CN106582817B - 一种制备氮掺杂三维石墨烯的简便方法 - Google Patents

一种制备氮掺杂三维石墨烯的简便方法 Download PDF

Info

Publication number
CN106582817B
CN106582817B CN201611235509.XA CN201611235509A CN106582817B CN 106582817 B CN106582817 B CN 106582817B CN 201611235509 A CN201611235509 A CN 201611235509A CN 106582817 B CN106582817 B CN 106582817B
Authority
CN
China
Prior art keywords
abpbi
nitrogen
doped graphene
template
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611235509.XA
Other languages
English (en)
Other versions
CN106582817A (zh
Inventor
李忠芳
王素文
张廷尉
岳攀峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201611235509.XA priority Critical patent/CN106582817B/zh
Publication of CN106582817A publication Critical patent/CN106582817A/zh
Application granted granted Critical
Publication of CN106582817B publication Critical patent/CN106582817B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

一种用可溶解的聚(2,5‑苯并咪唑)(ABPBI)溶液在模板剂纳米SiO2作用下制备三维氮掺杂石墨烯的简便方法。ABPBI高分子链是由芳香性的刚性苯并咪唑组成,且分子中含有富含氮元素的咪唑环和端氨基,氩气保护下热解,易形成氮掺杂石墨烯结构。具体制备工艺为:ABPBI溶液与一定粒径的纳米SiO2按照一定比例混合均匀,搅拌下蒸干、研细,在氩气保护下高温热解、去除模板等工艺制备三维氮掺杂石墨烯。要求:ABPBI黏均分子量1~3万;SiO2粒径为5~50nm二者的质量比为3:1~1:3;热解温度为600~1200℃,热解2~3h,用稀氢氟酸洗涤3次,去离子水洗涤3次。制备d的三维氮掺杂石墨烯用于氧还原催化剂、氧析出催化剂,用于燃料电池、金属空气电池和超级电容器等电化学能源存储与转换器件。

Description

一种制备氮掺杂三维石墨烯的简便方法
技术领域
属于纳米材料制备领域,用于化工生产中的氧化还原反应催化剂,清洁能源领域的燃料电池、金属空气电池阴极催化剂,电解水催化剂,锂离子电池材料,超级电容器电极材料和电化学传感器等领域。
背景技术
石墨烯是一类碳原子构成的正六边形扩展的二维网格结构的纳米材料,由于其性能优异且具有多种潜在的应用,所以,其开发研究及应用受到人们的重视,成为当今广受关注的研究热点(Kim K S, et al. Nature(自然), 2009, 457: 706)。然而,在宏观世界,二维石墨烯之间又极易层-层相互叠加形成石墨结构,从而使其优异的性能丧失。所以,如何阻止石墨烯分子层-层之间的叠加,使其在宏观世界还能保持其石墨烯特性成为人们需要解决的关键问题。因此,三维石墨烯的制备及性能研究成为当今纳米材料领域的研究热点(Chen Z, et al. Nat Mater(自然材料), 2011, 10: 424; Biener J, et al. AdvMater(先进材料), 2012, 24: 5083)。三维石墨烯具有多种用途:如,用于氧还原催化剂或催化剂载体,用于燃料电池、金属空气电池等能源转换的重要材料,也是锂离子电池、超级电容器、电化学传感器和电解等领域的重要材料(Dai L. Acc Chem Res(化学研究评述),2013, 46(1): 31)。研究发现,氮掺杂的石墨烯由于石墨烯分子内C-N键间的极性,使石墨烯分子上的电子云密度发生变化,因此氮掺杂石墨烯催化氧还原性能优于石墨烯。三维氮掺杂石墨烯的制备方法很多:如,氧化石墨烯化合物用含氮的材料还原或在氮气、氨气气氛下还原(Xu Y, et al. ACS Nano(美国化学会-纳米杂志), 2013, 7(5): 4042);用聚苯胺热解制备 (Ding W, et al. Angew Chem Int Ed(德国应用化学-国际版), 2013, 52:1175) 等等。
本发明是利用芳香性的苯并咪唑单元的高分子材料,聚(2,5-苯并咪唑)(ABPBI)为碳源和氮源,在惰性气体保护下热解制备含氮的石墨烯类的碳材料,用硬模板的含量、颗粒度来控制制备的碳材料的孔径、孔隙率和石墨烯的层数,该种方法可以用来制备三维多层氮掺杂石墨烯。
聚苯并咪唑(PBI)是一类含有苯并咪唑基团的高分子聚合物,分子中苯并咪唑环属于芳香性的刚性环,在PBI分子中极易堆积聚集,分子中咪唑环上含有咪唑氮,所以,PBI与金属离子(如Cu、Mn、Fe、Ru、Ti、Mo和Os等)配位后形成的配合物可用于有机化合物的氧化还原反应催化剂(Olason G, et al. React Funct Polmer, (反应与功能高分子) 1999,42: 163; Cameron C G, et al. J Phys Chem B,((美国)物理化学学报 B)2001, 105:8838 ;Mbelck R, et al. React Funct Polmer, (反应与功能高分子)2007, 67:1448),DArchivio研究了多孔PBI树脂材料的制备方法和性能,并且研究了其与金属离子配位制备的催化剂(D Archivio,et al. Chem-A Eur J,(欧洲化学杂志)2000, 6(5)794)。
作为能源、传感器、电解等领域所用的催化剂即电催化剂,需要有一定的电子导电性能。因此,高分子材料热解碳材料是常用的方法,如用酚醛树脂、尿醛树脂和三聚氰胺树脂等热解制备碳材料。
在PBI家族中,聚(2,5-苯并咪唑)(ABPBI)是最简单的一种,用3,4-二氨基苯甲酸为原料,在多聚磷酸(PPA)中,油浴锅内加热220℃,惰性气体保护下缩合聚合得到。其制备反应方程式为:
ABPBI与以上酚醛树脂、尿醛树脂等高分子材料不同的是:ABPBI分子中苯并咪唑环属于芳香性的刚性环,分子中咪唑环上含有咪唑氮,属于富含氮的芳香型高分子聚合物。因此,其热解可以得到氮掺杂的碳材料,如果在合适的模板作用下,控制分子的芳香环的平面按照一个方向排列,其热解可以得到三维多层氮掺杂的石墨烯材料。
有文献报道聚吡咯,聚苯胺等含氮高分子材料与过渡金属盐一起热解制备二维石墨烯用于燃料电池催化剂的报道(Wei Z, et al. J Am Chem Soc(美国化学会志), 2015,137: 5414)。也有三聚氰胺树脂热解制备氧还原催化剂的报道(Li M, Xue J. J PhysChem C(美国物理化学学报), 2014, 118: 2507),但是无PBI或ABPBI制备氮掺杂三维石墨烯类催化剂的报道。
发明内容
本发明,发明了一种由ABPBI在模板作用下,热解制备三维氮掺杂石墨烯的方法。通过控制ABPBI与模板的质量百分比、模板粒径、涂覆方式和热解工艺等方法来调控制备的3D氮掺杂石墨烯的孔径、孔隙率、比表面积和生成石墨烯的层数。该材料应用于氧化还原反应催化剂,氧还原催化剂,电解水氧析出催化剂及载体,超级电容器,电解、传感器材料等领域。
ABPBI与以上酚醛树脂、尿醛树脂和三聚氰胺树脂等高分子材料不同点是:ABPBI分子中苯并咪唑环属于芳香性的刚性环,分子中咪唑环上含有咪唑氮,属于富氮的芳香型高分子聚合物。因此,其热解可以得到氮掺杂的碳材料,如果在合适的模板作用下,可以得到多层氮掺杂的石墨烯材料。如果控制分子的芳香环的平面按照一个方向排列,其热解可以得到氮掺杂的石墨烯结构。如果用模板支撑热解可以得到三维氮掺杂的石墨烯结构。与聚苯胺、聚(邻苯二胺)、聚吡咯等高分子材料不同的是:ABPBI类高分子是可溶解在DMAc、DMSO等有机溶剂中,易与模板剂充分混合,不分相,由于其可溶性,其在制备3D氮掺杂石墨烯纳米材料时具有很好的操作性。然而,聚苯胺类、聚吡咯等高分子材料不可溶,无法涂饰到模板剂表面,无法与模板剂共混。
ABPBI为固相法或液相法制备的粘均分子量在1万~3万之间的可以溶解在DMAc,DMF,DMSO,N-甲基吡咯烷酮等溶剂中。分子量太大,ABPBI的溶解性能变差;分子量太小其粘度太小,不能对模板剂进行包覆。
三维氮掺杂的石墨烯的制备方法为:首先制备聚合度适当的ABPBI,把ABPBI溶解在溶剂中形成溶液,向溶液中加入适量的,粒径为5~50nm的SiO2做模板剂,搅拌使其充分混合均匀。在搅拌下,加热,慢慢地蒸出溶剂至近干,转入真空干燥箱中60~120℃下烘干。在研钵内研细,平铺在瓷舟底部,放入管式电炉内,在氩气保护下,在600~1200℃下,热解2~3h。待炉温冷却至室温,取出,用HF酸多次洗涤以去除模板SiO2,抽滤,用去离子水洗净,烘干得产品。
在本发明中,模板剂可以是纳米级的SiO2颗粒,也可以是SiO2溶胶,溶胶的溶剂可以是水,也可以是丙酮和醇类等溶剂或者混合溶剂。能否制备出三维氮掺杂石墨烯,模板剂的粒径和加入量是关键:模板剂的粒径决定了制备的碳材料的孔径;模板剂的加入量决定了制备的石墨烯的层数和性能,加入量太少,只能得到多孔碳材料,加入过多,得到的三维石墨烯太薄,容易塌陷,只能得到破碎的石墨烯碎片。模板剂的颗粒度对加入模板剂的量有一定的影响,颗粒度小,其表面积大,需要的模板剂的量就少;反之,如果颗粒度大,需要的模板剂的量就多。模板剂的用量为:ABPBI与模板剂的质量比为3:1~1:3;比例变化与模板的颗粒度有关。颗粒度从5~50nm。在惰性气体保护下热解,热解温度为:600~1200℃;洗涤用稀HF酸,多次洗涤后,用去离子水洗涤至中性即可。
三维氮掺杂的石墨烯表征方法为:孔径、孔隙率、孔容和比表面积用氮气吸附仪(BET),产品的微观形貌分析用扫描电子显微镜(SEM)和透射电子显微镜(TEM),石墨烯层数可以通过高倍透射电子显微镜(HRTEM)来表征。产品的石墨化程度、石墨烯结构和层数可以用X-射线粉末衍射(XRD)、拉曼光谱来表征。产品的元素组成,价态可以用X-射线光电子能谱(XPS)进行了表征,用旋转圆盘电极(RDE)来测试产品的催化氧还原反应(ORR)性能、水电解氧析出反应(EOR)和产品的电容性能测试可以用循环伏安(CV)、线性伏安(LSV)、塔菲尔曲线和充放电性能来测试。产品作为催化剂的耐久性测试可以使用CV、LSV和计时电流曲线(i-t)。产品的催化性能最终需要组装金属空气电池、氢氧燃料电池、电解水的电解池、超级电容器和传感器来测试其性能。
热解温度很重要,热解温度范围为600~1200℃,优选700~1000℃。温度太低ABPBI不能热解,得到产品的导电性能差;热解温度到达最佳温度后,再升高热解温度其性能不变,所以热解温度不宜过高。
具体实施方式
[实施例1] ABPBI的制备(方法一,固相法):取适量的3,4-二氨基苯甲酸(DABA)于研钵内,充分研磨之后转移到有电动搅拌、惰性气体保护三口烧瓶内,通氮气15min以排尽烧瓶内的空气。N2保护,搅拌下,油浴加热225℃,保持3h。冷却后取出,研细,N2保护下,电炉内加热,随后升温到270-275℃,保持3h。冷却至室温,将产物取出、研细,即得到ABPBI,用乌氏粘度计测定ABPBI的分子量。
[实施例2] ABPBI的制备(方法二,液相法):多聚磷酸 (PPA) (50g) 加入到三口烧瓶中,氮气保护下,160℃、搅拌1 h以除去水分及空气。加入3,4-二氨基苯甲酸(6 g,39.5 mmol) 并将温度升高到190℃,控制N2流速,防止DABA被氧化,继续搅拌3h, 反应过程中分批加入约5g P2O5以吸收反应过程中生成的水。随着反应时间的增加,聚合体系逐渐变得粘稠。反应混合液慢慢转移到去离子水中,抽丝,形成纤维状黑色固体,取出烘干,粉碎,洗涤以除去反应混合物中的多聚磷酸和未反应的原料。得到ABPBI产品。用乌氏粘度计测定ABPBI的分子量。
[实施例3]用粒径30nm的SiO2为模板剂与ABPBI混合,热解制备三维多孔氮掺杂石墨烯。以ABPBI与SiO2模板剂质量比为1:1为例:在250mL的烧杯中,加入1g的ABPBI(粘均分子量2~3万)和20mL DMAc,加热、搅拌使其溶解,在搅拌下慢慢加入1g SiO2粒径为30nm的纳米颗粒使其分散均匀。得到的粘稠状液体在搅拌下加热浓缩至近干,在真空干燥箱内100℃下干燥,固体在研钵内研细,转移到瓷舟内,在氩气保护下,在高温电炉内900℃热解2-3h,待炉温降至室温,取出,研细,得到黑色粉末状固体,转移到250mL锥形瓶中,加入70mL的氢氟酸,加热、搅拌24h,抽滤,这样用氢氟酸洗涤三次、水洗至中性,干燥得到黑色粉末状固体产品0.67g。BET测试表明,其孔径分布为20~30nm,比表面积为998.6 m2 g-1,SEM测试表明,得到的产品为多孔泡沫状碳材料,TEM和HRTEM分析表明,产品为三维石墨烯结构碳材料,孔径为30nm,石墨烯彀回表明为2~4层石墨烯。XRD和拉曼光谱测试表明,产品为2~4层的石墨烯结构;XPS分析表明,产品氮含量为7.4%,且氮为吡啶型氮和吡咯型氮。说明,产品是氮掺杂的三维石墨烯结构的材料。其0.1mol/LKOH下催化氧还原性能,氧气起始还原电位为0.96V vs RHE,电子转移数为3.97,耐久性良好;镁空气电池性能达98 mW/cm2。用于氢氧燃料电池其峰功率为540.2mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.54V vs RHE,极限电流密度达到110mA/cm2。超级电容器比电容为338F g-1,可循环10000 次仍保持电容值的95%。
[实施例4] 按实施例3的方法,其它条件相同,只是ABPBI与二氧化硅的质量变为2:1,同样得到黑色的固体粉末。BET测试表明,其孔径分布仍为30nm,但是其比表面积则降为803 m2 g-1,其SEM和TEM测试表明,其内部为多孔结构的碳材料,表面为多层石墨烯结构,XRD和拉曼数据表明,其石墨烯的层数7~8层。XPS数据与实施例3的产品类似。其0.1mol/LKOH下催化氧还原性能,氧气起始还原电位为0.83V vs RHE,电子转移数为3.63,耐久性良好;镁空气电池性能达67mW/cm2。用于氢氧燃料电池其峰功率为379mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.57V vs RHE,极限电流密度达到40 mA/cm2。超级电容器比电容为227F g-1,可循环10000 次仍保持电容值的90%。
[实施例5] 按实施例3的方法,其它条件相同,只是ABPBI与二氧化硅的质量变为1:2,同样得到黑色的固体粉末。BET测试表明,其孔径分布范围10~30nm,但是其比表面积则降为847 m2 g-1,其SEM和TEM测试表明,其内部为多孔结构的碳材料,表面为多层石墨烯结构,XRD和拉曼数据表明,其石墨烯的层数7~8层。XPS数据与实施例3的产品类似。其0.1mol/LKOH下催化氧还原性能,氧气起始还原电位为0.84V vs RHE,电子转移数为3.63,耐久性良好;镁空气电池性能达77mW/cm2。用于氢氧燃料电池其峰功率为279mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.57V vs RHE,极限电流密度达到40mA/cm2。超级电容器比电容为247 F g-1,可循环10000 次仍保持电容值的92%。
[实施例6] 按实施例3的方法,其它条件相同,只是热解温度分别为700℃,1100℃,制备的产品与实施例3的类似,只是各方面性能比实施例3的产品稍差。
[实施例7] 按实施例3的方法,其它条件相同,只是用粒径为5nm SiO2颗粒做模板剂,这时,由于模板剂的粒径变小,其表面积增大,ABPBI的用量增加,则ABPBI与模板剂的质量比改为为3:1,得到的产品与实施例3相似,只是其孔径分布在5~10nm,比表面积为2018m2 g-1,为3~5层的三维氮掺杂石墨烯材料,其0.1mol/LKOH下催化氧还原起始电位为0.91Vvs RHE,电子转移数为3.95,耐久性良好;镁空气电池性能达95mW/cm2。用于氢氧燃料电池其峰功率为471.6mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.56V vs RHE,极限电流密度达到80mA/cm2。超级电容器比电容为345F g-1,可循环10000 次仍保持电容值的94%。
[实施例8] 按实施例3的方法,其它条件相同,只是用粒径为50nm SiO2颗粒做模板剂,这时由于模板剂的粒径增大,其表面积减小,ABPBI的用量减少,则ABPBI与模板剂的质量比改为为1:3,得到的产品与实施例3相似,只是其孔径分布在50nm,比表面积为765 m2g-1,为3~5层的三维氮掺杂石墨烯材料,其0.1mol/LKOH下催化氧还原起始电位为0.84V vsRHE,电子转移数为3.76,耐久性良好;镁空气电池性能达69mW/cm2。用于氢氧燃料电池其峰功率为268mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.59V vs RHE,极限电流密度达到50mA/cm2。超级电容器比电容为148F g-1,可循环10000 次仍保持电容值的91%。
[实施例9]用SiO2水溶胶为模板剂,粒径为30纳米。其他实验条件同实施例3。ABPBI与模板剂的质量比为1:1。其结果与实施例3类似。产品为三维石墨烯结构碳材料,孔径为20~30nm,988.3 m2 g-1,为2~4层石墨烯。氮含量为6.7%,且氮为吡啶型氮和吡咯型氮。说明,产品是氮掺杂的三维石墨烯结构的材料。其0.1mol/LKOH下催化氧还原性能,氧气起始还原电位为0.95V vs RHE,电子转移数为3.93,耐久性良好;镁空气电池性能达86mW/cm2。用于氢氧燃料电池其峰功率为373.5mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.56V vs RHE,极限电流密度达到90 mA/cm2。超级电容器比电容为368F g-1,可循环10000次仍保持电容值的96%。
[实施例10]用SiO2丙酮溶胶为模板剂,粒径为30纳米。其他实验条件同实施例3。ABPBI与模板剂的质量比为1:1。其结果与实施例3类似。孔径为20~30nm,974.9 m2 g-1,为2~4层石墨烯。氮含量为6.6%,且氮为吡啶型氮和吡咯型氮。说明,产品是氮掺杂的三维石墨烯结构的材料。其0.1mol/LKOH下催化氧还原性能,氧气起始还原电位为0.94V vs RHE,电子转移数为3.91,耐久性良好;镁空气电池性能达82mW/cm2。用于氢氧燃料电池其峰功率为365.7mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.55V vs RHE,极限电流密度达到69mA/cm2。超级电容器比电容为337F g-1,可循环10000 次仍保持电容值的96%。

Claims (5)

1.一种制备三维氮掺杂石墨烯的方法,其特征在于:用可溶解的聚2,5-苯并咪唑(ABPBI)溶液与模板剂纳米SiO2混合均匀,蒸干,在氩气保护下,热解、去除模板剂制备三维氮掺杂石墨烯;ABPBI是可溶性的,其高分子链是由芳香性的刚性苯并咪唑组成,且分子中含有富含氮元素的咪唑环和端氨基,氩气保护下热解,易形成氮掺杂石墨烯结构,分子中的羧基热解时脱酸起到造孔作用; ABPBI溶液与不同粒径SiO2模板剂采用不同质量比混合、搅拌、蒸出溶剂、真空干燥、研磨,在高温炉内,氩气保护下热解2h,待冷却后,取出,用稀氢氟酸洗涤以去除模板剂制备得到三维氮掺杂石墨烯。
2.根据权利要求1所述的一种制备三维氮掺杂石墨烯的方法,其特征在于:ABPBI聚合物粘均分子量在1~3万之间,能溶解在二甲基乙酰胺(DMAc),二甲基甲酰胺(DMF),二甲基亚砜(DMSO),N-甲基吡咯烷酮,二甲苯中的任意一种有机溶剂中。
3.根据权利要求1所述的一种制备三维氮掺杂石墨烯的方法,其特征在于:模板剂纳米SiO2粒径在5~50nm,是凝胶或者是纳米颗粒;凝胶的溶剂是水、丙酮或混合溶剂。
4.根据权利要求1所述的一种制备三维氮掺杂石墨烯的方法,其特征在于:ABPBI与纳米SiO2模板剂的质量比为3:1~1:3;混合方式为:ABPBI溶液与SiO2凝胶溶液或纳米SiO2颗粒混合,搅拌混合均匀后,搅拌下加热蒸出溶剂至近干,真空干燥,研细,热解后,用氢氟酸酸洗涤以去除模板剂。
5.根据权利要求1所述的一种制备三维氮掺杂石墨烯的方法,其热解温度为700~1000℃。
CN201611235509.XA 2016-12-28 2016-12-28 一种制备氮掺杂三维石墨烯的简便方法 Active CN106582817B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611235509.XA CN106582817B (zh) 2016-12-28 2016-12-28 一种制备氮掺杂三维石墨烯的简便方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611235509.XA CN106582817B (zh) 2016-12-28 2016-12-28 一种制备氮掺杂三维石墨烯的简便方法

Publications (2)

Publication Number Publication Date
CN106582817A CN106582817A (zh) 2017-04-26
CN106582817B true CN106582817B (zh) 2019-05-28

Family

ID=58602930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611235509.XA Active CN106582817B (zh) 2016-12-28 2016-12-28 一种制备氮掺杂三维石墨烯的简便方法

Country Status (1)

Country Link
CN (1) CN106582817B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630455A (zh) * 2018-05-28 2018-10-09 青岛大学 一种利用1,3,5-三咪唑基苯为碳源制备超级电容器的方法
CN108766787A (zh) * 2018-05-28 2018-11-06 青岛大学 一种利用4,4`-双咪唑基联苯为碳源制备超级电容器的方法
CN109449443A (zh) * 2018-09-13 2019-03-08 安庆师范大学 一种多孔石墨烯/银纳米粒子复合锂金属二次电池负极集流体的制备方法
CN109728246B (zh) * 2018-12-13 2021-08-06 太原理工大学 一种氮磷共掺杂有序介孔碳材料及其制备方法和应用
CN109626364A (zh) * 2019-01-29 2019-04-16 东北大学 一种氮硫双掺杂三维石墨烯的制备方法
CN112206799A (zh) * 2019-07-12 2021-01-12 丰田自动车株式会社 硅氮共掺杂石墨烯材料及其制备方法以及其应用
CN112156755B (zh) * 2020-10-12 2021-08-06 四川轻化工大学 一种污水处理材料
CN113289657B (zh) * 2021-05-21 2022-12-30 山西大学 一种氮掺杂石墨烯催化膜的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104108708A (zh) * 2014-07-25 2014-10-22 深圳新宙邦科技股份有限公司 一种氮掺杂石墨烯及其制备方法
CN104475172A (zh) * 2014-11-21 2015-04-01 东华大学 一种三维多孔杂原子掺杂石墨烯的制备方法和应用
CN105836738A (zh) * 2016-05-06 2016-08-10 清华大学 一种非碳杂原子修饰的多孔石墨烯骨架及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104108708A (zh) * 2014-07-25 2014-10-22 深圳新宙邦科技股份有限公司 一种氮掺杂石墨烯及其制备方法
CN104475172A (zh) * 2014-11-21 2015-04-01 东华大学 一种三维多孔杂原子掺杂石墨烯的制备方法和应用
CN105836738A (zh) * 2016-05-06 2016-08-10 清华大学 一种非碳杂原子修饰的多孔石墨烯骨架及其制备方法

Also Published As

Publication number Publication date
CN106582817A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106582817B (zh) 一种制备氮掺杂三维石墨烯的简便方法
Shrivastav et al. Conductive and porous ZIF-67/PEDOT hybrid composite as superior electrode for all-solid-state symmetrical supercapacitors
Dahal et al. In-built fabrication of MOF assimilated B/N co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors
Lai et al. Biomass‐derived nitrogen‐doped carbon nanofiber network: a facile template for decoration of ultrathin nickel‐cobalt layered double hydroxide nanosheets as high‐performance asymmetric supercapacitor electrode
Wu et al. MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications
Kim et al. Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes
Huang et al. Fabrication of vanadium oxide, with different valences of vanadium,-embedded carbon fibers and their electrochemical performance for supercapacitor
Hu et al. LaNiO 3/NiO hollow nanofibers with mesoporous wall: a significant improvement in NiO electrodes for supercapacitors
Zhou et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties
Lei et al. Highly nitrogen and sulfur dual-doped carbon microspheres for supercapacitors
Lei et al. Synthesis of nitrogen-doped porous carbon from zeolitic imidazolate framework-67 and phenolic resin for high performance supercapacitors
Tian et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor
Zeng et al. Nitrogen‐Doped Hierarchically Porous Carbon Materials with Enhanced Performance for Supercapacitor
Bai et al. Hierarchical porous carbon with interconnected ordered pores from biowaste for high-performance supercapacitor electrodes
CN106582816B (zh) 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯
CN106732729B (zh) 带吡啶基团的聚苯并咪唑制备高氮含量的三维氮掺杂石墨烯
Li et al. Novel freestanding core-shell nanofibrillated cellulose/polypyrrole/tubular graphitic carbon nitride composite film for supercapacitors electrodes
CN106477566B (zh) 一种高氮含量的三维氮掺杂石墨烯的制备方法
Lin et al. Nitrogen source-mediated cocoon silk-derived N, O-doped porous carbons for high performance symmetric supercapacitor
Cherusseri et al. Nanotechnology advancements on carbon nanotube/polypyrrole composite electrodes for supercapacitors
CN106587026B (zh) 强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法
Soni et al. Synthesis of Ultrathin PEDOT on Carbon Nanotubes and Shear Thinning Xanthan Gum‐H2SO4 Gel Electrolyte for Supercapacitors
Qian et al. Unusual mesoporous carbonaceous matrix loading with sulfur as the cathode of lithium sulfur battery with exceptionally stable high rate performance
CN106744850B (zh) 过渡金属和氮共掺杂的多级孔道三维石墨烯的制备
Chen et al. Facile synthesis of nitrogen-containing porous carbon as electrode materials for superior-performance electrical double-layer capacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant