CN106587026B - 强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法 - Google Patents

强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法 Download PDF

Info

Publication number
CN106587026B
CN106587026B CN201611234526.1A CN201611234526A CN106587026B CN 106587026 B CN106587026 B CN 106587026B CN 201611234526 A CN201611234526 A CN 201611234526A CN 106587026 B CN106587026 B CN 106587026B
Authority
CN
China
Prior art keywords
template
nitrogen
abpbi
calcium carbonate
doped graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611234526.1A
Other languages
English (en)
Other versions
CN106587026A (zh
Inventor
李忠芳
王素文
张廷尉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201611234526.1A priority Critical patent/CN106587026B/zh
Publication of CN106587026A publication Critical patent/CN106587026A/zh
Application granted granted Critical
Publication of CN106587026B publication Critical patent/CN106587026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明是一种强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法。用聚(2,5‑苯并咪唑)(ABPBI)为碳源和氮源,用纳米碳酸钙作为模板剂,ABPBI溶解后均匀涂饰在纳米模板剂表面,其ABPBI分子中的苯并咪唑环规则地在模板剂表面排列,热解形成氮掺杂碳材料,碳酸钙分解形成小孔与模板剂形成的大孔贯通,起到强化传质的效果。ABPBI选用可溶解低聚物;碳酸钙粒径用10~100nm颗粒;ABPBI与碳酸钙的质量比为2:1~1:4;热解温度为900~1100℃;稀盐酸去除模板剂。制备的多级孔道贯通的三维氮掺杂石墨烯用于燃料电池或金属空气电池阴极的氧还原催化剂,电解水阳极的氧析出催化剂,超级电容器电极材料等领域。

Description

强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法
技术领域
属于纳米材料制备领域,用于清洁能源领域的燃料电池、金属空气电池阴极催化剂,电解水催化剂,超级电容器电极材料和电化学传感器等领域。
背景技术
石墨烯是一种新型的碳二维纳米材料,由单层碳原子紧密堆积而成的二维蜂窝状结构。具有独特的光学、热学、电子和机械性能(Allen M J, et al. Chem Rev(化学评论),2010, 110: 132)。但是石墨烯往往会因受π-π相互作用而团聚、堆积,导致比表面积缩小,电阻增大,性能大幅降低,从而限制其应用。而三维氮掺杂石墨烯可以使活性位暴露在反应的三相界面上,提高了反应效率,而且可提高反应物及产物的传质效率。与二维石墨烯相比,三维石墨烯不仅具有更高的比表面积和活性点位,且其质量轻、体积易控制、易加工以及具有更好的机械性能,在催化、传感器、环保和储能等领域具有重要的应用价值,并引起人们的广泛关注(Gui X C et al. Adv Mater(先进材料), 2010, 22: 617)。通过对石墨烯材料的研究人们发现氮元素掺杂的石墨烯,其氮相邻的碳元素上的电子云密度发生改变,使得氮原子周围的碳原子带有部分正电荷,有利于氧气的吸附活化,从而提高催化氧气还原的活性和耐久性,不仅如此,氮掺杂还具有优异的抗甲醇和CO中毒特性(Jeon I. Y etal. Sci Reports(科学报告), 2013, 3: 1810)。
制备三维氮掺杂石墨烯的方法很多:可以通过使用三聚氰胺树脂等含氮的高分子材料热解;氧化石墨烯在氨气和含氮原子的小分子物质还原;或者采用含氮的高分子材料,如聚苯胺 (Wu G, et al. Science(科学), 2011, 332: 443)、聚吡咯(PPy)(Wei L, etal. Adv Funct Mater (先进功能材料),2012, 22: 827)作为前驱体方法制备氮掺杂碳材料或者氮掺杂石墨烯材料。人们常用酚醛树脂、尿醛树脂和三聚氰胺树脂等热解制备碳材料,在热解制备多孔碳材料或石墨烯类无金属催化剂
聚2,5-苯并咪唑 (ABPBI)是PBI家族中最简单的一种,采用3,4-二氨基苯甲酸为原料,于惰性气体氩气保护下,在多聚磷酸(PPA)中200℃条件下缩合聚合制得。其制备反应方程式如下:
作为含氮高分子材料,聚苯并咪唑(PBI)具有含氮量高的咪唑环结构。采用PBI作为一种含氮高的中间体,其制备的催化剂具有较高的电催化性能。苯并咪唑环是芳香性的刚性环,分子中咪唑环上含有咪唑氮,若采用金属离子(如Cu、Mn、Fe、Ru、Ti、Mo和Os等)进行配位,制备催化剂,可提高催化活性与稳定性(Cameron C G, et al. J Phys Chem B,((美国)物理化学学报 B)2001, 105:8838)。PBI的合成方法可以分为5种:四胺与二腈、四胺与二酯、四胺与二酸、四胺与二酰胺、四胺与二醛,其中,芳香四胺与芳香二酸的反应最常用。DArchivio对多孔PBI树脂材料的制备方法、性能及其与金属离子配位制备催化剂进行了研究(D Archivio,et al. Chem-A Eur J,(欧洲化学杂志)2000, 6(5)794)。
该发明是利用刚性的芳香性的聚苯并咪唑中的一种聚(2,5-苯并咪唑)(ABPBI)作为提供碳和氮的原料,用纳米碳酸钙为模板剂,可溶性ABPBI涂饰到模板剂表面,刚性的苯并咪唑环规则地排列在模板剂表面,在惰性气体氩气保护下热解制备含氮的碳材料,>900℃热解时,其模板剂碳酸钙颗粒会发生分解反应,产生二氧化碳气体,产生的气体排出,会作为模板产生纳米小孔,该小孔会与模板剂形成的相互贯通,在作为催化剂使用时起到强化传质的效果。用稀酸去除模板剂,产生纳米孔。通过改变原料与硬模板的比例、控制模板颗粒的大小来控制合成的含氮碳材料的孔径、孔隙率和石墨烯的层数等参数,最终得到理想的多层三维氮掺杂石墨烯。
与酚醛树脂、尿醛树脂、三聚氰胺树脂等高分子材料相比,ABPBI的不同之处在于它含有芳香性的刚性苯并咪唑环,而且咪唑环上的含氮量更加丰富。故高温热解ABPBI可以得到高氮含量的氮掺杂的碳材料,而且通过引入合适的模板或控制分子的芳香环的规则排列方向,经热解后分别可以得到多层氮掺杂的石墨烯材料。
与聚苯胺和聚吡咯等材料制备氮掺杂石墨烯相比,ABPBI可溶解,易于涂饰在模板剂表面,而聚苯胺、聚吡咯等不溶解,无法与模板剂混合。
发明内容
本发明,发明了一种强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法。其碳源和氮源选用聚(2,5-苯并咪唑)(ABPBI),该类芳香性的刚性的聚苯并咪唑分子可以规则地排列在模板剂纳米碳酸钙表面,经过在惰性气体保护下热解,在ABPBI热解生成氮掺杂碳材料的同时,模板剂碳酸钙也发生分解产生的二氧化碳排出的同时,会使模板剂之间,形成小的通道,除纳米模板剂形成三维氮掺杂石墨烯的孔道之间形成多级孔道贯通三维氮掺杂石墨烯多级孔道结构材料。多级孔道贯通的形成条件是除了模板剂碳酸钙形成的纳米孔之外,碳酸钙的受热分解产生的二氧化碳排出会形成不同孔径的小孔,且这些小孔会与模板剂形成的纳米孔形成贯通的通道。要求 ABPBI是可溶性的,其分子中富含氮元素的咪唑环和端氨,苯并咪唑环是刚性的芳香性环,在热解时易形成氮掺杂石墨烯结构。其孔径、孔隙率、比表面积和氮掺杂石墨烯的层数等有 ABPBI与纳米碳酸钙模板剂用量、模板剂的粒径等因素决定。小孔通道的形成靠纳米碳酸钙模板剂热解产生的二氧化碳的量决定。按照不同质量比混合、氩气保护下高温炉内热解2~3h,用稀盐酸去模板即可得到的多级孔道贯通的三维氮掺杂石墨烯,其多级孔道结构有利于电极的强化传质。该材料应用于燃料电池和金属空气电池阴极的氧还原催化剂,电解水氧析出催化剂及载体,超级电容器,电解、传感器材料等领域。
ABPBI与以上酚醛树脂、尿醛树脂和三聚氰胺树脂等高分子材料不同点是:ABPBI分子中苯并咪唑环属于芳香性的刚性环,分子中咪唑环上含有咪唑氮,属于富氮的芳香型高分子聚合物。因此,其热解可以得到氮掺杂的碳材料,如果在合适的模板作用下,可以得到多层氮掺杂的石墨烯材料。如果控制分子的芳香环的平面按照一个方向排列,其热解可以得到氮掺杂的石墨烯结构。如果用模板纳米碳酸钙颗粒支撑、热解可以得到三维氮掺杂的石墨烯结构的同时,碳酸钙热解放出的二氧化碳会形成小的贯通的通道,因此,该方法可以制备多级孔道贯通的三维氮掺杂石墨烯结构材料。与聚苯胺、聚(邻苯二胺)、聚吡咯等高分子材料不同的是:ABPBI类高分子是可溶解在DMAc、DMSO等有机溶剂中,易与模板剂充分混合,不分相,由于其可溶性,其在制备3D氮掺杂石墨烯纳米材料时具有很好的操作性。然而,聚苯胺类、聚吡咯等高分子材料不可溶,无法与模板剂共混。纳米碳酸钙模板剂与纳米氧化镁、氧化铁和氢氧化铁模板剂相比不同处是碳酸钙在热解过程中伴随着碳酸钙会发生分解反应产生二氧化碳气体,该气体在排出时会形成贯通的小孔。该小孔与去除模板剂以后形成的纳米级的多孔三维氮掺杂石墨烯之间形成贯通的通道有利于该类材料用于电极反应过程中的强化传质。
ABPBI为固相法或液相法制备的粘均分子量在1万~3万之间的可以溶解在DMAC,DMF,DMSO,N-甲基吡咯烷酮等溶剂中。分子量太大,ABPBI的溶解性能变差;分子量太小其粘度太小,不能包覆模板剂。
纳米碳酸钙模板剂的粒径选用10~100nm,ABPBI:碳酸钙=2:1~1:4之间。三维氮掺杂的石墨烯的制备的方法为:首先制备聚合度适当的ABPBI,把ABPBI溶解在溶剂中形成溶液,向溶液中加入适量的,粒径为10~100nm的纳米碳酸钙粉体做模板剂,搅拌使其充分混合均匀。在搅拌下,加热,慢慢地蒸出溶剂至近干,转入真空干燥箱中60~120℃下烘干。在研钵内研细,平铺在瓷舟底部,放入管式电炉内,在氩气保护下,在900~1100℃下,热解2~3h。待炉温冷却至室温,取出,用稀盐酸多次洗涤以去除模板纳米碳酸钙(此时应该为氧化钙),抽滤,用去离子水洗净,烘干得产品。
在本发明中,模板剂是纳米级的碳酸钙颗粒。能否制备出三维氮掺杂石墨烯,模板剂的粒径和加入量是关键:模板剂的粒径决定了制备的碳材料的孔径;模板剂的加入量决定了制备的石墨烯的层数和性能,加入量太少,只能得到多孔碳材料,加入过多,得到的三维石墨烯层数太少,去除模板剂后,容易塌陷,只能得到破碎的石墨烯碎片。模板剂的颗粒度对加入模板剂的量有一定的影响,颗粒度小,其表面积大,需要的模板剂的量就少;反之,如果颗粒度大,需要的模板剂的量就多。贯通的小孔通道的形成与纳米碳酸钙的量和热解时的分解有关,热解温度在800℃以下,碳酸钙不分解,不能形成小孔贯通的通道。小孔的孔径与碳酸钙的量有关,碳酸钙产生的二氧化碳的量大,则可以形成的小孔的孔径就大些,如果产生的二氧化碳的量小,则形成的小孔就小。模板剂的用量为:ABPBI与模板剂的质量比为2:1~1:4;比例变化与模板的颗粒度有关。颗粒度从10~100nm。在惰性气体保护下热解,热解温度为:900~1100℃;洗涤用稀盐酸,多次洗涤后,用去离子水洗涤至中性即可。小孔的形成和孔径大小是碳酸钙分解生成的二氧化碳产生的,碳酸钙的量和热解温度等因素决定小孔的孔径和贯通性能。该类多级贯通的多孔材料对电极反应的传质有强化作用。
热解温度很重要,热解温度范围为900~1100℃。温度太低ABPBI不能热解,得到产品的导电性能差;碳酸钙不能分解无法得到小孔贯通的材料。热解温度到达最佳温度后,再升高热解温度其性能不变,所以热解温度不宜过高。
三维氮掺杂的石墨烯表征方法为:孔径、孔隙率、孔容和比表面积用氮气吸附仪(BET),产品的微观形貌分析用扫描电子显微镜(SEM)和投射电子显微镜(TEM),石墨烯层数可以通过高倍投射电子显微镜(HRTEM)和拉曼光谱来表征。产品的石墨化程度、石墨烯结构和层数可以用X-射线粉末衍射(XRD)、拉曼光谱来表征。产品的元素组成,价态可以用X-射线光电子能谱(XPS)进行了表征,用旋转圆盘电极(RDE)来测试产品的催化氧还原反应(ORR)性能、水电解氧析出反应(EOR),析氢反应(EHR)和产品的电容性能测试可以用循环伏安(CV)、线性伏安(LSV)、塔菲尔曲线和充放电性能来测试。产品作为催化剂的耐久性测试可以使用CV、LSV和计时电流曲线(i-t)。产品的催化性能最终需要组装金属空气电池、氢氧燃料电池、电解水的电解池、超级电容器和传感器来测试其性能。
具体实施方式
[实施例1] ABPBI的制备(方法一,固相法):取适量的3,4-二氨基苯甲酸(DABA)于研钵内,充分研磨之后转移到装有电动搅拌、惰性气体保护三口烧瓶内,通氮气15min以排尽烧瓶内的空气。N2保护,搅拌下,油浴225℃加热,保持3h。冷却后取出,研细,N2保护下,电炉内加热,升温到270-275℃,保持3h。冷却至室温,将产物取出、研细,即得到ABPBI,用乌氏粘度计测定ABPBI的分子量。
[实施例2] ABPBI的制备(方法二,液相法):多聚磷酸 (PPA) (50g) 加入到三口烧瓶中,氮气保护下,搅拌、160℃ 1 h以除去水分及空气。加入3,4-二氨基苯甲酸(6 g,39.5 mmol) 并将温度升高到190℃,控制N2流速,防止DABA被氧化,200℃下搅拌反应3h,反应过程中分批加入约5g P2O5以吸收反应过程中生成的水。随着反应时间的增加,聚合体系逐渐变得粘稠。反应混合液慢慢转移到去离子水中,抽丝,形成纤维状黑色固体,取出烘干,粉碎,洗涤以除去反应混合物中的多聚磷酸和未反应的原料。得到ABPBI产品。用乌氏粘度计测定ABPBI的分子量。
[实施例3]用粒径30nm的纳米级的碳酸钙颗粒为模板剂与ABPBI混合,热解制备三维多孔氮掺杂石墨烯。以ABPBI与纳米级的碳酸钙模板剂质量比为1:1为例:
在250mL的烧杯中,加入1g的ABPBI(粘均分子量2~3万)和20mL DMAc,加热、搅拌使其溶解,在搅拌下慢慢加入1g粒径为30nm的碳酸钙使其分散均匀。得到的粘稠状液体在搅拌下加热浓缩至近干,在真空干燥箱内100℃下干燥,固体在研钵内研细,转移到瓷舟内,在氩气保护下,在高温电炉内1000℃下热解,保温2h,结束加热,待炉温降至室温,取出,研细,得到黑色粉末状固体,转移到250mL锥形瓶中,加入70mL的3mol/L盐酸,加热、搅拌8h,抽滤,这样用稀盐酸洗涤三次、水洗至中性,干燥得到黑色粉末状固体产品0.71g。BET测试表明,其孔径分布为30nm和2~4nm小孔,1581 m2 g-1,SEM测试表明,得到的产品为多孔泡沫状碳材料,TEM和HRTEM分析表明,产品为三维石墨烯结构碳材料,孔径为30nm,小孔2~4nm,孔道贯通。石墨烯彀回表明为2~4层石墨烯。XRD和拉曼光谱测试表明,产品为2~4层的石墨烯结构;XPS分析表明,产品氮含量为7.2%,且氮为吡啶型氮和吡咯型氮。说明,产品是多级孔道贯通的氮掺杂的三维石墨烯结构的材料。其0.1mol/LKOH溶液中,催化氧还原性能,起始氧还原电位为0.95V vs RHE,电子转移数为3.98,耐久性良好;镁空气电池性能达101mW/cm2。用于氢氧燃料电池其峰功率为552mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.52 vsRHE, 极限电流密度达到96mA/cm2。超级电容器比电容为520F g-1 ,可循环10000 次仍保持电容值的97%。
[实施例4] 按实施例3的方法,其他条件相同,只是ABPBI:碳酸钙=2:1。得到的产品为0.76g黑色粉末,BET测试表明,其孔径分布为30nm和2~4nm小孔,923 m2 g-1,SEM测试表明,得到的产品为多孔泡沫状碳材料,TEM和HRTEM分析表明,产品为三维石墨烯结构碳材料,孔径为30nm,小孔2~4nm,孔道贯通。石墨烯彀回表明为7~8层石墨烯。XRD和拉曼光谱测试表明,产品为7~8层的石墨烯结构;XPS分析表明,产品氮含量为7.3%,且氮为吡啶型氮和吡咯型氮。说明,产品是氮掺杂的三维石墨烯结构的材料。测试结果表明,其产品仍然为的多级孔道贯通的多孔三维氮掺杂石墨烯结构的材料。其0.1mol/LKOH溶液中,催化氧还原性能,氧气起始还原电位为0.85V vs RHE,电子转移数为3.87,耐久性良好;镁空气电池性能达78mW/cm2。用于氢氧燃料电池其峰功率为321mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.59 vs RHE, 极限电流密度达到50 mA/cm2。超级电容器比电容为365F g-1 ,可循环10000 次仍保持电容值的92%。
[实施例5] 按实施例3的方法,其他条件相同,只是改变热解温度改为1100℃,其他条件同上,只是改变热解温度。得到的产品为0.65g黑色粉末,测试结果表明,其产品仍然为2~4层的多孔三维氮掺杂石墨烯结构的材料,其电化学性能同实施例3。
[实施例6] 按实施例3的方法,其他条件相同,只是ABPBI:碳酸钙=1:2,同样得到黑色的固体粉末。BET测试表明,其孔径分布范围30~60 nm,小孔2~6 nm,但是其比表面积则降为1335 m2 g-1,其SEM和TEM测试表明,其内部为多级孔结构的碳材料,表面为多层石墨烯结构,XRD和拉曼数据表明,其石墨烯的层数4~6层。XPS数据与实施例3的产品类似。其0.1mol/L KOH溶液中,催化氧还原性能,氧气起始还原电位为0.89V vs RHE,电子转移数为3.88,耐久性良好;镁空气电池性能达86mW/cm2。用于氢氧燃料电池其峰功率为336mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.56V vs RHE, 极限电流密度达到50 mA/cm2。超级电容器比电容为452F g-1,可循环10000 次仍保持电容值的94%。
[实施例7] 按实施例3的方法,其他条件相同,只是用粒径为70nm纳米级的碳酸钙颗粒做模板剂,这时由于模板剂的粒径变大,其表面积减小,ABPBI的用量减少,则ABPBI与模板剂的质量比改为为1:3,得到的产品同实施例3,只是其孔径分布在70nm,小孔3~6 nm,比表面积为986 m2 g-1,为2~4层的三维氮掺杂石墨烯材料。其0.1mol/LKOH溶液中,催化氧还原起始电位为0.87V vs RHE,电子转移数为3.87,耐久性良好;镁空气电池性能达88mW/cm2。用于氢氧燃料电池其峰功率为268mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.58V vs RHE, 极限电流密度达到50mA/cm2。超级电容器比电容为223F g-1,可循环10000次仍保持电容值的94%。
[实施例8] 按实施例3的方法,其他条件相同,只是用粒径为100nm纳米级的碳酸钙颗粒做模板剂,这时由于模板剂的粒径增大,其表面积减小,ABPBI的用量减少,则ABPBI与模板剂的质量比改为为1:4,得到的产品同实施例3,只是其孔径分布在100 nm,小孔3~6nm,比表面积为769 m2 g-1,为3~5层的多级孔道的三维氮掺杂石墨烯材料,催化氧还原起始电位为0.90V vs RHE,电子转移数为3.81,耐久性良好;镁空气电池性能达78 mW/cm2。用于氢氧燃料电池其峰功率为216 mW/cm2,0.5 mol/L的硫酸溶液中氧析出起始电位为1.57Vvs RHE, 极限的里面的达到46 mA/cm2 。超级电容器比电容为258F g-1,可循环10000 次仍保持电容值的93%。

Claims (5)

1.一种多级孔道贯通的三维氮掺杂石墨烯多孔碳的制备方法,其特征在于:其碳源和氮源选用聚(2,5-苯并咪唑)(ABPBI),该类芳香性的刚性的聚苯并咪唑分子规则地排列在模板剂纳米碳酸钙表面,经过在惰性气体保护下热解,在热解过程中碳酸钙热解产生的二氧化碳会在模板剂之间形成小的通孔,去除纳米模板剂后,形成三维氮掺杂石墨烯的孔道之间有小孔贯通,得到多级孔道贯通的三维氮掺杂石墨烯材料; ABPBI是可溶性的,其分子中富含氮元素的咪唑环和端氨,且其苯并咪唑环是刚性的芳香性环,在热解时易形成氮掺杂石墨烯结构; ABPBI溶液与不同粒径纳米碳酸钙模板剂,按照不同质量比混合、氩气保护下高温炉内热解2~3h,用稀盐酸去模板即得到多级孔道贯通的三维氮掺杂石墨烯,其多级孔道结构有利于电极的强化传质。
2.根据权利要求1所述的一种多级孔道贯通的三维氮掺杂石墨烯多孔碳的制备方法,其特征在于:所选用的ABPBI的高分子链是由芳香性的刚性苯并咪唑组成,且分子中含有富含氮元素的咪唑环和端氨基;聚合物粘均分子量在1~3万之间,可以溶解在二甲基乙酰胺(DMAc)、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)和N-甲基吡咯烷酮中任意一种有机溶剂。
3.根据权利要求1所述的一种多级孔道贯通的三维氮掺杂石墨烯多孔碳的制备方法,其特征在于:模板为纳米碳酸钙粉体,其特征在于,粒径在10~100nm。
4.根据权利要求1所述的一种多级孔道贯通的三维氮掺杂石墨烯多孔碳的制备方法,其特征在于:ABPBI与模板碳酸钙的质量比为2:1~1:4;混合方式为:ABPBI溶液与纳米碳酸钙颗粒混合,搅拌混合均匀后,搅拌下加热蒸出溶剂至近干,真空干燥,研细,在高温炉内氩气保护下热解,用稀盐酸酸洗涤以去除模板,得到多级孔道贯通的三维氮掺杂石墨烯。
5.根据权利要求1所述的一种多级孔道贯通的三维氮掺杂石墨烯多孔碳的制备方法,其特征在于:热解温度为900~1000℃。
CN201611234526.1A 2016-12-28 2016-12-28 强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法 Active CN106587026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611234526.1A CN106587026B (zh) 2016-12-28 2016-12-28 强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611234526.1A CN106587026B (zh) 2016-12-28 2016-12-28 强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法

Publications (2)

Publication Number Publication Date
CN106587026A CN106587026A (zh) 2017-04-26
CN106587026B true CN106587026B (zh) 2019-04-02

Family

ID=58602918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611234526.1A Active CN106587026B (zh) 2016-12-28 2016-12-28 强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法

Country Status (1)

Country Link
CN (1) CN106587026B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108455565B (zh) * 2018-05-15 2020-10-09 江汉大学 一种氮掺杂石墨化纳米碳笼的制备方法
CN108658058A (zh) * 2018-07-18 2018-10-16 中国计量大学 一种新型无硅有序多级孔炭材料及其制备方法
CN109336080A (zh) * 2018-08-21 2019-02-15 浙江工业大学 一种可调分级多孔泡沫炭材料的制备方法
CN109399603B (zh) * 2018-11-05 2022-01-04 大连理工大学 一种利用金属有机骨架化合物制备超级电容器用氮掺杂多孔炭的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103910355A (zh) * 2014-04-28 2014-07-09 南京新月材料科技有限公司 一种多孔三维石墨烯的制备方法
CN104098091A (zh) * 2014-07-31 2014-10-15 安徽工业大学 一种制备超级电容器用多孔石墨烯材料的方法
CN104108710A (zh) * 2014-07-25 2014-10-22 深圳新宙邦科技股份有限公司 一种氮掺杂多孔石墨烯及其制备方法
CN105621400A (zh) * 2015-12-28 2016-06-01 成都新柯力化工科技有限公司 一种以碳酸盐为原料制备石墨烯的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103910355A (zh) * 2014-04-28 2014-07-09 南京新月材料科技有限公司 一种多孔三维石墨烯的制备方法
CN104108710A (zh) * 2014-07-25 2014-10-22 深圳新宙邦科技股份有限公司 一种氮掺杂多孔石墨烯及其制备方法
CN104098091A (zh) * 2014-07-31 2014-10-15 安徽工业大学 一种制备超级电容器用多孔石墨烯材料的方法
CN105621400A (zh) * 2015-12-28 2016-06-01 成都新柯力化工科技有限公司 一种以碳酸盐为原料制备石墨烯的方法

Also Published As

Publication number Publication date
CN106587026A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
Dahal et al. In-built fabrication of MOF assimilated B/N co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors
CN106582816B (zh) 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯
Zhang et al. 3D flower-like ZnFe-ZIF derived hierarchical Fe, N-Codoped carbon architecture for enhanced oxygen reduction in both alkaline and acidic media, and zinc-air battery performance
Shi et al. Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries
Guo et al. ZIF-67/PAN-800 bifunctional electrocatalyst derived from electrospun fibers for efficient oxygen reduction and oxygen evolution reaction
Hou et al. Two-dimensional graphene-like N, Co-codoped carbon nanosheets derived from ZIF-67 polyhedrons for efficient oxygen reduction reactions
CN106587026B (zh) 强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法
Vilela et al. Conjugated porous polymers for energy applications
CN106582817B (zh) 一种制备氮掺杂三维石墨烯的简便方法
Lin et al. Reaction milling for scalable synthesis of N, P-codoped covalent organic polymers for metal-free bifunctional electrocatalysts
CN106732729B (zh) 带吡啶基团的聚苯并咪唑制备高氮含量的三维氮掺杂石墨烯
Zhou et al. Copper-assisted thermal conversion of microporous covalent melamine-boroxine frameworks to hollow B, N-codoped carbon capsules as bifunctional metal-free electrode materials
CN106622330B (zh) 具有协同催化效应的Fe-Co-N三元共掺杂三维石墨烯的制备
Wang et al. Hollow porous carbon nanofibers as novel support for platinum-based oxygen reduction reaction electrocatalysts
Liu et al. Fe/N decorated mulberry-like hollow mesoporous carbon fibers as efficient electrocatalysts for oxygen reduction reaction
CN106477566B (zh) 一种高氮含量的三维氮掺杂石墨烯的制备方法
Xu et al. Hierarchical micro/mesoporous nitrogen-doped carbons derived from hypercrosslinked polymers for highly efficient oxygen reduction reaction
CN106744848B (zh) 多级孔道的铁钴和氮三元共掺杂的三维石墨烯的制备
CN106744850B (zh) 过渡金属和氮共掺杂的多级孔道三维石墨烯的制备
CN106582766B (zh) 用限域微反应器制备过渡金属和氮共掺杂的二维石墨烯
Ma et al. The marriage of hydrazone‐linked covalent organic frameworks and MXene enables efficient electrocatalytic hydrogen evolution
Haque et al. Synthesis of polymer/MWCNT nanocomposite catalyst supporting materials for high-temperature PEM fuel cells
CN106744852B (zh) 铁和氮共掺杂的三维石墨烯的制备方法
Li et al. CoNi nanoalloys embedded in N-doped carbon nanofibers derived from layered bimetal-organic framework and as efficient oxygen electrocatalyst
Guan et al. Design of Co-doped hollow multi-channel carbon fibers for high performance lithium sulfur batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant