CN106582816A - 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯 - Google Patents

用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯 Download PDF

Info

Publication number
CN106582816A
CN106582816A CN201611235495.1A CN201611235495A CN106582816A CN 106582816 A CN106582816 A CN 106582816A CN 201611235495 A CN201611235495 A CN 201611235495A CN 106582816 A CN106582816 A CN 106582816A
Authority
CN
China
Prior art keywords
template
nitrogen
calcium carbonate
mpbi
opbi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611235495.1A
Other languages
English (en)
Other versions
CN106582816B (zh
Inventor
李忠芳
吕亚楠
王素文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201611235495.1A priority Critical patent/CN106582816B/zh
Publication of CN106582816A publication Critical patent/CN106582816A/zh
Application granted granted Critical
Publication of CN106582816B publication Critical patent/CN106582816B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明是一种制备多级孔道的三维氮掺杂石墨烯的方法。用聚苯并咪唑(PBI)中的mPBI或oPBI为碳源和氮源,用纳米碳酸钙作为模板剂,PBI溶解后与纳米模板剂混合,惰性气体保护下,热解,碳酸钙分解产生小孔,去模板后形成大孔,其大孔与小孔相互贯通的多级孔道的三维氮掺杂石墨烯,其贯通的多级孔道起到强化传质的效果。PBI选用可溶解聚物粘均分子量在3‑5万;碳酸钙粒径选用10~100nm颗粒;PBI:碳酸钙=2:1~1:4;热解温度为800~1100℃;稀盐酸去除模板剂。制备的多级孔道贯通的三维氮掺杂石墨烯用于燃料电池或金属空气电池阴极的氧还原催化剂,电解水阳极的氧析出催化剂,超级电容器电极材料等领域。

Description

用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯
技术领域
属于纳米材料制备领域,用于清洁能源领域的燃料电池、金属空气电池阴极催化剂,电解水催化剂,锂离子电池材料,超级电容器电极材料和电化学传感器等领域。。
背景技术
石墨烯特有的性质和优异物理化学性质引起人们的研究兴趣。二维石墨烯由于易发生层-层堆叠,得到石墨结构丧失石墨烯的特性。为此,人们开始三维石墨烯的研究(ChenK, et al. J Mater Chem( 化学材料杂志), 2012, 22: 20968)。三维石墨烯材料不仅具有石墨烯片层固有的理化性质,其三维多孔的微纳米结构还使其兼具比表面积大、电子传导性能好及强化传质等优良特性,使得三维石墨烯及其复合材料备受关注。三维石墨烯可应用于催化反应、燃料电池、传感器、超级电容器等领域表现出优异的性能(Cao X, et al.Energy Environ. Sci.(能源环境科学), 2014, 7:1850)。研究表明,碳材料掺杂后有很好的氧还原催化活性。在各类杂原子掺杂石墨烯中,氮掺杂石墨烯研究最多。二维氮掺杂石墨烯容易层层堆叠或聚集使活性位减少,而且由于缺少传质通道使其催化性能降低。而三维氮掺杂石墨烯可以使活性位暴露在反应的三相界面上,提高了反应效率,而且其多孔结构可提高反应物及产物的传质效率。三维氮掺杂石墨烯的制备方法有很多,如软模板法(DingW, et al. J Am Chem Soc (美国化学会志), 2015, 137(16): 5414);硬模板法(Meng Y,et al. J Am Chem Soc(美国化学会志), 2014, 136(39): 13554);用聚吡咯与氧化石墨烯热解制备3D氮掺杂石墨烯(Lin Z, et al. Nano Energy(纳米能源), 2013, 2(2):241)等等。
人们常用酚醛树脂、尿醛树脂、三聚氰胺树脂、聚苯胺和聚吡咯等热解制备碳材料,在热解制备多孔碳材料或石墨烯类无金属催化剂(Wu G, et al. Science(科学),2011, 332: 443);Zhang L, et al. Sci Rep (科学报道), 2013, 3(3): 1408)。
作为含氮高分子材料,聚苯并咪唑(PBI)具有含氮量高的咪唑环结构。苯并咪唑环是芳香性的刚性环,在聚合物分子中容易出现堆积、聚集的现象,为了防止其堆积、聚集,可以在PBI分子中加入一些基团,使其改善其溶解性能和分子的柔顺性能。在PBI类高分子材料中,聚[2, 2’-(间苯基)-5, 5’-联苯并咪唑](mPBI)和聚[4, 4’-(二苯醚基)-5, 5’-联苯并咪唑](oPBI)是常见的两种。
研究发现,PBI分子中咪唑环上的咪唑氮若与金属离子(如Cu、Mn、Fe、Ru、Ti、Mo和Os等)配位可以制备催化剂,用于催化有机化合物的氧化还原反应,其催化活性与稳定性能均较好(Cameron C G, et al. J Phys Chem B,((美国)物理化学学报 B)2001, 105:8838)。多孔PBI树脂材料金属离子配位制备催化剂催化有机化合物的氧化还原反应(DArchivio, et al. Chem-A Eur J, (欧洲化学杂志)2000, 6(5): 794)其催化性能优良。PBI的合成方法可以分为5种:四胺与二腈、四胺与二酯、四胺与二酸、四胺与二酰胺、四胺与二醛,其中,芳香四胺与芳香二酸的反应最常用。mPBI和oPBI的结构式分别为:
mPBI的结构式 oPBI的结构式
本发明是利用芳香性的苯并咪唑作为提供碳和氮的原料,在惰性气体氩气保护下热解制备含氮的碳材料。通过改变原料与硬模板的比例、控制模板颗粒的大小来控制合成的含氮碳材料的孔径、孔隙率和石墨烯的层数等参数,最终得到理想的多层三维氮掺杂石墨烯。
与酚醛树脂、尿醛树脂等高分子材料相比,mPBI和oPBI的不同之处在于它含有芳香性的刚性的苯并咪唑环,而且咪唑环上的咪唑氮使其含氮量更加丰富。故高温热解mPBI和oPBI可以得到氮掺杂的碳材料,通过引入合适的模板或控制分子的芳香性环平面的排列方向,经热解后分别可以得到多层氮掺杂的石墨烯结构的材料。与聚苯胺和聚吡咯等材料制备氮掺杂石墨烯相比,mPBI和oPBI可溶解,易于涂饰在模板剂表面,而聚苯胺、聚吡咯等不溶解,无法与模板剂混合。
发明内容
本发明,发明了一种多级孔道贯通的三维氮掺杂石墨烯的制备方法。其碳源和氮源选用mPBI或oPBI,用纳米碳酸钙为模板剂,mPBI或oPBI分子中的芳香性的刚性的苯并咪唑分子可以规则地排列在模板剂纳米碳酸钙表面,在惰性气体保护下热解,在mPBI或oPBI热解生成氮掺杂碳材料的同时,模板剂碳酸钙也发生分解产生的二氧化碳排出会使模板剂之间,形成小孔的通道,除去纳米模板剂后可以形成多级孔道贯通(模板剂形成的孔和二氧化碳排出形成小孔贯通)三维氮掺杂石墨烯。要求 mPBI或oPBI是可溶性的,其分子中富含氮元素的咪唑环和端氨,苯并咪唑环是刚性的芳香性环,在热解时易形成氮掺杂石墨烯结构。其孔径、孔隙率、比表面积和氮掺杂石墨烯的层数等有mPBI或oPBI与纳米碳酸钙模板剂用量、模板剂的粒径等因素决定。小孔通道的形成靠纳米碳酸钙模板剂热解产生的二氧化碳的量决定。按照不同质量比混合、氩气保护下高温炉内热解2~3h,用稀盐酸去模板(此时变成氧化钙)即可得到的多级孔道贯通的三维氮掺杂石墨烯,其多级孔道贯通结构有利于电极的强化传质。该材料应用于燃料电池和金属空气电池阴极的氧还原催化剂,电解水氧析出催化剂及载体,超级电容器,电解、传感器材料等领域。
mPBI或oPBI与以上酚醛树脂、尿醛树脂和三聚氰胺树脂等高分子材料不同点是:mPBI或oPBI分子中苯并咪唑环属于芳香性的刚性环,易规则排列在模板剂表面,分子中咪唑环上含有咪唑氮,属于富氮的芳香型高分子聚合物。因此,其热解可以得到氮掺杂的多孔碳材料,如果mPBI或oPBI与模板剂的配比合适,控制分子的芳香环的平面按照一个方向排列,其热解可以得到氮掺杂的石墨烯结构。由于模板剂碳酸钙热解放出的二氧化碳会形成小的贯通的通道,因此,该方法可以制备多级孔道贯通的三维氮掺杂石墨烯结构材料。与聚苯胺、聚(邻苯二胺)、聚吡咯等高分子材料不同的是:mPBI或oPBI类高分子是可溶解在DMAc、DMSO等有机溶剂中,易与模板剂充分混合,不分相,由于其可溶性,其在制备3D氮掺杂石墨烯纳米材料时具有很好的操作性。然而,聚苯胺类、聚吡咯等高分子材料不可溶,无法与模板剂共混。纳米碳酸钙模板剂与纳米氧化镁、氧化铁和氢氧化铁模板剂相比不同处是碳酸钙在热解过程中碳酸钙会发生分解反应产生二氧化碳气体,该气体在排出时会形成贯通的小孔。该小孔与去除模板剂以后形成的纳米级的多孔三维氮掺杂石墨烯之间形成贯通的通道有利于该类材料用于电极反应过程中的强化传质。
mPBI或oPBI为液相法制备的粘均分子量在3万~5万之间的可以溶解在DMAc,DMF,DMSO,N-甲基吡咯烷酮等溶剂中。分子量太大,mPBI或oPBI的溶解性能变差;分子量太小其粘度太小,不能包覆模板剂。
纳米碳酸钙模板剂的粒径选用10~100nm,mPBI或oPBI与碳酸钙的质量比为2:1~1:4之间。三维氮掺杂的石墨烯的制备的方法为:首先制备聚合度适当的mPBI或oPBI,把mPBI或oPBI溶解在溶剂中形成溶液,向溶液中加入适量的粒径为10~100nm的纳米碳酸钙粉体做模板剂,搅拌使其充分混合均匀。在搅拌下,加热,慢慢地蒸出溶剂至近干,转入真空干燥箱中60~120℃下烘干。在研钵内研细,平铺在瓷舟底部,放入管式电炉内,在氩气保护下,在800~1100℃下,热解2~3h。待炉温冷却至室温,取出,用稀盐酸多次洗涤以去除模板纳米(此时应该为氧化钙),抽滤,用去离子水洗净,烘干得产品。
在本发明中,模板剂是纳米级的碳酸钙颗粒。能否制备出三维氮掺杂石墨烯,模板剂的粒径和加入量是关键:模板剂的粒径决定了制备的碳材料的孔径;模板剂的加入量决定了制备的石墨烯的层数、小孔的形成和性能,加入量太少,只能得到多孔碳材料,加入过多,得到的三维石墨烯层数太少,去除模板剂后,容易塌陷,只能得到破碎的石墨烯碎片。模板剂的颗粒度对加入模板剂的量有一定的影响,颗粒度小,其表面积大,需要的模板剂的量就少;反之,如果颗粒度大,需要的模板剂的量就多。贯通的小孔通道的形成与纳米碳酸钙的量和热解温度有关,热解温度在800℃以下,碳酸钙不分解,不能形成小孔贯通的通道。小孔的孔径与碳酸钙的量有关,碳酸钙产生的二氧化碳的量大,则可以形成的小孔的孔径就大些,如果产生的二氧化碳的量小,则形成的小孔就小。模板剂的用量为:mPBI或oPBI与模板剂的质量比为2:1~1:4;比例变化与模板的颗粒度有关。颗粒度从10~100nm。在惰性气体保护下热解,热解温度为:800~1100℃;洗涤用稀盐酸,多次洗涤后,用去离子水洗涤至中性即可。该类多级贯通的多孔材料对电极反应的传质有强化作用。
热解温度很重要,热解温度范围为800~1100℃。温度太低mPBI或oPBI不能热解,得到产品的导电性能差;碳酸钙不能分解无法得到小孔贯通的材料。热解温度到达最佳温度后,再升高热解温度其性能不变,如果氩气保护不充分,会使产品的催化性能变差,所以热解温度不宜过高。
多级孔道贯通的三维氮掺杂的石墨烯表征方法为:孔径、孔隙率、孔容和比表面积用氮气吸附仪(BET),产品的微观形貌分析用扫描电子显微镜(SEM)和投射电子显微镜(TEM),石墨烯层数可以通过高倍投射电子显微镜(HRTEM)和拉曼光谱来表征。产品的石墨化程度、石墨烯结构和层数可以用X-射线粉末衍射(XRD)、拉曼光谱来表征。产品的元素组成,价态可以用X-射线光电子能谱(XPS)进行了表征,用旋转圆盘电极(RDE)来测试产品的催化氧还原反应(ORR)性能、水电解氧析出反应(EOR),析氢反应(EHR)和产品的电容性能测试可以用循环伏安(CV)、线性伏安(LSV)、塔菲尔曲线和充放电性能来测试。产品作为催化剂的耐久性测试可以使用CV、LSV和计时电流曲线(i-t)。产品的催化性能最终需要组装金属空气电池、氢氧燃料电池、电解水的电解池、超级电容器和传感器来测试其性能。
具体实施方式
[实施例1] mPBI的制备:在装有电动搅拌和氮气保护的三口烧瓶中加入多聚磷酸(PPA) (100g),氮气保护下160℃搅拌1h,以除去多余的水分及空气。将DABz (4g, 18.7mmol) 以及间苯二甲酸 (3.1g, 18.7 mmol) 混合均匀,慢慢加入到三口烧瓶中。控制氮气流速,防止DABz被氧化,同时将反应温度提升到200℃并继续保温、搅拌反应5-8h。随着反应时间的增加,聚合体系逐渐变得粘稠。待粘度合适时停止反应,反应混合液慢慢转移到大量去离子水中抽丝,洗净、烘干,粉碎,去离子水多次洗涤以除去多聚磷酸和未反应反应物,即得到mPBI,用乌氏粘度计测定mPBI的分子量。
[实施例2] oPBI的合成法:在装有电动搅拌和氮气保护的三口烧瓶中加入多聚磷酸 (PPA) (100g),氮气保护下160℃搅拌2h以排除空气及水分。将DABz (4g, 18.7mmol) 以及4,4’-二苯醚二甲酸(4.83g,18.7 mmol) 混合均匀,慢慢加入到三口烧瓶中。控制氮气流速,防止DABz被氧化,同时将反应温度提升到200℃并继续保温、搅拌反应5~8h。随着反应时间的增加,聚合体系逐渐变得粘稠。待粘度合适时停止反应,反应混合液慢慢转移到大量去离子水中抽丝,洗净、烘干,粉碎,去离子水多次洗涤以除去多聚磷酸和未反应反应物,即得到oPBI,用乌氏粘度计测定oPBI的分子量。
[实施例3] 用粒径30nm的碳酸钙颗粒为模板剂与mPBI混合,以mPBI与纳米级的碳酸钙模板剂质量比为1:1为例:
在250mL的烧杯中,加入1g的mPBI(粘均分子量3~5万)和20mL DMAc,加热、搅拌使其溶解,在搅拌下慢慢加入1g粒径为30nm的碳酸钙使其分散均匀。得到的粘稠状液体在搅拌下加热浓缩至近干,在真空干燥箱内100℃下干燥,固体在研钵内研细,转移到瓷舟内,在氩气保护下,在高温电炉内900℃下热解,保温2-3h,待炉温降至室温,取出,研细,得到黑色粉末状固体,转移到250mL锥形瓶中,加入70mL的3mol/L盐酸,加热、搅拌8h,抽滤,用稀盐酸洗涤三次、水洗至中性,干燥得到黑色粉末状固体产品0.68g。BET测试表明,其孔径分布为30nm和2~4nm小孔,1431 m2 g-1,SEM测试表明,得到的产品为多孔泡沫状碳材料,TEM和HRTEM分析表明,产品为三维石墨烯结构碳材料,孔径为30nm,小孔2~4nm,孔道贯通。石墨烯彀回表明为2~4层石墨烯。XRD和拉曼光谱测试表明,产品为2~4层的石墨烯结构;XPS分析表明,产品氮含量为7.2%,且氮为吡啶型氮和吡咯型氮。说明,产品是多级孔道贯通的氮掺杂的三维石墨烯结构的材料。其0.1mol/LKOH溶液中,催化氧还原性能,起始氧还原电位为0.96V vsRHE,电子转移数为3.97,耐久性良好;镁空气电池性能达97mW/cm2。用于氢氧燃料电池其峰功率为612 mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.54 vs RHE, 极限电流密度达到115mA/cm2。超级电容器比电容为461F g-1 ,可循环10000 次仍保持电容值的98%。
[实施例4] 按实施例3的方法,其它条件相同,只是mPBI:碳酸钙=2:1。得到的产品为0.72g黑色粉末,BET测试表明,其孔径分布为30nm和2~4nm小孔,823 m2 g-1,SEM测试表明,得到的产品为多孔泡沫状碳材料,TEM和HRTEM分析表明,产品为三维石墨烯结构碳材料,孔径为30nm,小孔2~4nm,孔道贯通。石墨烯彀回表明为7~8层石墨烯。XRD和拉曼光谱测试表明,产品为7~8层的石墨烯结构;XPS分析表明,产品氮含量为7.4%,且氮为吡啶型氮和吡咯型氮。说明,产品是氮掺杂的三维石墨烯结构的材料。测试结果表明,其产品仍然为的多级孔道贯通的多孔三维氮掺杂石墨烯结构的材料。其0.1mol/L KOH溶液中,催化氧还原性能,氧气起始还原电位为0.85V vs RHE,电子转移数为3.86,耐久性良好;镁空气电池性能达77mW/cm2。用于氢氧燃料电池其峰功率为358mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.57 vs RHE, 极限电流密度达到60mA/cm2。超级电容器比电容为347F g-1 ,可循环10000 次仍保持电容值的94%。
[实施例5] 按实施例3的方法,其它条件相同,只是改变热解温度改为1100℃,其他条件同上,只是改变热解温度。得到的产品为0.65g黑色粉末,测试结果表明,其产品仍然为2~4层的多孔三维氮掺杂石墨烯结构的材料,其电化学性能同实施例3。
[实施例6] 按实施例3的方法,其他条件相同,只是mPBI:碳酸钙=1:2,同样得到黑色的固体粉末。BET测试表明,其孔径分布范围30~60 nm,小孔2~6 nm,但是其比表面积则降为1233 m2 g-1,其SEM和TEM测试表明,其内部为多级孔结构的碳材料,表面为多层石墨烯结构,XRD和拉曼数据表明,其石墨烯的层数6~8层。XPS数据与实施例3的产品类似。其0.1mol/LKOH溶液中,催化氧还原性能,氧气起始还原电位为0.87V vs RHE,电子转移数为3.84,耐久性良好;镁空气电池性能达66mW/cm2。用于氢氧燃料电池其峰功率为269mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.57V vs RHE, 极限电流密度达到40mA/cm2。超级电容器比电容为348F g-1,可循环10000 次仍保持电容值的94%。
[实施例7] 按实施例3的方法,其它条件相同,只是用粒径为70nm的碳酸钙颗粒做模板剂,这时由于模板剂的粒径变大,其表面积减小,mPBI的用量减少,则mPBI与模板剂的质量比改为为1:3,得到的产品同实施例3,只是其孔径分布在70nm,小孔3~6 nm,比表面积为1016 m2 g-1,为2~4层的三维氮掺杂石墨烯材料。其0.1mol/LKOH溶液中,催化氧还原起始电位为0.91V vs RHE,电子转移数为3.93,耐久性良好;镁空气电池性能达94 mW/cm2。用于氢氧燃料电池其峰功率为362mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.58V vsRHE, 极限电流密度达到60mA/cm2。超级电容器比电容为336F g-1,可循环10000 次仍保持电容值的94%。
[实施例8] 按实施例3的方法,其它条件相同,只是用粒径为100nm的碳酸钙颗粒做模板剂,这时由于模板剂的粒径增大,其表面积减小,mPBI的用量减少,则mPBI与模板剂的质量比改为为1:4,得到的产品同实施例3,只是其孔径分布在100 nm,小孔3~6 nm,比表面积为764 m2 g-1,为3~5层的多级孔道的三维氮掺杂石墨烯材料,催化氧还原起始电位为0.91V vs RHE,电子转移数为3.87,耐久性良好;镁空气电池性能达88 mW/cm2。用于氢氧燃料电池其峰功率为356 mW/cm2,0.5 mol/L的硫酸溶液中氧析出起始电位为1.59V vs RHE,极限的里面的达到57 mA/cm2 。超级电容器比电容为278F g-1,可循环10000 次仍保持电容值的93%。
[实施例9]用用oPBI为碳源和氮源(粘均分子量在3-5万),其它实验条件同实施例3。粒径为30纳米的碳酸钙为模板剂。oPBI与模板剂的质量比为1:1。其结果与实施例3类似。孔径为30nm,小孔为3-4nm,1334.1 m2 g-1,为2~4层石墨烯。氮含量为6.6%,且氮为吡啶型氮和吡咯型氮。说明,产品是氮掺杂的三维石墨烯结构的材料。其0.1mol/LKOH下催化氧还原性能,氧气起始还原电位为0.96V vs RHE,电子转移数为3.95,耐久性良好;镁空气电池性能达87mW/cm2。用于氢氧燃料电池其峰功率为368mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.57V vs RHE, 极限电流密度达到66mA/cm2。超级电容器比电容为457F g-1,可循环10000 次仍保持电容值的96%。用oPBI为碳源和氮源,用其它粒径的模板剂其结果与上述实施例类似。

Claims (6)

1.一种多级孔道贯通的三维氮掺杂石墨烯的制备方法,其特征在于:其碳源和氮源选用聚苯并咪唑(PBI)中的mPBI或oPBI,该类高分子化合物分子内有芳香性的刚性的苯并咪唑环可以规则地排列在模板剂纳米碳酸钙表面,在惰性气体保护下热解,在热解过程中PBI得到氮掺杂碳材料,碳酸钙热解产生的二氧化碳会在模板剂之间形成小的通孔,去除纳米模板剂后,得到多级孔道贯通的三维氮掺杂石墨烯材料; mPBI或oPBI是可溶性的,其分子中富含氮元素的咪唑环和端氨,且其苯并咪唑环是刚性的芳香性环,在热解时易形成氮掺杂石墨烯结构; mPBI或oPBI溶液与不同粒径纳米碳酸钙模板剂按照不同质量比混合、氩气保护下高温炉内热解2~3h,用稀盐酸去模板即可得到的多级孔道贯通的三维氮掺杂石墨烯,其多级孔道结构有利于电极的强化传质。
2.根据权利要求1所述的mPBI或oPBI,其特征在于:高分子链是由芳香性的刚性苯并咪唑组成,且分子中含有富含氮元素的咪唑环和端氨基;聚合物粘均分子量在3~5万之间,可以溶解在二甲基乙酰胺(DMAc)、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)和N-甲基吡咯烷酮等有机溶剂。
3.根据权利要求1所述的模板为纳米碳酸钙粉体,其特征在于,粒径在10~100nm。
4.根据权利要求1所述的mPBI或oPBI与模板碳酸钙的质量比为2:1~1:4;混合方式为:mPBI或oPBI溶液与纳米碳酸钙颗粒混合,搅拌混合均匀后,搅拌下加热蒸出溶剂至近干,真空干燥,研细,在高温炉内氩气保护下热解,用稀盐酸酸洗涤以去除模板,即可得到多级孔道贯通的三维氮掺杂石墨烯。
5.根据权利要求1所述的热解温度为800~1100℃。
6.根据权利要求1所述的多级孔道贯通的三维氮掺杂石墨烯,应用于催化氧还原反应的催化剂,用在金属空气电池、燃料电池;也可用于催化电解水氧析出反应的催化剂;还可用于超级电容器的电极材料。
CN201611235495.1A 2016-12-28 2016-12-28 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯 Expired - Fee Related CN106582816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611235495.1A CN106582816B (zh) 2016-12-28 2016-12-28 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611235495.1A CN106582816B (zh) 2016-12-28 2016-12-28 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯

Publications (2)

Publication Number Publication Date
CN106582816A true CN106582816A (zh) 2017-04-26
CN106582816B CN106582816B (zh) 2019-04-02

Family

ID=58602936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611235495.1A Expired - Fee Related CN106582816B (zh) 2016-12-28 2016-12-28 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯

Country Status (1)

Country Link
CN (1) CN106582816B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579240A (zh) * 2017-09-20 2018-01-12 吉林省凯禹电化学储能技术发展有限公司 一种用于铅炭电池负极的碳基复合材料的制备方法
CN108630455A (zh) * 2018-05-28 2018-10-09 青岛大学 一种利用1,3,5-三咪唑基苯为碳源制备超级电容器的方法
CN108766787A (zh) * 2018-05-28 2018-11-06 青岛大学 一种利用4,4`-双咪唑基联苯为碳源制备超级电容器的方法
CN109336080A (zh) * 2018-08-21 2019-02-15 浙江工业大学 一种可调分级多孔泡沫炭材料的制备方法
CN109970045A (zh) * 2019-04-29 2019-07-05 华侨大学 一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用
CN113224272A (zh) * 2020-01-21 2021-08-06 中国科学院大连化学物理研究所 一种聚合物/氧化石墨烯复合材料、其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104108708A (zh) * 2014-07-25 2014-10-22 深圳新宙邦科技股份有限公司 一种氮掺杂石墨烯及其制备方法
CN104475172A (zh) * 2014-11-21 2015-04-01 东华大学 一种三维多孔杂原子掺杂石墨烯的制备方法和应用
CN105621400A (zh) * 2015-12-28 2016-06-01 成都新柯力化工科技有限公司 一种以碳酸盐为原料制备石墨烯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104108708A (zh) * 2014-07-25 2014-10-22 深圳新宙邦科技股份有限公司 一种氮掺杂石墨烯及其制备方法
CN104475172A (zh) * 2014-11-21 2015-04-01 东华大学 一种三维多孔杂原子掺杂石墨烯的制备方法和应用
CN105621400A (zh) * 2015-12-28 2016-06-01 成都新柯力化工科技有限公司 一种以碳酸盐为原料制备石墨烯的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579240A (zh) * 2017-09-20 2018-01-12 吉林省凯禹电化学储能技术发展有限公司 一种用于铅炭电池负极的碳基复合材料的制备方法
CN108630455A (zh) * 2018-05-28 2018-10-09 青岛大学 一种利用1,3,5-三咪唑基苯为碳源制备超级电容器的方法
CN108766787A (zh) * 2018-05-28 2018-11-06 青岛大学 一种利用4,4`-双咪唑基联苯为碳源制备超级电容器的方法
CN109336080A (zh) * 2018-08-21 2019-02-15 浙江工业大学 一种可调分级多孔泡沫炭材料的制备方法
CN109970045A (zh) * 2019-04-29 2019-07-05 华侨大学 一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用
CN109970045B (zh) * 2019-04-29 2022-08-26 华侨大学 一种基于瓜环聚合物氮掺杂多孔碳材料、制备方法和应用
CN113224272A (zh) * 2020-01-21 2021-08-06 中国科学院大连化学物理研究所 一种聚合物/氧化石墨烯复合材料、其制备方法和应用
CN113224272B (zh) * 2020-01-21 2022-04-29 中国科学院大连化学物理研究所 一种聚合物/氧化石墨烯复合材料、其制备方法和应用

Also Published As

Publication number Publication date
CN106582816B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
CN106582816B (zh) 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯
Shi et al. Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries
Hou et al. Two-dimensional graphene-like N, Co-codoped carbon nanosheets derived from ZIF-67 polyhedrons for efficient oxygen reduction reactions
Zhou et al. One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction
Lin et al. Reaction milling for scalable synthesis of N, P-codoped covalent organic polymers for metal-free bifunctional electrocatalysts
Zhou et al. Copper-assisted thermal conversion of microporous covalent melamine-boroxine frameworks to hollow B, N-codoped carbon capsules as bifunctional metal-free electrode materials
Alegre et al. Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction
CN106732729B (zh) 带吡啶基团的聚苯并咪唑制备高氮含量的三维氮掺杂石墨烯
CN106587026B (zh) 强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法
CN106622330B (zh) 具有协同催化效应的Fe-Co-N三元共掺杂三维石墨烯的制备
CN106582817A (zh) 一种制备氮掺杂三维石墨烯的简便方法
Xu et al. Hierarchical micro/mesoporous nitrogen-doped carbons derived from hypercrosslinked polymers for highly efficient oxygen reduction reaction
CN106582766B (zh) 用限域微反应器制备过渡金属和氮共掺杂的二维石墨烯
Lv et al. 3D-ordered macroporous N-doped carbon encapsulating Fe-N alloy derived from a single-source metal-organic framework for superior oxygen reduction reaction
Yang et al. Nitrogen-doped porous carbon derived from Fe-MIL nanocrystals as an electrocatalyst for efficient oxygen reduction
CN106477566B (zh) 一种高氮含量的三维氮掺杂石墨烯的制备方法
CN106744848B (zh) 多级孔道的铁钴和氮三元共掺杂的三维石墨烯的制备
CN106744850B (zh) 过渡金属和氮共掺杂的多级孔道三维石墨烯的制备
Liu et al. Iron–nitrogen co-doped hierarchically mesoporous carbon spheres as highly efficient electrocatalysts for the oxygen reduction reaction
Tian et al. Melamine‐Induced N, S‐Codoped Hierarchically Porous Carbon Nanosheets for Enhanced Electrocatalytic Oxygen Reduction
Xing et al. N–S-codoped mesoporous carbons from melamine-2-thenaldehyde polymers on carbon nanotubes for oxygen reduction and Zn-air batteries
Liu et al. Stabilizing iron single atoms with electrospun hollow carbon nanofibers as self-standing air-electrodes for long-time Zn− air batteries
CN106744852B (zh) 铁和氮共掺杂的三维石墨烯的制备方法
Lu et al. Atomically dispersed Fe-NC catalyst with densely exposed Fe-N4 active sites for enhanced oxygen reduction reaction
CN106582767B (zh) 钴和氮共掺杂的三维石墨烯的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190402

Termination date: 20191228