CN109970045B - 一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用 - Google Patents

一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用 Download PDF

Info

Publication number
CN109970045B
CN109970045B CN201910354775.1A CN201910354775A CN109970045B CN 109970045 B CN109970045 B CN 109970045B CN 201910354775 A CN201910354775 A CN 201910354775A CN 109970045 B CN109970045 B CN 109970045B
Authority
CN
China
Prior art keywords
cucurbituril
carbon material
porous carbon
polymer
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910354775.1A
Other languages
English (en)
Other versions
CN109970045A (zh
Inventor
谢奕明
吴季怀
殷杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201910354775.1A priority Critical patent/CN109970045B/zh
Publication of CN109970045A publication Critical patent/CN109970045A/zh
Application granted granted Critical
Publication of CN109970045B publication Critical patent/CN109970045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用。将六元瓜环与氯化钡水溶液在室温下混合,制备瓜环配位聚合物;随后将瓜环配位聚合物进行煅烧碳化,煅烧温度为400~1500℃;最后将碳化所得产物经酸或水洗涤后烘干,即得到多孔碳材料。所述多孔碳材料为以瓜环聚合物为模板且掺杂有氮元素的分层多级孔碳材料,其拥有次纳米孔和介孔的孔径分布,将其与特殊的电解液MMIMBF4制备成超级电容器后,因孔径大小与电解液离子大小相近的缘故,因此使得制备的超级电容器拥有超高的能量密度。并且由于多孔碳材料结构稳定,使得所制备的超级电容器拥有循环稳定性强,倍率性能好等特点。

Description

一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用
技术领域
本发明属于多孔碳材料领域,具体涉及一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用。
背景技术
在飞速发展的当今社会,随着全球工业化水平的提升,能源短缺以及日益衰竭的问题日渐严重,这亦成为影响发展的一大隐患。随着天然气、石油、煤炭的不可再生能源的不断消耗,人们逐渐意识到化石能源并不是支持长期发展的能源。另外,再加上化石能源燃烧所带来的的环境污染等问题,使得发展与能源供应二者矛盾越发尖锐。新能源的发展已成为不可逆转的趋势,近年来,新能源储能设备的发展与研究日益强大。
超级电容器因其高功率密度,使用温度范围广,寿命长等特点而备受关注。其在电动汽车、微机的备用电源、飞机的点火装置等方面具有广阔的应用前景。其中双电层电容器稳定性良好,成本低廉,是具有工业化、商业化前景的电极材料。但由于静电双电层储能机理的限制,使得碳基超级电容器的发展缓慢,通常仅拥有5-10Wh kg-1的能量密度。
碳基电容器的主要储能方式为电解液进入碳材料的孔洞中,引发的静电储能,因此碳材料的孔隙率是影响其储能能力的关键因素。传统的提高碳基电容器储能能力的方法多为大幅度提高材料的比表面积。但这种方法已被证实,当材料比表面积过大时(通常大于2000m2g-1),碳电极的比电容与比表面积是不成正比,有时候因为高比表面积导致材料电导率降低,反而使得材料的储能能力下降。
提升碳材料储能能力的另外一种方法则是引入杂原子的掺杂,但通常引入率都不是很高。并且,高温下使用活化等方式制备的多孔材料极易造成材料中所需引入的掺杂原子大量损失。
发明内容
本发明的目的在于克服现有技术的不足之处,提供了一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用,解决了上述背景技术中的问题。
本发明解决其技术问题所采用的技术方案之一是:提供了一种基于瓜环聚合物氮掺杂多孔碳材料的制备方法,将六元瓜环与氯化钡水溶液在室温下混合,制备瓜环配位聚合物;随后将瓜环配位聚合物进行煅烧碳化,煅烧温度为400~1500℃;最后将碳化所得产物经酸或水洗涤后烘干,即得到多孔碳材料。
具体包括如下步骤:
1)在室温下,将六元瓜环CB[6]与氯化钡水溶液在浓度为3~12M的浓盐酸中混合,持续搅拌3~5h,生成的白色沉淀;将白色沉淀经酸和/或去离子水洗涤,于50~70℃下烘干10~12h,得到瓜环配位聚合物;
2)将步骤1)制备的瓜环配位聚合物于管式炉中,惰性气氛下进行煅烧,煅烧温度为500~900℃,得到自热解产物;
3)将自热解产物经酸和/或去离子水洗涤,于50~70℃下烘干10~12h,得到多孔碳材料。
在本发明一较佳实施例中,所述六元瓜环与氯化钡的物质的量比为3~5:15~25。
在本发明一较佳实施例中,所述惰性气氛包括Ar或者N2
本发明解决其技术问题所采用的又一技术方案是:提供了一种基于瓜环聚合物氮掺杂多孔碳材料,所述多孔碳材料为以瓜环聚合物为模板且掺杂有氮元素的分层多级孔碳材料,其拥有次纳米孔和介孔的孔径分布。其利用了瓜环的特殊腔体结构作为造孔的模板,将瓜环配位聚合物自热解之后,保留瓜环的特殊空腔作为孔,形成了具有特殊孔径的多孔材料。
在本发明一较佳实施例中,所述次纳米孔的孔径为0.5~0.6nm,所述介孔的孔径为3.5~4.5nm,其中次钠米孔作为储能的主要方式,介孔作为电解液的缓冲层。
在本发明一较佳实施例中,所述多孔碳材料中碳的晶型结构为不定型碳。
本发明解决其技术问题所采用的又一技术方案是:提供了一种基于瓜环聚合物氮掺杂多孔碳材料在制备超级电容器中的应用。
在本发明一较佳实施例中,将所述基于瓜环聚合物氮掺杂多孔碳材料制备成电极后,与纯离子液体MMIMBF4组装成两电极超级电容器。将该材料所制备的电极与阳离子的大小为0.54nm,阴离子大小为0.34nm的纯离子液体MMIMBF4制备成电极,因电解液离子与电极孔径相近,加上纯离子液体3.8V宽的电压窗口,因而得到了具有超高能量密度的超级电容器装置。
在本发明一较佳实施例中,所述电极比电容为324F g-1,制备的超级电容器的能量密度可达104Wh kg-1,且在循环8000次后电容保持率为91%。
本技术方案与背景技术相比,它具有如下优点:
1.本发明采用直接热解的方法,使得碳化过程中的反应不是那么剧烈,因此不仅使得碳源模板结构得以保留,并且还大量的保留了材料中氮元素,使得材料的性能有着大幅度的提升;
2.本发明中,碳源自热解过程中金属盐的存在,使得材料能形成具有特殊结构的介孔,该介孔的存在为电极在储能过程中,电解液离子的进、出提供了缓冲层;
3.本发明的设计思路不局限于一味提高材料的比表面积,巧妙的利用了现有的研究机理,制备出了与电解液离子大小相近的多孔碳材料,并结合纯离子液体具有高分解电位的特点,制备出了具有超高能量密度的电容器装置。
附图说明
图1为实施例4制备的多孔碳材料X射线衍射(XRD)图片;
图2为实施例4制备的多孔碳材料透射电子显微镜(TEM)图片,其中,a-100nm,b-10nm;
图3为实施例4制备的多孔碳材料氩气吸附/脱附曲线图片;
图4为由实施例4制备的多孔碳材料制成的电极,在三电极测试体系下的恒电流充放电图片;
图5为由实施例4制备的多孔碳材料制成的超级电容器,循环伏安测试图;
图6为由实施例4制备的多孔碳材料制成的超级电容器,恒电流充放电测试图;
图7为由实施例4制备的多孔碳材料制成的超级电容器,循环稳定性测试图。
具体实施方式
实施例1
本实施例的一种基于瓜环聚合物氮掺杂多孔碳材料的制备方法,包括如下步骤:
(1)将CB[6](5mmol,50mL)和氯化钡溶液(20mmol,40mL)在室温下溶液混合,立即沉淀出大量白色颗粒,并持续搅拌4h使得反应完全;反应完全后,依次用3M HCl及去离子水洗涤沉淀剂以除去未配位的瓜环以及BaCl2;将所得产物在真空烘箱中在60℃下干燥12h,制得瓜环配位聚合物;
(2)将瓜环配位聚合物在充满Ar的管式炉中以500℃的温度持续煅烧2h,以制备该温度下的自热解产物;
(3)将所得产物相继用1M盐酸及去离子水分别洗涤8h及12h以去除碳化所产生的盐类杂质;随后将产物放入60℃真空干燥箱隔夜烘干,所得产物便是目标多孔碳材料。
实施例2~5
实施例2~5与实施例1的区别在于:步骤(2)的煅烧碳化温度分别为600/700/800/900℃。
在上述实施例中使用的六元瓜环CB[6]为实验室自己提纯制备而成,氯化钡为商业购买产品,纯度为分析纯,去离子水电阻为18.0-18.5MΩ。
对实施例4制备的一种基于瓜环聚合物氮掺杂多孔碳材料及其应用产品进行性能测试,结果表征如下:
一、结构测试:
如图1为基于瓜环聚合物氮掺杂多孔碳材料的X射线衍射(XRD)图片,从图中可以看出该碳材料为典型的不定型碳材料。图2为该材料的透射电子显微镜(TEM)图,从图中可以明显观察出结构大小类似的介孔,以及材料的块体结构。图3为该材料的氩气吸附/脱附曲线图片,从图中可以明显看到该材料含有大小约为0.59nm的次纳米孔径以及3.8nm大小左右的介孔,这与TEM测试结果基本符合。
二、电化学测试:
①将基于瓜环聚合物氮掺杂多孔碳材料以常规方式制备成电极:
如图4为该电极在三电极测试体系下的恒电流充放电曲线图,该电极展现出最高为324F g-1的比电容,以及良好的倍率性能。
②将该电极与纯离子液体MMIMBF4组装成两电极超级电容器:
如图5为超级电容器测试的循环伏安图片,其中电极材料得到近似矩形的循环伏安曲线,10mV s-1到100mV s-1的扫描速率下呈现出良好的双电层电容行为。图6为超级电容器测试的恒电流充放电图片,该装置在0.2A g-1的电流密度下,可将电压窗口拓宽到3.8V,计算所得的比电容为209.9F g-1,扣除电压降后,计算的能量密度可达104Wh kg-1。图7为超级电容器的循环稳定性测试图,该装置在循环8000次后电容保持率为91%,具有良好的电化学稳定性能。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (8)

1.一种基于瓜环聚合物氮掺杂多孔碳材料的制备方法,其特征在于:将六元瓜环与氯化钡水溶液在室温下混合,制备瓜环配位聚合物;随后将瓜环配位聚合物进行煅烧碳化,煅烧温度为400~1500 ℃;最后将碳化所得产物经酸或水洗涤后烘干,即得到多孔碳材料;制备方法包括如下步骤:
1)在室温下,将六元瓜环与氯化钡水溶液在浓度为3~12 M的浓盐酸中混合,持续搅拌3~5 h,生成的白色沉淀;将白色沉淀经酸和/或去离子水洗涤,于50~70 ℃下烘干10~12 h,得到瓜环配位聚合物;
2)将步骤1)制备的瓜环配位聚合物于管式炉中,惰性气氛下进行煅烧,煅烧温度为500~900 ℃,得到自热解产物;
3)将自热解产物经酸和/或去离子水洗涤,于50~70 ℃下烘干10~12 h,得到多孔碳材料。
2.根据权利要求1所述的一种基于瓜环聚合物氮掺杂多孔碳材料的制备方法,其特征在于:所述六元瓜环与氯化钡的物质的量比为3~5:15~25。
3.根据权利要求1所述的一种基于瓜环聚合物氮掺杂多孔碳材料的制备方法,其特征在于:所述惰性气氛包括Ar或者N2
4.如权利要求1~3任一项所述方法制备的一种基于瓜环聚合物氮掺杂多孔碳材料,其特征在于:所述多孔碳材料为以瓜环聚合物为模板且掺杂有氮元素的分层多级孔碳材料,其拥有次纳米孔和介孔的孔径分布;所述次纳米孔的孔径为0.5~0.6 nm,所述介孔的孔径为3.5~4.5 nm。
5.根据权利要求4所述的一种基于瓜环聚合物氮掺杂多孔碳材料,其特征在于:所述多孔碳材料中碳的晶型结构为不定型碳,氮元素掺杂率为20~22%。
6.一种如权利要求4~5任一项所述的基于瓜环聚合物氮掺杂多孔碳材料在制备超级电容器中的应用。
7.根据权利要求6所述的应用,其特征在于:将所述基于瓜环聚合物氮掺杂多孔碳材料制备成电极后,与纯离子液体MMIMBF4组装成两电极超级电容器。
8.根据权利要求7所述的应用,其特征在于:所述电极比电容为324 F g-1,制备的超级电容器的能量密度可达104 Wh kg-1,且在循环8000次后电容保持率为91%。
CN201910354775.1A 2019-04-29 2019-04-29 一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用 Active CN109970045B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910354775.1A CN109970045B (zh) 2019-04-29 2019-04-29 一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910354775.1A CN109970045B (zh) 2019-04-29 2019-04-29 一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用

Publications (2)

Publication Number Publication Date
CN109970045A CN109970045A (zh) 2019-07-05
CN109970045B true CN109970045B (zh) 2022-08-26

Family

ID=67087016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910354775.1A Active CN109970045B (zh) 2019-04-29 2019-04-29 一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用

Country Status (1)

Country Link
CN (1) CN109970045B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960403B (zh) * 2020-08-31 2023-02-17 西南大学 一种煤焦油基氮掺杂多孔碳材料的制备方法及其产品和在超级电容器中的应用
CN112349520A (zh) * 2020-11-12 2021-02-09 贵州大学 聚吡咯与六元瓜环自组装超级电容器材料的制备及应用
CN112435858B (zh) * 2020-11-13 2022-05-24 河北省科学院能源研究所 一种含氮和氧的金属掺杂多孔碳材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306807A (zh) * 2008-04-30 2008-11-19 中国科学院上海硅酸盐研究所 一种氮掺杂多孔碳材料的制备方法
CN106564868A (zh) * 2016-10-09 2017-04-19 上海应用技术大学 一种氮掺杂多孔碳材料的制备方法
CN106582816A (zh) * 2016-12-28 2017-04-26 山东理工大学 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯
CN106862589A (zh) * 2017-02-15 2017-06-20 珠海市吉林大学无机合成与制备化学重点实验室 金属镍‑氮掺杂多孔碳材料、制备方法及其应用
CN109133030A (zh) * 2018-09-25 2019-01-04 桂林电子科技大学 一种氮掺杂多孔碳材料的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306807A (zh) * 2008-04-30 2008-11-19 中国科学院上海硅酸盐研究所 一种氮掺杂多孔碳材料的制备方法
CN106564868A (zh) * 2016-10-09 2017-04-19 上海应用技术大学 一种氮掺杂多孔碳材料的制备方法
CN106582816A (zh) * 2016-12-28 2017-04-26 山东理工大学 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯
CN106862589A (zh) * 2017-02-15 2017-06-20 珠海市吉林大学无机合成与制备化学重点实验室 金属镍‑氮掺杂多孔碳材料、制备方法及其应用
CN109133030A (zh) * 2018-09-25 2019-01-04 桂林电子科技大学 一种氮掺杂多孔碳材料的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Coordination networks and supramolecular assemblies based on barium cation complexes with cucurbit[6]uril";Ekaterina A. Kovalenko et al;《Polyhedron》;20180206;第144卷;第159-164页 *
"Nitrogen-rich graphitic carbon stabilized cobalt nanoparticles as an effective heterogeneous catalyst for hydrogenation of CO2 to formate";Parth Patel et al;《Journal of CO2 Utilization》;20180426;第25卷;摘要,supporting information *

Also Published As

Publication number Publication date
CN109970045A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
Liu et al. Biowaste-derived 3D honeycomb-like porous carbon with binary-heteroatom doping for high-performance flexible solid-state supercapacitors
Yang et al. Pore structure regulation of hierarchical porous carbon derived from coal tar pitch via pre-oxidation strategy for high-performance supercapacitor
Yang et al. 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor
Ma et al. High‐Stability MnOx Nanowires@ C@ MnOx Nanosheet Core–Shell Heterostructure Pseudocapacitance Electrode Based on Reversible Phase Transition Mechanism
Gao et al. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors
Li et al. A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline–neutral electrolyte
WO2016184355A1 (zh) 以煤炭为原料制备石墨烯的方法
CN109970045B (zh) 一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用
Sheng et al. Green synthesis of nitrogen-doped hierarchical porous carbon nanosheets derived from polyvinyl chloride towards high-performance supercapacitor
CN108922790B (zh) 一种复合材料的制备方法和应用
Wang et al. A facile method for preparation of doped-N carbon material based on sisal and application for lead-carbon battery
CN111681887B (zh) 一种超级电容器用超薄类石墨烯碳材料的制备方法
CN112830472A (zh) 一种多孔碳的制备方法及由其得到的多孔碳和应用
Zou et al. A novel eutectic solvent precursor for efficiently preparing N-doped hierarchically porous carbon nanosheets with unique surface functional groups and micropores towards dual-carbon lithium-ion capacitors
Liu et al. Multifunctional sulfate-assistant synthesis of seaweed-like N, S-doped carbons as high-performance anodes for K-ion capacitors
CN108584944A (zh) 一种超级电容器用高比表面积富氮分级多孔炭电极材料的制备方法
Tang et al. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature
Zhang et al. Nitrogen and oxygen co-doped carbon micro-foams derived from gelatin as high-performance cathode materials of Zn-ion capacitors
Yang et al. Optimizing hierarchical porous carbon from biomass waste for high-performance supercapacitors
Chen et al. Design and structure optimization of coal-based hierarchical porous carbon by molten salt method for high-performance supercapacitors
Li et al. Synthesis of ultrahigh-surface-area nitrogen-doped porous carbon materials from carboxymethyl cellulose based protic polyanion ionic liquids for high performance supercapacitors
Li et al. Olive Leaves‐Derived Hierarchical Porous Carbon as Cathode Material for Anti‐Self‐Discharge Zinc‐Ion Hybrid Capacitor
Ding et al. An in-situ Blowing-etching strategy for preparation of Macro-meso-micro hierarchical porous carbon and its supercapacitive property
Li et al. Fabrication of dual heteroatom-doped graphitic carbon from waste sponge with “killing two birds with one stone” strategy for advanced aqueous zinc–ion hybrid capacitors
Wang et al. Preparation and electrochemical properties of low-temperature activated porous carbon from coal tar pitch

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant