CN109954411A - 一种负载有TiO2/SiO2的PES超滤膜及其制备方法和应用 - Google Patents

一种负载有TiO2/SiO2的PES超滤膜及其制备方法和应用 Download PDF

Info

Publication number
CN109954411A
CN109954411A CN201910169789.6A CN201910169789A CN109954411A CN 109954411 A CN109954411 A CN 109954411A CN 201910169789 A CN201910169789 A CN 201910169789A CN 109954411 A CN109954411 A CN 109954411A
Authority
CN
China
Prior art keywords
sio
tio
ultrafiltration membrane
pes ultrafiltration
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910169789.6A
Other languages
English (en)
Inventor
杨汉培
毛静涛
高照
吴强顺
康丽
陈英汉
张睿宸
柴斯琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201910169789.6A priority Critical patent/CN109954411A/zh
Publication of CN109954411A publication Critical patent/CN109954411A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种负载有TiO2/SiO2的PES超滤膜,还公开了上述负载有TiO2/SiO2的PES超滤膜的制备方法和应用。本发明负载有TiO2/SiO2的PES超滤膜是将PES超滤膜浸没在PAM溶液中,然后通过真空抽滤将TiO2/SiO2纳米颗粒负载于PES超滤膜表面,得到膜表面负载有TiO2/SiO2的PES超滤膜。本发明负载有TiO2/SiO2的PES超滤膜由于膜表面具有亲水性,因此超滤膜的水接触角减小,有利于减缓膜污染,进而增加膜通量;另外在紫外光照射下,膜表面的TiO2/SiO2纳米颗粒能够降解PES超滤膜表面沉积的污染物,从而进一步减缓膜污染,增加膜通量。

Description

一种负载有TiO2/SiO2的PES超滤膜及其制备方法和应用
技术领域
本发明涉及一种负载有TiO2/SiO2的PES超滤膜,还涉及上述负载有TiO2/SiO2的PES超滤膜的制备方法以及该PES超滤膜在分离过滤溶液中大分子有机污染物方面的应用,属于过滤膜技术领域。
背景技术
聚醚砜(PES)具有良好的机械性能以及抗腐蚀耐酸碱性能,操作运行时,具有化学能耗低、效率高等优点,是一类优良的膜材料。但膜污染降低了膜的处理性能,限制了膜分离技术的发展应用,因此对需要聚醚砜超滤膜进行表面改性。
当前饮用水源的有机污染已经成为危害人类饮水安全的主要问题之一,其中水中的腐殖酸是水体中有机物污染的主要成分。腐殖酸除了影响水的色度外,腐殖酸在饮用水消毒过程中会生成消毒副产物,对人体具有毒害作用,如何高效地去除饮用水源中的腐殖酸已成为水环境领域的研究热点。
发明内容
发明目的:本发明所要解决的技术问题是提供一种负载有TiO2/SiO2的PES超滤膜,该超滤膜能在一定操作压差下进行大分子有机污染物的有效分离和污染物的降解,并且还具有强的抗污染能力。
本发明还要解决的技术问题是提供上述负载有TiO2/SiO2的PES超滤膜的制备方法。
本发明最后要解决的技术问题是提供上述负载有TiO2/SiO2的PES超滤膜在分离过滤溶液中大分子有机污染物方面的应用。
为解决上述技术问题,本发明所采用的技术方案为:
一种负载有TiO2/SiO2的PES超滤膜,所述PES超滤膜表面负载有一定量的TiO2/SiO2纳米颗粒。TiO2/SiO2纳米颗粒通过PAM(聚丙烯酰胺)的粘连性负载于PES超滤膜表面。PES超滤膜表面TiO2/SiO2纳米颗粒的负载量为10mg。
上述负载有TiO2/SiO2的PES超滤膜的制备方法,将PES超滤膜浸泡在PAM溶液中,通过真空抽滤将TiO2/SiO2纳米颗粒负载于PES超滤膜表面,即可得到膜表面负载有TiO2/SiO2的PES超滤膜。即通过真空抽滤法将TiO2/SiO2纳米颗粒负载于PES超滤膜表面。
上述负载有TiO2/SiO2的PES超滤膜的制备方法,具体包括如下步骤:
步骤1,制备PES超滤膜;
步骤2,制备TiO2/SiO2纳米颗粒;
步骤3,制备负载有TiO2/SiO2的PES超滤膜:将步骤1制得的PES超滤膜浸泡在PAM溶液中,将步骤2制得的TiO2/SiO2纳米颗粒配制成悬浮液,通过真空抽滤将TiO2/SiO2纳米颗粒负载在PES超滤膜表面,得到膜表面负载有TiO2/SiO2的PES超滤膜。
其中,步骤1中,PES超滤膜具体采用如下方式制备得到:将所需量的聚醚砜和聚乙烯吡咯烷酮溶于N,N-二甲基乙酰胺溶剂中,搅拌得到铸膜液;将铸膜液脱气后均匀涂覆于玻璃板表面,将涂覆有铸膜液的玻璃板平整放入水中进行相的转换,静置后得到PES超滤膜。
其中,步骤2中,TiO2/SiO2纳米颗粒具体采用如下方式制备得到:将所需体积比的钛酸四丁酯、乙醇和乙酰丙酮混合,得到混合液A;将一定量的正硅酸乙酯、去离子水、氨水和无水乙醇混合,得到混合液B;将混合液A和混合液B持续搅拌一段时间,高温下反应后再进行煅烧,得到TiO2/SiO2纳米颗粒。
其中,步骤3中,所述PAM溶液的质量分数为0.1%,PES超滤膜在PAM溶液中的浸泡时间为4~6h,真空抽滤时,TiO2/SiO2悬浮液的质量分数0.005%。
其中,相转换时间为24h。
其中,将混合液A和混合液B持续搅拌的时间为60~80min,高温下反应的反应温度为180℃,反应时间为10h,反应后煅烧的温度为550℃,煅烧时间为2h。
上述负载有TiO2/SiO2的PES超滤膜在分离过滤溶液中大分子有机污染物方面的应用。
其中,所述大分子有机污染物为腐殖酸。
相比于现有技术,本发明的技术方案所具有的有益效果为:
本发明负载有TiO2/SiO2的PES超滤膜由于膜表面具有到TiO2/SiO2纳米颗粒,因此PES超滤膜的水接触角变小,膜的亲水性增加有利于减缓膜污染,增加膜通量;在紫外光照射下,膜表面的TiO2/SiO2纳米颗粒能够降解PES超滤膜表面的污染物,从而进一步减缓膜污染,增加膜通量;本发明负载有TiO2/SiO2的PES超滤膜对水体中的腐殖酸有机污染物具有良好的分离过滤和降解效果。
附图说明
图1为本发明负载有TiO2/SiO2的PES超滤膜的工艺流程图;
图2为本发明负载有TiO2/SiO2的PES超滤膜进行腐殖酸溶液膜通量和腐殖酸溶液截留率的试验装置图;
图3为本发明TiO2/SiO2的电镜图;
图4为本发明TiO2/SiO2的FT-IR图;
图5为本发明TiO2/SiO2的XRD图;
图6为本发明负载有TiO2/SiO2的PES超滤膜表面的电镜图;
图7为本发明负载有TiO2/SiO2的PES超滤膜横截面的电镜图。
具体实施方式
以下结合附图对本发明的技术方案做进一步说明,但是本发明要求保护的范围并不局限于此。
实施例1
本发明负载有TiO2/SiO2的PES超滤膜的制备方法,具体包括如下步骤:
步骤1,制备PES超滤膜:将8g聚醚砜和1g聚乙烯吡咯烷酮加入到43.5mL N,N-二甲基乙酰胺溶剂中,室温下密封搅拌24h,得到铸膜液;将铸膜液置于室温下脱气6h,然后将大约15mL的铸膜液倒在玻璃板上,用刮膜刀在玻璃板上以0.5cm/s匀速刮膜;将涂覆有铸膜液的玻璃板平整放入去离子水中进行相的转换,经过24h后得到PES超滤膜;
步骤2:制备TiO2/SiO2纳米颗粒:将17ml钛酸四丁酯、50ml乙醇和5mL乙酰丙酮混合,搅拌1h得到混合液A;将2.25mL正硅酸乙酯、10mL去离子水、20mL氨水和20mL无水乙醇混合,搅拌1h得到混合液B;将混合液A和混合液B混合,持续搅拌1h得到混合液C,将混合液C置于反应釜中,于180度下反应10h,将得到的产物研磨,研磨后用无水乙醇和去离子水离心洗涤2次,将洗涤后的产物于550度管式炉中煅烧2h,得到TiO2/SiO2纳米颗粒;TiO2/SiO2纳米颗粒的粒径为7nm;
步骤3,将步骤1制得的PES超滤膜浸泡在质量分数为0.1%的PAM溶液中4~6h,将步骤2制得的TiO2/SiO2纳米颗粒配制成质量分数为0.005%的悬浮液;通过真空抽滤将TiO2/SiO2纳米颗粒负载于PES超滤膜表面,得到膜表面负载有TiO2/SiO2的PES超滤膜。
对实施例1制得的负载有TiO2/SiO2的PES超滤膜用图2所示的实验装置进行腐殖酸污染物膜通量以及腐殖酸污染物分离效果的测试试验:
取初始浓度为10mg/L的腐殖酸溶液1L,对实施例1制得的负载有TiO2/SiO2的PES超滤膜和PES超滤膜(步骤1制得的PES超滤膜)在图2所示实验装置中分别进行腐殖酸溶液膜通量和腐殖酸溶液截留率的测试试验,其中,PES超滤膜的直径为5cm,真空泵操作压力为0.1MPa,在有光照和无光照情况下分别测试,每次测试时间为60min。腐殖酸溶液膜通量计算公式为其中J1为腐殖酸溶液的膜通量,单位为L·m-2·h-1,Q1为腐殖酸容量过膜水体积,单位为m3;腐殖酸溶液截留率为其中Cp为渗滤液浓度,Cf为腐殖酸溶液浓度(随时间变化),腐殖酸浓度用分光光度计测量。测试实验结果见表1和表2。
表1为实施例1制得的负载有TiO2/SiO2的PES超滤膜和PES超滤膜对腐殖酸膜通量在有无光照条件下的对比:
试验60min后膜通量(L·m<sup>-2</sup>·h<sup>-1</sup>)
实施例1(无光照) 191
实施例1(紫外光) 291
PES超滤膜(无光照) 102
PES超滤膜(紫外光) 108
表2为实施例1制得的负载有TiO2/SiO2的PES超滤膜和PES超滤膜对腐殖酸溶液截留率在有无光照条件下的对比:
截留率R%
实施例1(无光照) 98
实施例1(紫外光) 95
PES超滤膜(无光照) 90
PES超滤膜(紫外光) 91
由表1可知,在紫外光下运行60min后,负载有TiO2/SiO2的PES超滤膜对腐殖酸有机污染物溶液的膜通量高于无光照下的膜通量,分别为291L·m-2·h-1和191L·m-2·h-1。这是因为在紫外光照情况下,激发膜表面的TiO2/SiO2纳米材料产生电子和空穴,从而产生强氧化自由基,导致膜表面的污染物发生了光降解,使膜污染有了一定的缓解,从而腐殖酸有机污染物溶液膜通量有所上升。本发明负载有TiO2/SiO2的PES超滤膜将膜分离与光催化材料耦合,可以从多个方面有效减缓膜污染问题(TiO2/SiO2纳米材料一方面可增大PES超滤膜的亲水性能,另一方面光催化材料的掺杂能够降解沉积在PES超滤膜表面的污染物),从而增加膜通量。
由表2可知,在紫外光照射情况下,负载有TiO2/SiO2的PES超滤膜对污染物的截留率有所降低,截留率高于无光照情况下的截留率,分别为98%,95%。这是由于污染物被光催化材料降解,导致截留率有所升高。另外,在无光照情况下,负载有TiO2/SiO2的PES超滤膜因为TiO2/SiO2的负载使PES超滤膜孔径减小,孔隙率增加,所以负载有TiO2/SiO2的PES超滤膜截留率比没有负载的PES超滤膜高。
如图2所示,该实验装置属于直流式过滤,同时属于光催化膜分离耦合反应器。腐殖酸溶液由蠕动泵吸取至膜组件中,膜组件由真空泵提供跨膜压力,紫外灯位于膜组件上方,提供紫外光照。
如图3所示,TiO2/SiO2纳米颗粒的尺寸比较窄,其粒径分布范围在5nm~15nm内,明亮的球形颗粒为SiO2,较暗的球形颗粒为TiO2。如图4所示,TiO2/SiO2纳米颗粒在波长范围3000cm-1-3500cm-1内和1640cm-1波长位置处的吸收峰分别是O-H和H-O-H的伸缩振动,分别表示是表面羟基和吸附水分子;在1060cm-1和930cm-1波长位置处的吸收峰表示Si-O-Si和Ti-O-Si伸缩振动,表明TiO2/SiO2纳米颗粒成功合成。如图5所示,TiO2/SiO2纳米颗粒的晶型全部为锐钛矿相。如图6所示,经过真空抽滤,TiO2/SiO2纳米颗粒负载于PES超滤膜上,如图7所示,负载有TiO2/SiO2的PES超滤膜具有多孔支撑层和致密分离层。
本发明负载有TiO2/SiO2的PES超滤膜由于膜表面具有亲水性,因此超滤膜的水接触角减小,有利于减缓膜污染,进而增加膜通量;另外在紫外光照射下,膜表面的TiO2/SiO2纳米颗粒能够降解PES超滤膜表面沉积的污染物,从而进一步减缓膜污染,增加膜通量。

Claims (10)

1.一种负载有TiO2/SiO2的PES超滤膜,其特征在于:所述PES超滤膜表面负载有一定量的TiO2/SiO2纳米颗粒。
2.权利要求1所述的负载有TiO2/SiO2的PES超滤膜的制备方法,其特征在于:通过真空抽滤和PAM将TiO2/SiO2纳米颗粒负载于PES超滤膜表面,得到膜表面负载有TiO2/SiO2的PES超滤膜。
3.根据权利要求2所述的负载有TiO2/SiO2的PES超滤膜的制备方法,其特征在于,具体包括如下步骤:
步骤1,制备PES超滤膜;
步骤2,制备TiO2/SiO2纳米颗粒;
步骤3,制备负载有TiO2/SiO2的PES超滤膜:将步骤1制得的PES超滤膜浸泡在PAM溶液中,将步骤2制得的TiO2/SiO2纳米颗粒配制成悬浮液,通过真空抽滤将TiO2/SiO2纳米颗粒负载在PES超滤膜表面,得到膜表面负载有TiO2/SiO2的PES超滤膜。
4.根据权利要求3所述的负载有TiO2/SiO2的PES超滤膜的制备方法,其特征在于:步骤1中,PES超滤膜具体采用如下方式制备得到:将所需量的聚醚砜和聚乙烯吡咯烷酮溶于N,N-二甲基乙酰胺溶剂中,搅拌得到铸膜液;将铸膜液脱气后均匀涂覆于玻璃板表面,将涂覆有铸膜液的玻璃板平整放入水中进行相的转换,静置后得到PES超滤膜。
5.根据权利要求3所述的负载有TiO2/SiO2的PES超滤膜的制备方法,其特征在于:步骤2中,TiO2/SiO2纳米颗粒具体采用如下方式制备得到:将所需体积比的钛酸四丁酯、乙醇和乙酰丙酮混合,得到混合液A;将一定量的正硅酸乙酯、去离子水、氨水和无水乙醇混合,得到混合液B;将混合液A和混合液B持续搅拌一段时间,高温下反应后再进行煅烧,得到TiO2/SiO2纳米颗粒。
6.根据权利要求3所述的负载有TiO2/SiO2的PES超滤膜的制备方法,其特征在于:步骤3中,所述PAM溶液的质量分数为0.1%,PES超滤膜的浸泡时间为4~6h,真空抽滤时,TiO2/SiO2悬浮液的质量分数0.005%。
7.根据权利要求4所述的负载有TiO2/SiO2的PES超滤膜的制备方法,其特征在于:相转换时间为24h。
8.根据权利要求5所述的负载有TiO2/SiO2的PES超滤膜的制备方法,其特征在于:将混合液A和混合液B持续搅拌的时间为60~80min,高温下反应的反应温度为180℃,反应时间为10h,反应后煅烧的温度为550℃,煅烧时间为2h。
9.权利要求1所述的负载有TiO2/SiO2的PES超滤膜在分离过滤和降解溶液中大分子有机污染物方面的应用。
10.根据权利要求9所述的负载有TiO2/SiO2的PES超滤膜在分离过滤和降解溶液中大分子有机污染物方面的应用,其特征在于:所述大分子有机污染物为腐殖酸。
CN201910169789.6A 2019-03-06 2019-03-06 一种负载有TiO2/SiO2的PES超滤膜及其制备方法和应用 Pending CN109954411A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910169789.6A CN109954411A (zh) 2019-03-06 2019-03-06 一种负载有TiO2/SiO2的PES超滤膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910169789.6A CN109954411A (zh) 2019-03-06 2019-03-06 一种负载有TiO2/SiO2的PES超滤膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109954411A true CN109954411A (zh) 2019-07-02

Family

ID=67023946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910169789.6A Pending CN109954411A (zh) 2019-03-06 2019-03-06 一种负载有TiO2/SiO2的PES超滤膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109954411A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743385A (zh) * 2019-09-12 2020-02-04 三达膜科技(厦门)有限公司 一种氧化钛-氧化硅复合陶瓷超滤膜的制备方法
CN110813109A (zh) * 2019-11-14 2020-02-21 徐业华 一种光催化超滤膜及其制备方法
CN117504609A (zh) * 2024-01-05 2024-02-06 河北建设集团安装工程有限公司 一种led驱动的cds光催化膜的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002455A1 (en) * 2008-07-03 2010-01-07 Millipore Corporation Porous asymmetric membranes
KR101443389B1 (ko) * 2007-01-29 2014-09-24 에보니크 데구사 게엠베하 플라즈마 처리된 중합체성 지지재에 대한 접착력이 개선된세라믹 막 및 그의 제조방법 및 용도
CN105884205A (zh) * 2016-04-08 2016-08-24 天津市职业大学 一种玻璃负载纳米TiO2/SiO2膜的制备方法及应用
CN106362784A (zh) * 2016-08-01 2017-02-01 中国科学院宁波材料技术与工程研究所 一种TiO2‑SiO2可见光光催化复合薄膜及其制备方法
CN107469646A (zh) * 2017-08-01 2017-12-15 中国地质大学(武汉) 一种Ag3PO4/TiO2‑PVDF改性复合膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443389B1 (ko) * 2007-01-29 2014-09-24 에보니크 데구사 게엠베하 플라즈마 처리된 중합체성 지지재에 대한 접착력이 개선된세라믹 막 및 그의 제조방법 및 용도
WO2010002455A1 (en) * 2008-07-03 2010-01-07 Millipore Corporation Porous asymmetric membranes
CN105884205A (zh) * 2016-04-08 2016-08-24 天津市职业大学 一种玻璃负载纳米TiO2/SiO2膜的制备方法及应用
CN106362784A (zh) * 2016-08-01 2017-02-01 中国科学院宁波材料技术与工程研究所 一种TiO2‑SiO2可见光光催化复合薄膜及其制备方法
CN107469646A (zh) * 2017-08-01 2017-12-15 中国地质大学(武汉) 一种Ag3PO4/TiO2‑PVDF改性复合膜及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
毛静涛等: "KH550-TiO2表面负载聚醚砜超滤膜光催化和膜分离性能的研究", 《环境科技》 *
王韵芳等: "SiO2 /TiO2薄膜对水中腐殖酸降解及大肠杆菌灭活效果的研究", 《硅酸盐通报》 *
胡丹: "分子印迹型TiO2光催化材料的制备及其在超滤膜上的负载处理废水性能的研究", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑》 *
许晓丽等: "烧结温度对SiO2-TiO2薄膜亲水性的影响", 《应用化工》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743385A (zh) * 2019-09-12 2020-02-04 三达膜科技(厦门)有限公司 一种氧化钛-氧化硅复合陶瓷超滤膜的制备方法
CN110813109A (zh) * 2019-11-14 2020-02-21 徐业华 一种光催化超滤膜及其制备方法
CN110813109B (zh) * 2019-11-14 2021-06-25 泰州清润环保科技有限公司 一种光催化超滤膜及其制备方法
CN117504609A (zh) * 2024-01-05 2024-02-06 河北建设集团安装工程有限公司 一种led驱动的cds光催化膜的制备方法及应用

Similar Documents

Publication Publication Date Title
CN106039998B (zh) 负载β-FeOOH纳米晶体的光催化复合纳滤膜及其制备方法
CN107376658A (zh) 一种负载有Ag‑TiO2的PES超滤膜及其制备方法和应用
CN109954411A (zh) 一种负载有TiO2/SiO2的PES超滤膜及其制备方法和应用
CN107376673B (zh) 一种负载有TiO2纳米管的PES超滤膜及其制备方法和应用
CN103752268A (zh) 吸附饮用水中重金属和砷、氟的滤芯制备方法和应用
CN103285891A (zh) 卤氧化铋-氧化钛纳米管阵列复合光催化薄膜的制备方法
WO2021093832A1 (zh) 一种c3n4改性有机膜的制备方法及应用
CN103803615B (zh) 一种氧化铝干胶的制备方法
CN109867266A (zh) 层状双金属氢氧化物、复合膜及其应用和抽滤装置
CN113262645B (zh) 一种自清洁复合超滤膜及其制备方法
CN113289657B (zh) 一种氮掺杂石墨烯催化膜的制备方法及其应用
CN110075722A (zh) 氧化铁超滤平板陶瓷膜
RU2581359C1 (ru) Фотокаталитическое покрытие
CN112090296A (zh) 基于F-TiO2/Fe-g-C3N4的自清洁平板式PVDF超滤膜及制备方法
CN1319634C (zh) 二氧化钛纳米管复合分离膜及其制备方法和应用
CN109954412A (zh) 一种负载有Ti3+-TiO2/SiO2纳米线的PES超滤膜及其制备方法和应用
CN116407950A (zh) 一种改性陶瓷膜及其制备方法和应用
CN116078191A (zh) 一种基于多巴胺涂层负载纳米金改性聚砜膜的制备方法
CN113546528A (zh) 负离子材料陶瓷膜
CN106975359A (zh) 基于掺杂纳米Cu2O的可见光催化中空纤维超滤膜及制备方法
CN101053840A (zh) 用于处理染料废水的TiO2/13X分子筛复合材料的制备方法
CN113893712B (zh) Pva/二氧化钛-含氟聚芳醚砜自修复反应性复合超滤膜及其制备方法
CN113975982B (zh) 聚偏氟乙烯复合膜的制备方法
CN113000071B (zh) 一种多孔可见光光催化ZnFe2O4-TiO2/PVDF复合膜的制备方法及再生方法
CN113318720B (zh) 一种光催化剂及其制法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190702