CN109943803A - 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用 - Google Patents

抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用 Download PDF

Info

Publication number
CN109943803A
CN109943803A CN201910281498.6A CN201910281498A CN109943803A CN 109943803 A CN109943803 A CN 109943803A CN 201910281498 A CN201910281498 A CN 201910281498A CN 109943803 A CN109943803 A CN 109943803A
Authority
CN
China
Prior art keywords
layer
composite coating
coating
film layer
aluminising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910281498.6A
Other languages
English (en)
Other versions
CN109943803B (zh
Inventor
李微
赵祎林
陈荐
任延杰
何建军
陈建林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201910281498.6A priority Critical patent/CN109943803B/zh
Publication of CN109943803A publication Critical patent/CN109943803A/zh
Priority to US16/977,821 priority patent/US11572627B2/en
Priority to PCT/CN2020/077573 priority patent/WO2020207155A1/zh
Application granted granted Critical
Publication of CN109943803B publication Critical patent/CN109943803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising
    • C23C10/50Aluminising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用,该复合涂层由基体表面往外依次包括渗铝层和TiO2薄膜层,该涂层的制备方法包括如下步骤:S1、对铁基合金进行表面处理,然后采用固体粉末渗剂进行渗铝;S2、将渗铝后的铁基合金进行喷砂处理;S3、将经喷砂处理的铁基合金进行洗涤、干燥;S4、采用原子层气相沉积法在经干燥的渗铝的铁基合金表面沉积TiO2薄膜层。本发明的复合涂层组织均匀、内应力小、复合涂层结合紧密、涂层孔隙率小、能够隔绝熔融金属与基体的结合且耐熔融铝硅合金腐蚀性能优良,能用于太阳能热发电换热管中。

Description

抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用
技术领域
本发明涉及腐蚀涂层技术领域,尤其涉及一种抗熔融铝硅合金腐蚀性能优良的复合涂层及其制备方法和应用。
背景技术
传统化石能源已无法满足全球人口增长和工业化快速发展的需求,因此可再生能源的应用受到了各国政府的密切关注。与其他可再生能源发电技术相比,太阳能热发电具有可储热、可调峰、可连续发电的优点,并正朝着高光热转换效率、低成本及高寿命的目标发展。其中,高温储热材料是提高太阳能热发电系统运行效率的核心环节。目前商业化太阳能热发电发电站储热介质主要采用水蒸气、熔融盐以及导热油,由于水蒸气储热容量低,熔融盐导热系数低、高温易分解和固液分层,导热油高温(在400℃以上)易分解等特点,因此储热系统存在导热效率低、热稳定性差、过冷度大等缺陷,导致发电成本高,限制了太阳能热发电的发展。Al-12Si 合金由于相变温度合适、导热储热性能优良且来源丰富,是最理想的储热材料。
但是在实际运用中,高温液态铝硅合金与铁基换热管接触时,与Fe反应生成(Fe,Cr,Ni)2Al5和(Fe,Cr,Ni)Al3化合物,且Al的原子半径小,容易穿过(Fe,Cr,Ni)Al3和(Fe,Cr,Ni)2Al5等化合物的孔洞,继续与Fe反应,持续生成(Fe,Cr,Ni)Al化合物,导致金属元素发生溶解。同时,铝硅合金中的Si也会与Fe、Al反应生成Fe3Si、Fe2Al7Si等脆性相,进一步加剧换热管件金属元素与非金属元素的溶解,最终发生腐蚀破坏。因此提高换热管材料的抗熔融铝硅合金腐蚀性能是太阳能热发电研发亟待解决的问题。
通常通过在换热管表面涂覆高温防护涂层来达到隔热、抗腐蚀的效果。一般而言,钢基体表面高温防护涂层的抗熔融合金腐蚀的机理有两种类型,即反应防护机理和非反应防护机理。对于反应防护,渗铝是一种成熟化学热处理工艺,铝进入合金表面后,形成一种金属间化合物,并在表面形成反应扩散区,氧化时,铝化物表面就会有Al2O3薄膜形成,从而阻止基材与环境继续反应。但渗铝涂层往往会存在渗层过薄,疏松,与基体结合不紧密,容易剥落的问题。而且,铝硅合金中的Si容易穿过渗层与基体生成脆性相富集于渗层与基体间,使得渗铝涂层发生脆化,进而使得抗高温腐蚀能力退化。申请号为201010126855.0的专利申请采用表面涂敷掺和陶瓷粉末(如SiO2、TiB2)的高温涂料方法制备耐熔融铝硅合金腐蚀涂层,一方面,使用该方法制备的涂层孔隙率大,在熔融铝硅合金环境下Al原子易穿过涂层中的孔隙与不锈钢基体接触,生成脆性(Fe,Cr,Ni)2Al5和(Fe,Cr,Ni)Al3相然后脱落于熔融铝硅合金中,新的不锈钢基体继续与熔融铝硅合金反应,循环往复造成腐蚀失效,另一方面,熔融铝硅合金储热时的运行温度在620℃附近,而TiB2在400℃以上时会与铁基体发生反应生成脆性层(TiC+TiFe+Fe2B),致使材料力学性能急剧下降。总之,对换热管采用单一涂层进行耐熔融铝硅合金腐蚀的防护还存在明显不足,例如,涂层与基体结合力不高,容易发生剥落,无法完全隔绝基体与熔融金属的接触,容易生成脆性相降低结构稳定性和耐腐高温腐蚀性。
复合涂层作为基体与腐蚀介质的屏障,具有耐磨、耐高温、抗氧化、耐腐蚀等优良性能,被广泛应用于航空航天、装备再制造、轻工业、汽车工业和发电行业等领域,但是,目前复合涂层常出现层间粘合不紧易脱落、涂层结构存在缺陷、表面粗糙,容易生成空洞和微裂纹发生失效、热膨胀系数不匹配使内部应力分布不均等问题。例如,文献《Hightemperature oxidation resistance of γ-TiAl alloy with pack aluminizing andelectrodeposited SiO2 composite coating》(Corrosion Science, 2018.)公开了一种在γ-TiAl合金上渗铝后电镀SiO2涂层的方法,该复合涂层能够有效提高抗高温氧化性能,但渗层上出现垂直于表面的长裂纹,电镀SiO2涂层表面有许多微裂纹,在实际运用中易加速材料失效。专利申请号为201010126852.7的专利公开了一种太阳能热发电抗熔融铝硅合金腐蚀梯度保护涂层及其制备方法,采用低压等离子喷涂制备MoB/CoCr梯度保护涂层,该方法能够提高涂层抗热冲击性能,但与基体的界面结合力不强,容易剥落。专利申请号为201711388751 .5公开了一种具有耐铝液腐蚀复合陶瓷涂层的内加热蒸发蓝制备方法,该专利采用热喷涂技术喷涂0.8~1.5mm复合结构Al2O3-8YSZ耐侵蚀层,该复合涂层与熔融金属液体不润湿,具有耐热蚀的优点,但该涂层与基体以及粒子层间的结合不够,使涂层抗扭、抗剪切力差;且采用热喷涂法制备的涂层较厚,涂层内部应力的不断增大容易导致涂层开裂、脱落等问题。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种组织均匀、内应力小、复合涂层结合紧密、涂层孔隙率小、能够隔绝熔融金属与基体的结合且耐熔融铝硅合金腐蚀性能优良的复合涂层,还提供一种工艺简单、能制备出组织均匀、内应力小、渗层与基体结合力强、能够隔绝熔融金属与基体的结合、抗剥落性能好、在熔融铝硅合金的条件下抗腐蚀性能优良的复合涂层的方法。
为解决上述技术问题,本发明采用的技术方案是:
抗熔融铝硅合金腐蚀复合涂层,所述复合涂层由基体表面往外依次包括渗铝层和TiO2薄膜层。
上述的抗熔融铝硅合金腐蚀复合涂层,优选地,所述复合涂层还包括由原子层气相沉积法制备的Al2O3薄膜层,且所述Al2O3薄膜层位于所述TiO2薄膜层和渗铝层之间;所述Al2O3薄膜层的厚度为纳米级。
上述的抗熔融铝硅合金腐蚀复合涂层,优选地,所述渗铝层由基体往外依次包括Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层;所述Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层的厚度均为微米级。
作为一个总的发明构思,本发明还提供一种抗熔融铝硅合金腐蚀复合涂层的制备方法,包括如下步骤:
S1、对铁基合金进行表面处理,然后采用固体粉末渗剂进行渗铝;
S2、将渗铝后的铁基合金进行喷砂处理;
S3、将经喷砂处理的铁基合金进行洗涤、干燥;
S4、采用原子层气相沉积法在经干燥的渗铝的铁基合金表面沉积TiO2薄膜层。
上述的抗熔融铝硅合金腐蚀复合涂层的制备方法,优选地,在所述步骤S3和步骤S4之间,还包括采用原子层气相沉积法在步骤S3所得的渗铝铁基合金表面沉积Al2O3薄膜层。
上述的抗熔融铝硅合金腐蚀复合涂层的制备方法,优选地,所述步骤S1中,所述固体粉末渗剂为包括以下组分的均匀混合物:粒度为200目的铝粉,Al2O3和Cr粉组成的填充剂及其粉末状NH4Cl的助渗剂,所述固体粉末渗剂中,按质量比计,所述铝粉占42~74%,所述Al2O3粉占20~40%,所述Cr粉占5~15%,所述NH4Cl占1~3%;
所述渗铝的条件为:先于400~600℃保温20~40min,再于900℃~1050℃保温10~15h,然后随炉冷却至室温。
上述的抗熔融铝硅合金腐蚀复合涂层的制备方法,优选地,所述步骤S3中,所述沉积TiO2薄膜层的步骤包括:以异丙醇钛为前驱体,压力为0.1~0.3torr,充气0.1~0.5s,随后抽气30~50s,再充入等离子水蒸汽0.01~0.03s,最后抽气30~50s,反复进行异丙醇钛充气-抽气-水蒸气充气-抽气循环,沉积TiO2薄膜层;所述循环的次数为50~500次。
上述的抗熔融铝硅合金腐蚀复合涂层的制备方法,优选地,所述沉积Al2O3薄膜层的步骤包括:以三甲基铝为前驱体,压力为0.05~0.2torr,充气0.01~0.03s,随后抽气40~60s,再充入水蒸汽0.01~0.03s,最后抽气20~60s,反复进行三甲基铝充气-抽气-水蒸气充气-抽气循环,沉积Al2O3薄膜层;所述循环的次数为50~500次。
上述的抗熔融铝硅合金腐蚀复合涂层的制备方法,优选地,所述步骤S2中,所述喷砂处理于0.6~0.9MPa的高压氮气下进行;所述喷砂的时间为5~20min;所述喷砂的磨料为300~500目的Al2O3颗粒;喷砂的距离2~6cm;
所述步骤S1中,所述表面处理包括先对铁基合金进行机械抛光处理,然后再进行电解抛光处理;所述机械抛光处理包括:采用80目~1200目粒度的砂纸打磨至肉眼可见无明显划痕,然后在超声波中采用丙酮清洗5~20min,再用无水乙醇超声波清洗5~20min,最后进行干燥;所述电解抛光处理为以铁基合金为阳极、以不溶性导电材料为阴极,对铁基进行电解抛光处理;所述电解抛光处理的电解液包括体积分数为60~80%的浓硫酸,体积分数为15~37%的浓磷酸和体积分数为3~5%的蒸馏水;所述电解的直流电压为5~6V,电解液的温度为60~80℃,电解抛光的时间为2~5min。
作为一个总的发明构思,本发明还提供一种前述的抗熔融铝硅合金腐蚀复合涂层或前述的方法制备的抗熔融铝硅合金腐蚀复合涂层在太阳能热发电换热管中的应用。
与现有技术相比,本发明的优点在于:
1、以铝硅合金作为储热介质的太阳能热发电换热管要求高温下(620℃)在熔融铝硅合金的使用环境下需要较高的抗熔融铝硅合金腐蚀性能和一定的机械强度。本发明的涂层由基体表面往外依次包括渗铝层和TiO2薄膜层,该复合涂层组织均匀、无裂纹、渗层与渗层之间的组分呈梯度平滑过渡,基体与渗层之间的界面应力和组织缺陷小,结合力强,结构稳定性好,有效地实现了隔绝基体与熔融金属的接触,沉积于渗铝层表面的TiO2薄膜层,尤其是采用原子层气相沉积法得到的TiO2薄膜层,表面均匀致密,能进一步有效防止熔融金属的渗入,且铝硅合金中的硅和二氧化钛反应,形成Ti-Si-O固溶体,能够有效的抑制颗粒的移动,增加晶体相变的势垒电位,阻止TiO2发生相变,保证TiO2锐钛型结构稳定,有效阻止Al、Si元素的扩散,能保证耐熔融铝硅合金腐蚀性能优异。
2、本发明的复合涂层通过在渗铝层与TiO2薄膜层间采用原子层气相沉积法引入Al2O3薄膜层,原子层沉积的氧化铝薄膜,阶梯覆盖性强,有效的填补了渗层表面氧化膜存在的裂纹及空隙,形成完整致密的氧化铝膜,更有效的阻隔了铝原子的扩散;且在620℃下,Al2O3的热膨胀系数介于Fe-Al相与TiO2之间,可有效避免由热膨胀系数不匹配造成的热疲劳裂纹萌生或扩展行为。
3、本发明的复合涂层中,渗铝层由基体表面由内至外依次为Fe(Al)相扩散层、Fe-Al化合物层(即Fe-Al外渗层)和Al2O3层,渗层与渗层之间的组分呈梯度平滑过渡,显著降低了基体与渗层之间的界面应力,有效提高了有效提高渗层之间的结合力。
4、本发明通过渗铝-喷砂-清洁-原子气相层沉积TiO2薄膜层的工艺路线,制备出由基体往表层依次为包括Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层的渗铝层和TiO2薄膜层的复合涂层结构,该复合涂层组织均匀、无裂纹、渗层与渗层之间的组分呈梯度平滑过渡,基体与渗层之间的界面应力和组织缺陷小,结合力强,结构稳定性好,有效地实现了隔绝基体与熔融金属的接触。通过在经清洁后的渗铝层表面先采用原子层气相沉积法沉积Al2O3薄膜层,后引入TiO2薄膜层,能进一步提高复合涂层的化学惰性,阻隔Al、Si原子向基体扩散;原子层沉积的氧化铝薄膜,阶梯覆盖性强,有效的填补了渗层表面氧化膜存在的裂纹及空隙,形成完整致密的氧化铝膜,更有效的阻隔了铝原子的扩散且为后续引入TiO2薄膜层提供了好的表面条件,引入的TiO2薄膜层不存在微裂纹等缺陷、表面致密且组织均匀,有利于防止Si元素扩散,提高涂层在高温腐蚀条件下的结构稳定性和耐腐蚀性。
5、本发明的方法通过进一步控制渗剂组成、渗铝条件可以有效提高对组织的调控精度,即对渗铝组织中Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层厚度及微观结构的调控,获得组织更均匀、内应力小、复合涂层结合更紧密的渗铝涂层,能有效降低基体与渗层之间的界面应力和组织缺陷,提高基体与渗层之间的结合力,抑制渗层脱落、抑制裂纹萌生和扩展,获得组织的致密性和完整性良好的渗层结构;通过控制原子层气相沉积Al2O3薄膜层和TiO2薄膜层的工艺参数,可获得致密均匀、无表面缺陷的Al2O3薄膜层和TiO2薄膜层,能有效阻碍了熔体进入涂层内部,有效提高了对熔体的阻隔作用,且与渗铝层结合紧密,能有效提高复合涂层的稳定性;通过在渗铝层进行机械抛光和电解抛光处理,并通过进一步控制喷砂时间、喷砂距离、机械抛光、电解抛光等工艺参数,能有效降低涂层的缺陷,进一步提高基体与表面的结合强度、渗铝层的结构稳定性和致密度以及渗铝层与原子气相沉积的涂层之间的结合力,提高抗剥离性能、力学性能和耐熔体腐蚀性能。
附图说明
图1为本发明实施例3中经原子层气相沉积后的渗铝钢与原子层气相沉积前相比的渗铝钢的截面形貌图及对应点的EDS能谱分析图。
图2 为本发明实施例3、4制备的含有复合涂层的不锈钢与不含涂层的不锈钢及对比例1制备的含有渗铝层的不锈钢在熔融铝硅中腐蚀72h后的腐蚀速率对比图。
具体实施方式
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
一种本发明的抗熔融铝硅合金腐蚀复合涂层,所述复合涂层由基体表面往外依次包括渗铝层和TiO2薄膜层。具体地,本发明的基体为铁基材料,优选为奥氏体不锈钢。TiO2薄膜层优选由原子层气相沉积法引入,采用该方法引入的TiO2薄膜层不存在微裂纹等缺陷、表面致密且组织均匀。TiO2薄膜层厚度可控制为纳米级,以提高复合涂层的性能,优选为5~50nm。一方面,由于原子层沉积法所使用前驱体生产成本较高,在保证涂层起到有效保护作用的同时,将TiO2薄膜厚度控制在较小的范围,可降低复合涂层的生产成本,另一方面,与较厚的TiO2膜相比,纳米级厚度的TiO2薄膜的锐钛型晶体结构更加规则,晶胞间的空隙基本可以忽略不计,这非常有利于防止Si元素扩散。
所述涂层还包括由原子层气相沉积法制备的Al2O3薄膜层,且所述Al2O3薄膜层位于所述TiO2薄膜层和渗铝层之间;在渗铝层与TiO2薄膜层之间设一层由原子层气相沉积法制备的Al2O3薄膜层,该薄膜层为连续致密涂层。
所述Al2O3薄膜层的厚度为纳米级;优选地,本发明的Al2O3薄膜层的厚度为5~50nm。
所述渗铝层由基体往外依次包括Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层;所述Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层的厚度均为微米级;其中,Fe(Al)相扩散层,也可以称为含Al的Fe扩散层,本质上就是Al扩散至基体置换基体表面部分Fe原子形成的扩散层,为贫铝区,含Al较低,在该扩散层中的Al元素的原子百分比从基体表面的0at.%升高至扩散层Fe(Al)相扩散层最外侧的8at.%。其中Al2O3层为表面具有缺陷的不连续涂层,Al2O3层能够起到抗氧化隔绝的作用,但是表面存在的氧化腐蚀沟槽,不仅易诱发热疲劳裂纹起始,而且使抗Al液腐蚀的能力下降。
优选地,所述Fe-Al化合物层的厚度为60~200μm,所述Fe(Al)相扩散层的厚度为50~160μm,Al2O3层的厚度为10~30μm;所述Fe-Al化合物层包括FeAl、FeAl2和Fe3Al。
一种本发明的抗熔融铝硅合金腐蚀涂层的制备方法,包括如下步骤:
S1、对铁基合金进行表面处理,然后采用固体粉末渗剂进行渗铝;
S2、将渗铝后的铁基合金进行喷砂处理;
S3、将经喷砂处理的铁基合金进行洗涤、干燥;
S4、采用原子层气相沉积法在经干燥的渗铝的铁基合金表面沉积TiO2薄膜层。
本方案中,铁基合金为合金板,优选为奥氏体不锈钢合金钢。
在所述步骤S3和步骤S4之间,还包括采用原子层气相沉积法在步骤S3所得的渗铝的铁基合金表面沉积Al2O3薄膜层,采用该方法引入的Al2O3薄膜层致密均匀、且能够加强对基体的隔离作用,弥补因采用渗铝法获得的渗铝涂层表面的Al2O3层存在的氧化腐蚀沟槽等缺陷,这种缺陷不仅易诱发热疲劳裂纹起始,而且使抗Al液腐蚀的能力下降。本发明通过原子沉积引入原子沉积Al2O3薄膜层,对渗层表面不连续Al2O3薄膜进行了补充,使试样表面覆盖上连续且致密的Al2O3薄膜,达到阻隔Al原子扩散的效果,且还为后续沉积TiO2薄膜提供良好的表面环境,防止其他干扰元素影响沉积效果,同时,有利于降低界面应力,提高涂层之间的结合力和稳定性。
所述步骤S1中,所述固体粉末渗剂包括以下组分的均匀混合物:粒度为200目的铝粉,Al2O3和Cr粉组成的填充剂及其粉末状NH4Cl的助渗剂,所述固体粉末渗剂中,按质量比计,所述铝粉占42~74%,所述Al2O3粉占20~40%,所述Cr粉占5~15%,所述NH4Cl占1~3%;通过采用该组分的固体粉末渗剂,可以有效提高对组织的调控精度,从而进一步提高组织的致密性和完整性。
所述渗铝的条件为:于150℃干燥2h,先于400~600℃保温20~40min,升温速率为10℃/min,再于900℃~1050℃保温10~15h,然后随炉冷却至室温。通过严格控制渗铝条件,能进一步提高对渗铝组织中Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层厚度及微观结构的调控,获得组织更均匀、内应力小、复合涂层结合更紧密的渗铝涂层。
所述步骤S4中,所述沉积TiO2薄膜层的步骤包括:将腔体加热至300~450℃,以异丙醇钛(纯度99.99%)为前驱体,压力为0.1~0.3torr,充气0.1~0.5s,随后抽气30~50s,再充入等离子水蒸汽0.01~0.03s,最后抽气30~50s,沉积TiO2薄膜,反复进行异丙醇钛充气-抽气-水蒸气充气-抽气循环,沉积TiO2薄膜层;控制循环的次数为50~500次,可生成不同厚度的TiO2薄膜。
所述沉积Al2O3薄膜层的步骤包括:以渗铝钢为衬底,放入设备腔中,腔体加热至150~300℃,以三甲基铝(TMA)(纯度99.99%)为前驱体,压力为0.05~0.2torr,充气0.01~0.03s,随后抽气40~60s,再充入水蒸汽0.01~0.03s,最后抽气20~60s,沉积Al2O3薄膜,反复进行三甲基铝充气-抽气-水蒸气充气-抽气循环,沉积Al2O3薄膜。控制循环的次数为50~500次,可生成不同厚度的Al2O3薄膜。
所述步骤S2中,所述喷砂处理于0.6~0.9MPa的高压氮气下进行;所述喷砂的时间为5~20min;所述喷砂的磨料为300~500目的Al2O3颗粒;喷砂的距离2~6cm。通过控制喷砂处理的压力和时间,可有效去除渗铝层表面蓬松的表层和杂质,得到结合力强、均匀的渗铝组织,且为原子层沉积氧化铝薄膜提供了无外部元素掺杂的优良衬底,提高了反应前驱体与沉底结合的效率。
所述步骤S1中,所述表面处理包括先对铁基合金进行机械抛光处理,然后再进行电解抛光处理;
所述机械抛光处理包括:采用80目~1200目粒度的砂纸打磨至肉眼可见无明显划痕,然后在超声波中采用丙酮清洗5~20min以除油,无水乙醇超声波清洗5~20min以去渍,最进行干燥;所述电解抛光处理为以铁基合金为阳极、以不溶性导电材料为阴极,对铁基进行电解抛光处理,所述电解抛光处理的电解液包括体积分数为60~80%的浓硫酸,体积分数为15~37%的浓磷酸和体积分数为3~5%的蒸馏水;所述电解的直流电压为5~6V,电解液的温度为60~80℃,电解抛光的时间为2~5min。
所述电解抛光处理具体为:将321奥氏体不锈钢板接在阳极,阴极用不溶性导电材料(石墨板),阴阳极间距50mm,电解液加热至60~80℃(可通过水浴加热),通入5~6V直流电压,在电解中抛光2~5min后,将奥氏体不锈钢板取出冲水清洗吹干,其中电解液的成分如下:体积分数为60~80%的浓硫酸(纯度为98%)、体积分数为15~37%的浓磷酸(纯度为85%)和体积分数为3~5%的蒸馏水。
所述步骤S3具体为:将样品放入盛装3~8L去离子水的烧杯中,加热震荡2~7min,去除样品表面残留的细屑,再将样品放入盛放2~5L丙酮的烧杯中,加热震荡5~10min,将样品取出,放置干燥箱干燥10~30min。
本发明的抗熔融铝硅合金腐蚀性能优良的复合涂层的制备方法,对不锈钢渗铝后进行原子层气相沉积,得到的涂层为多层结构,从外往里依次分别是5nm~50nm厚的TiO2薄膜、5nm~50nm厚的Al2O3薄膜、不连续10~30μm的Al2O3层、60~200μm厚的Fe-Al外渗层(FeAl、FeAl2和Fe3Al等)、50~160μm厚的含Fe(Al)相扩散层以及基体。复合涂层各层之间结合紧密、无裂缝、界限明显且整齐,原子层气相沉积的Al2O3/TiO2薄膜或TiO2薄膜厚度可控,生长均匀、平整且阶梯覆盖性好,表面致密且与渗层结构结合力强,不改变渗层结构。制得的含有Al2O3/TiO2薄膜涂层或TiO2薄膜涂层结构的不锈钢经过72小时620℃熔融铝硅合金腐蚀试验,腐蚀速率分别为0.35×10-5g/mm2·h和0.23×10-5g/mm2·h,与奥氏体不锈钢相比(腐蚀速率为1.3×10-5g/mm2·h)分别降低了73.1%和82.3%,表现出优异的抗熔融铝硅合金性能,满足了熔融铝硅合金作为储热介质与太阳能热发电换热管的相容性要求,具有非凡的科研价值和工业应用前景。
实施例1:
一种本发明抗熔融铝硅合金腐蚀复合涂层,所述复合涂层由基体表面往外依次包括渗铝层、Al2O3薄膜层和TiO2薄膜层。其中Al2O3薄膜层和TiO2薄膜层均由原子层气相沉积法引入,Al2O3薄膜层和TiO2薄膜层的厚度依次为5nm和20nm;渗铝层由基体表面往外依次包括Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层。其中,Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层均为微米级厚度。
一种本实施例的抗熔融铝硅合金腐蚀复合涂层的制备方法,包括如下步骤:
(1)表面机械抛光:将热轧板材奥氏体不锈钢板试样经不同粒度(80目~1200目)砂纸打磨至肉眼可见无明显划痕,然后在超声波中采用丙酮清洗5min,除油,无水乙醇超声波清洗5min,去渍,最后放入干燥箱80℃干燥20min;其中321奥氏体不锈钢是轧制板材,其化学成分的质量分数为C 0.04%,Si 0.38%,Mn 1.08%,Cr 17.02%,Ni 9.06%,N 0.05%,P 0.03%,Ti 0.22%,其余为Fe。
(2)电解抛光:将321奥氏体不锈钢板接在阳极,阴极用不溶性导电材料(石墨板),阴阳极间距50mm,电解液加热至60℃(可通过水浴加热),两极同时进入电解液中,通入5V直流电压,在电解中浸泡2min,试样取出冲水清洗吹干;电解液的成分由体积分数为60%的浓硫酸(纯度为98%),体积分数为37%的浓磷酸(纯度为85%)和体积分数为3%的蒸馏水组成。
(3)渗铝:固体粉末渗剂由铝源、填充剂、助渗剂(活化剂)组成,其中铝源采用粒度为200目的铝粉,Al2O3和Cr粉作填充剂为和粉末状NH4Cl的助渗剂组成,按照5wt.%Cr,64wt.%Al,28wt.% Al2O3,3wt.%NH4Cl充分混合。将渗剂与试样装入耐热不锈钢料罐中,压紧,耐火泥密封,进行渗铝:随炉升温,150℃干燥2h,400℃保温20min,升温速率为10℃/min,在900℃保温15h后随炉冷却至室温;
(4) 喷砂处理:将渗铝后试样放在0.6MPa高压氮气下进行喷砂,磨料为300目的Al2O3颗粒,喷砂时间5min,喷砂距离6cm,去除疏松的渗层以及杂质;
(5)有机溶剂洗涤和干燥:将样品放入盛装3L去离子水的烧杯中,加热震荡7min,去除样品表面残留的细屑,再将样品放入盛放5L丙酮的烧杯中,加热震荡10min,将样品取出,放置干燥箱干燥30min。
(6)原子层气相沉积Al2O3/TiO2薄膜:以渗铝钢为衬底,放入设备腔中,腔体加热150℃,以三甲基铝(TMA)(纯度99.99%)为前驱体,压力为0.05torr,充气0.03s,随后抽气40s,再充入水蒸汽0.01s,最后抽气30s,沉积Al2O3薄膜,反复进行三甲基铝充气-抽气-水蒸汽充气-抽气循环,循环次数50次,生成厚度为5nm的Al2O3薄膜;以渗铝钢/ Al2O3薄膜为衬底,将腔体加热300℃,以异丙醇钛(纯度99.99%)为前驱体,压力为0.1torr,充气0.5s,随后抽气30s,再充入等离子水蒸汽0.01s,最后抽气30s,沉积TiO2薄膜,反复进行异丙醇钛充气-抽气-水蒸汽充气-抽气循环,循环次数200次,生成厚度为20nm的TiO2薄膜。
实施例2:
一种本发明抗熔融铝硅合金腐蚀复合涂层,所述复合涂层由基体表面往外依次包括渗铝层、Al2O3薄膜层和TiO2薄膜层。其中Al2O3薄膜层和TiO2薄膜层均由原子层气相沉积法引入,Al2O3薄膜层和TiO2薄膜层的厚度依次为30nm和50nm;渗铝层由基体表面往外依次包括Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层。其中,Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层均为微米级厚度。
一种本实施例的抗熔融铝硅合金腐蚀复合涂层的制备方法,包括如下步骤:
(1)表面机械抛光:将热轧板材奥氏体不锈钢试样经不同粒度(80目~1200目)砂纸打磨至肉眼可见无明显划痕,然后在超声波中采用丙酮清洗10min,除油,无水乙醇超声波清洗10min,去渍,最后放入干燥箱80℃干燥30min;其中321奥氏体不锈钢是轧制板材,其化学成分的质量分数为C 0.04%,Si 0.38%,Mn 1.08%,Cr 17.02%,Ni 9.06%,N 0.05%,P 0.03%,Ti 0.22%,其余为Fe。
(2)电解抛光:将321奥氏体不锈钢接在阳极,阴极用不溶性导电材料(石墨板),阴阳极间距50mm,电解液加热至70℃(可通过水浴加热),两极同时进入电解液中,通入5V直流电压,在电解中浸泡5min,试样取出冲水清洗吹干,其中,电解液的成分由体积分数为70%的浓硫酸(纯度为98%),体积分数为26%的浓磷酸(纯度为85%)和体积分数为4%的蒸馏水组成。
(3)渗铝:固体粉末渗剂由铝源、填充剂、助渗剂(活化剂)组成,其中铝源采用粒度为200目的铝粉,Al2O3和Cr粉作填充剂为和粉末状NH4Cl的助渗剂组成,按照15wt.%Cr,44wt.%Al,40wt.%Al2O3,1wt.%NH4Cl充分混合。将渗剂与试样装入耐热不锈钢料罐中,压紧,耐火泥密封,进行渗铝:随炉升温,150℃干燥2h,600℃保温40min,升温速率为10℃/min,在1050℃保温10h后随炉冷却至室温。
(4)喷砂处理:将渗铝后试样放在0.8MPa高压氮气下进行喷砂,磨料为400目的Al2O3颗粒,喷砂时间10min,喷砂距离4cm,去除疏松的渗层以及杂质。
(5)有机溶剂洗涤和干燥:将样品放入盛装8L去离子水的烧杯中,加热震荡7min,去除样品表面残留的细屑,再将样品放入盛放5L丙酮的烧杯中,加热震荡10min,将样品取出,放置干燥箱干燥30min。
(6)原子层气相沉积Al2O3/TiO2薄膜:以渗铝钢为衬底,放入设备腔中,腔体加热300℃,以三甲基铝(TMA)(纯度99.99%)为前驱体,压力为0.2torr,充气0.01s,随后抽气60s,再充入水蒸汽0.03s,最后抽气50s,沉积Al2O3薄膜,反复进行三甲基铝充气-抽气-水蒸汽充气-抽气循环,循环次数300次,生成厚度为30nm的Al2O3薄膜;以渗铝钢/ Al2O3薄膜为衬底,将腔体加热450℃,以异丙醇钛(纯度99.99%)为前驱体,压力为0.3torr,充气0.5s,随后抽气50s,再充入等离子水蒸汽0.03s,最后抽气50s,沉积TiO2薄膜,反复进行异丙醇钛充气-抽气-水蒸汽充气-抽气循环,循环次数500次,生成同厚度为50nm的TiO2薄膜。
实施例3:
一种本发明抗熔融铝硅合金腐蚀复合涂层,所述复合涂层由基体表面往外依次包括渗铝层、Al2O3薄膜层和TiO2薄膜层。其中Al2O3薄膜层和TiO2薄膜层均由原子层气相沉积法引入,Al2O3薄膜层和TiO2薄膜层的厚度依次为10nm和10nm;渗铝层由基体表面往外依次包括Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层;其中,Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层均为微米级厚度。
一种本实施例的抗熔融铝硅合金腐蚀复合涂层的制备方法,包括如下步骤:
(1)表面机械抛光:将热轧板材奥氏体不锈钢试样经不同粒度(80目~1200目)砂纸打磨至肉眼可见无明显划痕,然后在超声波中采用丙酮清洗20min,除油,无水乙醇超声波清洗20min,去渍,最后放入干燥箱80℃干燥40min;其中321奥氏体不锈钢是轧制板材,其化学成分的质量分数为C 0.04%,Si 0.38%,Mn 1.08%,Cr 17.02%,Ni 9.06%,N 0.05%,P 0.03%,Ti 0.22%,其余为Fe。
(2)电解抛光:将321奥氏体不锈钢接在阳极,阴极用不溶性导电材料(石墨板),阴阳极间距50mm,电解液加热至80℃(可通过水浴加热),两极同时进入电解液中,通入5V直流电压,在电解中浸泡3min,试样取出冲水清洗吹干;电解液的成分由体积分数80%的浓硫酸(纯度为98%),体积分数为15%的浓磷酸(纯度为85%)和体积分数5%的蒸馏水组成。
(3)渗铝:固体粉末渗剂由铝源、填充剂、助渗剂(活化剂)组成,其中铝源采用粒度为200目的铝粉,Al2O3和Cr粉作填充剂为和粉末状NH4Cl的助渗剂组成,按照10wt.%Cr,58wt.%Al,30wt.% Al2O3,2wt.%NH4Cl充分混合。将渗剂与试样装入耐热不锈钢料罐中,压紧,耐火泥密封,进行渗铝:随炉升温,150℃干燥2h,500℃保温30min,升温速率为10℃/min,在950℃保温12h后随炉冷却至室温。
(4)喷砂处理:将渗铝后试样放在0.9MPa高压氮气下进行喷砂,磨料为500目的Al2O3颗粒,喷砂时间为5min,喷砂距离为2cm,去除疏松的渗层以及杂质。
(5)有机溶剂洗涤:将样品放入盛装5L去离子水的烧杯中,加热震荡5min,去除样品表面残留的细屑,再将样品放入盛放4L丙酮的烧杯中,加热震荡8min,将样品取出,放置干燥箱干燥20min。
(6)原子层气相沉积Al2O3/TiO2薄膜:以渗铝钢为衬底,放入设备腔中,腔体加热200℃,以三甲基铝(TMA)(纯度99.99%)为前驱体,压力为0.1torr,充气0.02s,随后抽气45s,再充入水蒸汽0.015s,最后抽气45s,沉积Al2O3薄膜,反复进行三甲基铝充气-抽气-水蒸汽充气-抽气循环,循环次数90次,生成约10nm厚度的Al2O3薄膜;以渗铝钢/Al2O3薄膜为衬底,将腔体加热370℃,以异丙醇钛(纯度99.99%)为前驱体,压力为0.2torr,充气0.25s,随后抽气40s,再充入等离子水蒸汽0.02s,最后抽气40s,沉积TiO2薄膜,反复进行异丙醇钛充气-抽气-水蒸汽充气-抽气循环,循环次数90次,生成约10nm厚度的TiO2薄膜。
实施例4:
一种本发明抗熔融铝硅合金腐蚀复合涂层,与实施例3中的复合涂层的不同点在于,本实施例的复合涂层中不含采用原子层气相沉积法引入的Al2O3薄膜层。
一种本实施例的抗熔融铝硅合金腐蚀复合涂层的制备方法,与实施例3中的复合涂层的制备方法基本相同,其不同点在于,步骤(6)中省略了原子层沉积Al2O3薄膜层的步骤,直接在渗铝钢表面原子层沉积TiO2薄膜层。
对比例1:
一种抗熔融铝硅合金腐蚀复合涂层,与实施例3中的复合涂层的不同点在于,本对比例的复合涂层中仅含有渗铝层,不含原子层气相沉积的Al2O3薄膜和TiO2薄膜层。
一种本对比例的抗熔融铝硅合金腐蚀复合涂层的制备方法,与实施例3中的复合涂层的制备方法的不同点在于,不含步骤(6)。
对实施例3所得复合涂层表面进行SEM分析,其结果如图1(b)所示,与原子层气相沉积前相比的渗铝钢表面形貌(图1(a))相比,未发现明显差异,说明该工艺不改变渗层表面的结构。对图1(b)中A点进行能谱分析,能检测到Fe、Cr、Al、Ti、O原子,由于EDS透入了基体,因此除了涂层内的原子外,还观察到了基体材料中含有的Cr和Fe原子,因原子层气相沉积产生的TiO2厚度尺寸为纳米级别,因此在EDS中观察Ti元素非常微量。
图2为实施例三制备的含ALD Al2O3/TiO2复合渗铝涂层和实施例四制备的含ALDTiO2复合渗铝涂层的321不锈钢与对比例1制备的含渗铝层的321不锈钢及不含涂层的321不锈钢经过72小时620℃熔融铝硅合金腐蚀得到的腐蚀速率柱状图。
对不同腐蚀时间的金属试样,采用失重法测定试样的腐蚀程度。试样的失重直接表征材料的腐蚀程度,金属试样腐蚀性的评定即试样的腐蚀速率V(g/mm2·h),由式(1)计算,
(1)
其中, A为样品表面积(mm2);W0为试样侵蚀前质量(g);W为试样侵蚀后质量(g);t为腐蚀时间(h)。结果如图2所示,可以看出与不锈钢抗熔融铝硅合金的腐蚀速率相比,单一的渗铝涂层试样抗腐蚀速率降低63.1%,ALD TiO2复合渗铝保护涂层试样的熔融铝硅腐蚀速率降低了73.1%,ALD Al2O3/TiO2复合渗铝保护涂层试样的熔融铝硅腐蚀速率降低了82.3%。可见,本发明的复合涂层表现出优异的抗熔融铝硅合金性能,且采用ALD Al2O3/TiO2复合渗铝相比于ALD TiO2复合渗铝所得的涂层效果得到很大改善,能很好地满足熔融铝硅合金作为储热介质与太阳能热发电换热管的相容性要求。
虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (10)

1.抗熔融铝硅合金腐蚀复合涂层,其特征在于,所述复合涂层由基体表面往外依次包括渗铝层和TiO2薄膜层。
2.如权利要求1所述的抗熔融铝硅合金腐蚀复合涂层,其特征在于,所述复合涂层还包括由原子层气相沉积法制备的Al2O3薄膜层,且所述Al2O3薄膜层位于所述TiO2薄膜层和渗铝层之间;所述Al2O3薄膜层的厚度为纳米级。
3.如权利要求1或2所述的抗熔融铝硅合金腐蚀复合涂层,其特征在于,所述渗铝层由基体往外依次包括Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层;Fe(Al)相扩散层、Fe-Al化合物层和Al2O3层的厚度均为微米级。
4.如权利要求1~3任一项所述的抗熔融铝硅合金腐蚀复合涂层的制备方法,其特征在于,包括如下步骤:
S1、对铁基合金进行表面处理,然后采用固体粉末渗剂进行渗铝;
S2、将渗铝后的铁基合金进行喷砂处理;
S3、将经喷砂处理的铁基合金进行洗涤、干燥;
S4、采用原子层气相沉积法在经干燥的渗铝的铁基合金表面沉积TiO2薄膜层。
5.如权利要求4所述的抗熔融铝硅合金腐蚀复合涂层的制备方法,其特征在于,在所述步骤S3和步骤S4之间,还包括采用原子层气相沉积法在步骤S3所得的渗铝铁基合金表面沉积Al2O3薄膜层。
6.如权利要求4所述的抗熔融铝硅合金腐蚀复合涂层的制备方法,其特征在于,所述步骤S1中,所述固体粉末渗剂为包括以下组分的均匀混合物:粒度为200目的铝粉,Al2O3和Cr粉组成的填充剂及其粉末状NH4Cl的助渗剂,所述固体粉末渗剂中,按质量比计,所述铝粉占42~74%,所述Al2O3粉占20~40%,所述Cr粉占5~15%,所述NH4Cl占1~3%;
所述渗铝的条件为:先于400~600℃保温20~40min,再于900℃~1050℃保温10~15h,然后随炉冷却至室温。
7.如权利要求4所述的抗熔融铝硅合金腐蚀复合涂层的制备方法,其特征在于,所述步骤S3中,所述沉积TiO2薄膜层的步骤包括:以异丙醇钛为前驱体,压力为0.1~0.3torr,充气0.1~0.5s,随后抽气30~50s,再充入等离子水蒸汽0.01~0.03s,最后抽气30~50s,反复进行异丙醇钛充气-抽气-水蒸气充气-抽气循环,沉积TiO2薄膜层;所述循环的次数为50~500次。
8.如权利要求5所述的抗熔融铝硅合金腐蚀复合涂层的制备方法,其特征在于,所述沉积Al2O3薄膜层的步骤包括:以三甲基铝为前驱体,压力为0.05~0.2torr,充气0.01~0.03s,随后抽气40~60s,再充入水蒸汽0.01~0.03s,最后抽气20~60s,反复进行三甲基铝充气-抽气-水蒸气充气-抽气循环,沉积Al2O3薄膜层;所述循环的次数为50~500次。
9.如权利要求4~8任一项所述的抗熔融铝硅合金腐蚀复合涂层的制备方法,其特征在于,所述步骤S2中,所述喷砂处理于0.6~0.9MPa的高压氮气下进行;所述喷砂的时间为5~20min;所述喷砂的磨料为300~500目的Al2O3颗粒;喷砂的距离2~6cm;
所述步骤S1中,所述表面处理包括先对铁基合金进行机械抛光处理,然后再进行电解抛光处理;所述机械抛光处理包括:采用80目~1200目粒度的砂纸打磨至肉眼可见无明显划痕,然后在超声波中采用丙酮清洗5~20min,再用无水乙醇超声波清洗5~20min,最后进行干燥;所述电解抛光处理为以铁基合金为阳极、以不溶性导电材料为阴极,对铁基进行电解抛光处理;所述电解抛光处理的电解液包括体积分数为60~80%的浓硫酸,体积分数为15~37%的浓磷酸和体积分数为3~5%的蒸馏水;所述电解的直流电压为5~6V,电解液的温度为60~80℃,电解抛光的时间为2~5min。
10.如权利要求1~3任一项所述的抗熔融铝硅合金腐蚀复合涂层或如权利要求4~9任一项所述的方法制备的抗熔融铝硅合金腐蚀复合涂层在太阳能热发电换热管中的应用。
CN201910281498.6A 2019-04-09 2019-04-09 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用 Active CN109943803B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910281498.6A CN109943803B (zh) 2019-04-09 2019-04-09 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用
US16/977,821 US11572627B2 (en) 2019-04-09 2020-03-03 Molten Al—Si alloy corrosion resistant composite coating and preparation method and application thereof
PCT/CN2020/077573 WO2020207155A1 (zh) 2019-04-09 2020-03-03 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910281498.6A CN109943803B (zh) 2019-04-09 2019-04-09 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109943803A true CN109943803A (zh) 2019-06-28
CN109943803B CN109943803B (zh) 2020-06-05

Family

ID=67014138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910281498.6A Active CN109943803B (zh) 2019-04-09 2019-04-09 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用

Country Status (3)

Country Link
US (1) US11572627B2 (zh)
CN (1) CN109943803B (zh)
WO (1) WO2020207155A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020207155A1 (zh) * 2019-04-09 2020-10-15 长沙理工大学 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用
CN114277336A (zh) * 2020-09-28 2022-04-05 上海交通大学 基于Al3Ti纳米针垂直排列的Al基合金薄膜及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059158B (zh) * 2021-03-22 2022-04-12 东北大学 一种电子束制备高硅铝硅合金涂层的工艺方法
DE102021118766A1 (de) * 2021-07-20 2023-01-26 Kamax Holding Gmbh & Co. Kg Bauteil mit integrierter Aluminiumdiffusionsschicht und Aluminiumoxidschicht
CN114086178B (zh) * 2021-11-25 2022-07-29 宁夏金裕海化工有限公司 一种异辛烷生产用耐腐蚀合金进料管及其加工工艺
CN115142028B (zh) * 2022-08-25 2023-06-30 西安稀有金属材料研究院有限公司 一种耐磨耐腐蚀Fe-Cr-Al复合涂层的制备方法
CN115961283B (zh) * 2023-02-08 2024-06-25 重庆大学 一种合金表面用防护涂层的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283695A (ja) * 1999-03-30 2000-10-13 Kobe Steel Ltd 熱交換器用アルミニウムフィン材
CN102191449A (zh) * 2010-03-16 2011-09-21 广东工业大学 太阳能热发电抗熔融铝硅合金腐蚀梯度保护涂层及其制备方法
CN104947107A (zh) * 2015-07-15 2015-09-30 沈阳理工大学 一种钛及钛合金表面抗氧化耐磨损复合涂层及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1569352A1 (ru) * 1986-04-14 1990-06-07 Воронежский технологический институт Состав дл титаноалитировани сталей
JP2959404B2 (ja) * 1994-07-27 1999-10-06 松下電器産業株式会社 硝子質被覆層を形成した物品の製造方法
US5626462A (en) * 1995-01-03 1997-05-06 General Electric Company Double-wall airfoil
US6582834B2 (en) * 2001-06-12 2003-06-24 General Electric Company Anti-stick coating for internal passages of turbine components
US7601401B2 (en) * 2004-11-19 2009-10-13 E.I. Du Pont De Nemours And Company Process for applying fluoropolymer powder coating as a primer layer and an overcoat
CN102190461A (zh) 2010-03-16 2011-09-21 广东工业大学 太阳能热发电耐熔融铝硅合金腐蚀保护涂层及其制备方法
CA2882788C (en) * 2014-02-26 2019-01-22 Endurance Technologies, Inc. Coating compositions, methods and articles produced thereby
CN108048779B (zh) 2017-12-21 2019-11-12 福州大学 具有耐铝液腐蚀复合陶瓷涂层的内加热蒸发篮的制备方法
CN109943803B (zh) * 2019-04-09 2020-06-05 长沙理工大学 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283695A (ja) * 1999-03-30 2000-10-13 Kobe Steel Ltd 熱交換器用アルミニウムフィン材
CN102191449A (zh) * 2010-03-16 2011-09-21 广东工业大学 太阳能热发电抗熔融铝硅合金腐蚀梯度保护涂层及其制备方法
CN104947107A (zh) * 2015-07-15 2015-09-30 沈阳理工大学 一种钛及钛合金表面抗氧化耐磨损复合涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
上田俶完等: "铁合金上耐熔融铝腐蚀的氧化膜涂层铁合金上耐熔融铝腐蚀的氧化膜涂层", 《武钢技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020207155A1 (zh) * 2019-04-09 2020-10-15 长沙理工大学 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用
US11572627B2 (en) 2019-04-09 2023-02-07 Changsha University Of Science & Technology Molten Al—Si alloy corrosion resistant composite coating and preparation method and application thereof
CN114277336A (zh) * 2020-09-28 2022-04-05 上海交通大学 基于Al3Ti纳米针垂直排列的Al基合金薄膜及其制备方法

Also Published As

Publication number Publication date
US11572627B2 (en) 2023-02-07
US20210071307A1 (en) 2021-03-11
WO2020207155A1 (zh) 2020-10-15
CN109943803B (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN109943803A (zh) 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用
JP5646613B2 (ja) 鋼帯上におけるカーボンナノチューブ(cnt)及びファイバー(cnf)の直接低温成長方法
CN107302094A (zh) 燃料电池金属双极板超导电超耐蚀的功能涂层及制备方法
CN103590008B (zh) 一种在TiAl合金和MCrAlY涂层间制备Al2O3扩散障的方法
CN105177572B (zh) 一种在钢板表面制备耐蚀复合涂层的方法
CN101265603A (zh) 一种多层阻氢渗透复合膜的制备方法
Li et al. An effective low-temperature strategy for sealing plasma sprayed Al2O3-based coatings
CN108359927B (zh) 一种NiCr/Al2O3复合涂层的制备方法
CN102787300A (zh) 一种超临界水冷堆燃料包壳表面的Cr/CrAlN梯度涂层工艺
WO2018113699A1 (zh) 一种金属防腐石墨烯复合涂层的制备方法
Chen et al. Influence of vacuum annealing on structures and properties of AlTiSiN coatings with corrosion resistance
CN106637071A (zh) 一种多段式包埋渗铝结合微弧氧化制备复合涂层的方法
CN111334748A (zh) 钢铁制件的保护层、保护层制备方法及钢铁制件
Luo et al. Vapor-deposited iron sulfide films as a novel hydrogen permeation barrier for steel: Deposition condition, defect effect, and hydrogen diffusion mechanism
Zhou et al. Annealing behavior of aluminum coating prepared by arc spraying on P355NL1 steel
CN106283052A (zh) 一种二维材料调控硅碳复合结构阻氢涂层及其制备方法
Qin et al. Effect of post-sealing treatment with different concentrations of NaH2PO4 on corrosion resistance of MAO coating on 6063 aluminum alloy
CN110424003A (zh) 一种碳强化金属-陶瓷复合材料及其制备方法和用途
CN115110068A (zh) 一种耐腐蚀性类水滑石/金属复合涂层及其制备方法与应用
CN108998794A (zh) 一种Re-Si共改性铝化物涂层及其制备方法
US8367162B2 (en) Pretreatment method for improving antioxidation of steel T91/P91 in high temperature water vapor
CN106544627A (zh) 一种抗高温热腐蚀复合涂层及其制备方法
Ogihara et al. Synthesis of super hard Ni–B/diamond composite coatings by wet processes
TWI376833B (en) Method for preparing a surface modification coating of metal bipolar plates
CN111139510B (zh) 一种船用低碳钢防腐涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant