zhonghua11,WT)种子,均浸润在纯水里,培养箱内32℃萌发后,播种于木村B培养液中,放置光照培养箱(光强为10000μmol/m2/s,光照时间为16h/d,温度为30℃)培养至4叶期;再将4叶期幼苗转至含有0.008g/mL NaCl的木村B培养液里处理5天,然后转至正常木村B培养液,于光照培养箱内恢复培养7天,照相、统计存活率。每个株系20株,实验重复三次。
耐盐性处理结果如图4A所示(图片从左到右的株系分别为WT、miROE2-6、miROE3-4),NaCl处理前,T2代oru-miR1861h转基因水稻和野生型水稻(Zhonghua11,WT)无显著差异;NaCl处理恢复后,与野生型水稻(Zhonghua11,WT)相比,T2代oru-miR1861h转基因水稻的耐盐性显著性提高。
耐盐性处理存活率统计结果如图4B所示:野生型水稻中花11(WT)和oru-miR1861h的转基因T2代水稻株系(miROE2-6、miROE3-4)的三次存活率分别为25%、60%、66.67%;13.33%、71.43%、60%;33.33%、57.14%、50%。
可以看出,在盐胁迫下,野生型水稻中花11(WT)和oru-miR1861h转基因水稻存活率都会降低,但oru-miR1861h转基因水稻存活率较野生型显著性提高,说明oru-miR1861h转基因水稻具有更强的耐盐性,oru-miR1861h能帮助植物提高植物耐盐性。
上述木村B培养液组成如下:
A液母液:1L(200×)
Figure BDA0002011574270000081
Figure BDA0002011574270000091
B液母液:1L(200×)
Ca(NO3)2·4H2O 17.235g
EDTA-Fe母液:1L(1000×)
溶解5.57g FeSO4·7H2O于200mL蒸馏水中,溶解7.45g Na2EDTA于200mL蒸馏水中,加热Na2EDTA溶液,加入FeSO4·7H2O溶液,不断搅拌,冷却后定容至1L。
微量元素母液:1L(1000×)
Figure BDA0002011574270000092
硅酸钠:每L木村B培养液用量100-300mg
1mol/L HCl:8.17mL 37%HCl用蒸馏水稀释至1000mL
用1mol/L HCl调木村B培养液PH值为5.8。
实际应用中,取5ml A液母液、5ml B液母液、1ml EDTA-Fe母液、1ml微量元素母液、100-300mg硅酸钠混合,加蒸馏水稀释至1L,用1mol/L HCl调PH值为5.8,得到IL木村B培养液。
以上具体实施方式表明,将oru-miR1861h的前体序列片段编码基因导入水稻中,得到oru-miR1861h的过量表达植株;该植株与未转入该基因的水稻相比具有更强的耐盐性,说明oru-miR1861h能帮助植物提高耐盐性。
序列表
<110> 江西师范大学
<120> 东乡野生稻oru-miR1861h在提高植物耐盐性上的应用
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 22
<212> RNA
<213> 东乡野生稻(Oryza rufipogon)
<400> 1
cggucuugag gcaggaacug ag 22
<210> 2
<211> 873
<212> RNA
<213> 东乡野生稻(Oryza rufipogon)
<400> 2
ucuuuccaau cacgggacau gcgccaaagc aucaaaucau ucacaauuaa acuuucaaga 60
uuucgcugcg cugcgccgaa agugacuucg ucgcuuugug auuaauaaag caaacaguua 120
ugcagcaugu gccgccgaaa gugacggugu cgcuuugcaa uuauugucau cacgagugaa 180
acagucugac gcuauugaau ugauuaguga aacaguccga ugcaccgucg ucucuuucca 240
auaauugaaa cugcguagcu ucuugccauc cccuauaaau aacaaccaaa ccuagcacac 300
aacuacaucu cuucuucaua aacguucugc ugguuccaac uuuguguugc auauucuuag 360
gcccggucuu gaggcaggaa cugaguaguu ggugaacucg cucuauguug uucguucacu 420
cgcgacacgg uuccuguccc aagacugagu cugugaauau acaaauguga uuuuuuuaau 480
acauucuaac acccacucuu uuuuucaagu uccagcaucc guuuguaaau augaccuacu 540
ccuacaaauu cauaaacucg guguugcaua uucuuaggcc ugaucuugug gcaagaacug 600
aguaguucgu uaacucgcua cgcgguucuu gucacaagac cgagcccgug aauaugcaaa 660
ggugguuuuc ucugugaaua uaacauauuc uaaauuccua uucuuuguca acuuuguaaa 720
aauugcuccc gaaugaucuc ucuacuccuu uauauauuuu uaauaaauau auauucaauu 780
ucuguuuuuc uauagguaau auauguuuuc uuucucugau aucauuauuu ugcaaauucc 840
aagauauuua uuuuucuucu cguagccgcg uac 873
<210> 3
<211> 873
<212> DNA
<213> 东乡野生稻(Oryza rufipogon)
<400> 3
tctttccaat cacgggacat gcgccaaagc atcaaatcat tcacaattaa actttcaaga 60
tttcgctgcg ctgcgccgaa agtgacttcg tcgctttgtg attaataaag caaacagtta 120
tgcagcatgt gccgccgaaa gtgacggtgt cgctttgcaa ttattgtcat cacgagtgaa 180
acagtctgac gctattgaat tgattagtga aacagtccga tgcaccgtcg tctctttcca 240
ataattgaaa ctgcgtagct tcttgccatc ccctataaat aacaaccaaa cctagcacac 300
aactacatct cttcttcata aacgttctgc tggttccaac tttgtgttgc atattcttag 360
gcccggtctt gaggcaggaa ctgagtagtt ggtgaactcg ctctatgttg ttcgttcact 420
cgcgacacgg ttcctgtccc aagactgagt ctgtgaatat acaaatgtga tttttttaat 480
acattctaac acccactctt tttttcaagt tccagcatcc gtttgtaaat atgacctact 540
cctacaaatt cataaactcg gtgttgcata ttcttaggcc tgatcttgtg gcaagaactg 600
agtagttcgt taactcgcta cgcggttctt gtcacaagac cgagcccgtg aatatgcaaa 660
ggtggttttc tctgtgaata taacatattc taaattccta ttctttgtca actttgtaaa 720
aattgctccc gaatgatctc tctactcctt tatatatttt taataaatat atattcaatt 780
tctgtttttc tataggtaat atatgttttc tttctctgat atcattattt tgcaaattcc 840
aagatattta tttttcttct cgtagccgcg tac 873

Claims (2)

1.东乡野生稻oru-miR1861h在提高植物耐盐性上的应用,其特征在于:所述的东乡野生稻oru-miR1861h的核苷酸序列为序列表中的序列1,所述植物为水稻。
2.一种提高植物的耐盐性的方法,其特征在于:包括如下步骤:
(1)将东乡野生稻oru-miR1861h的前体序列片段编码基因导入到载体中,得到重组载体,所述东乡野生稻oru-miR1861h的前体序列片段编码基因的核苷酸序列为序列表中的序列3;
(2)将重组载体导入目的植物中,目的植物的耐盐性得以提高,所述目的植物为水稻。
CN201910247978.0A 2019-03-29 2019-03-29 东乡野生稻oru-miR1861h在提高植物耐盐性上的应用 Active CN109971758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910247978.0A CN109971758B (zh) 2019-03-29 2019-03-29 东乡野生稻oru-miR1861h在提高植物耐盐性上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910247978.0A CN109971758B (zh) 2019-03-29 2019-03-29 东乡野生稻oru-miR1861h在提高植物耐盐性上的应用

Publications (2)

Publication Number Publication Date
CN109971758A CN109971758A (zh) 2019-07-05
CN109971758B true CN109971758B (zh) 2023-03-28

Family

ID=67081553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910247978.0A Active CN109971758B (zh) 2019-03-29 2019-03-29 东乡野生稻oru-miR1861h在提高植物耐盐性上的应用

Country Status (1)

Country Link
CN (1) CN109971758B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662928B (zh) * 2020-06-16 2021-10-08 中国科学院植物研究所 调控植物耐盐性的方法及耐盐相关蛋白
CN116814846B (zh) * 2023-08-30 2023-12-01 中国农业科学院作物科学研究所 与东乡普通野生稻耐盐基因qSST4相连锁的分子标记及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009033185A1 (en) * 2007-09-06 2009-03-12 University Of Massachusetts Virus-specific mirna signatures for diagnosis and therapeutic treatment of viral infection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009033185A1 (en) * 2007-09-06 2009-03-12 University Of Massachusetts Virus-specific mirna signatures for diagnosis and therapeutic treatment of viral infection

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Oryza sativa Japonica Group DNA, chromosome 6, cultivar: Nipponbare, complete sequence;GenBank: AP014962.1;《NCBI》;20151010;ORIGIN部分 *
水稻抗旱相关小RNA的鉴定及差异表达分析;孙帆;《中国优秀硕士学位论文全文数据库 农业科技辑(月刊)》;20180515(第05期);正文第20页 *
稻瘟病菌胁迫下水稻miRNA的表达;姜兆远等;《安徽农业科学》;20130610;第41卷(第17期);第7410-7412、7417页 *

Also Published As

Publication number Publication date
CN109971758A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN109971758B (zh) 东乡野生稻oru-miR1861h在提高植物耐盐性上的应用
CN109777802B (zh) 东乡野生稻oru-miR1861c在提高植物耐盐性上的应用
CN110904106B (zh) 春兰miR159b在增强植物冷敏感性中的应用
CN108795944B (zh) 棉花长链非编码RNA-lnc973及其在植物耐盐性中的应用
CN108866059B (zh) 山核桃miR159a的前体基因及其在提前植物开花中的应用
CN113481176B (zh) GA3ox1蛋白在调控苜蓿株型中的应用
CN115851761A (zh) 一种烟草类扩展蛋白基因NtEXLA2及其应用
CN112225790B (zh) 水稻抗盐胁迫相关基因onac103及编码蛋白与应用
CN116064568A (zh) 紫花苜蓿MsASG166基因及在提高植物耐旱中的用途
CN110951771B (zh) 春兰miR390a在控制植物根系发育中的应用
CN104513831B (zh) 一种促进植物生长的方法
CN108588069B (zh) 桑树miR171a的前体基因及其在增强植物耐盐性中的应用
CN105566466B (zh) 一种互花米草耐盐蛋白hkt及其编码基因和应用
CN117165584A (zh) 一种调控植物耐盐性的lncRNA及其应用
CN116218856A (zh) 一种调控植物耐冷性和耐盐性的miRNA及其应用
CN103665129A (zh) 一种植物抽穗期相关蛋白TaMYB72及其应用
CN112813096B (zh) 一种毛竹幼胚离体再生及遗传转化的方法
CN112626083B (zh) 大豆GmFBX176m3基因及其表达载体和应用
CN1170838C (zh) 与拟南芥矮化相关的特异基因
CN118207241A (zh) 一种快速创制高光效油菜种质的方法
CN107384955B (zh) 花生谷氨酰t-RNA还原酶及其应用
CN118440957A (zh) 薄荷中调控表皮毛与根毛发育和耐盐胁迫的转录因子McZFP4及其应用
CN105255890B (zh) 山核桃miR166d在提前植物花期或植物分生组织发育中的应用
CN118667833A (zh) 一种忍冬耐盐基因LjNHX3及其应用
CN114805513A (zh) 烟草NtOEE1基因及其在调控茎叶夹角和株高中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant