CN109917648B - 一种强核神经元系统的混合控制方法 - Google Patents

一种强核神经元系统的混合控制方法 Download PDF

Info

Publication number
CN109917648B
CN109917648B CN201910183863.XA CN201910183863A CN109917648B CN 109917648 B CN109917648 B CN 109917648B CN 201910183863 A CN201910183863 A CN 201910183863A CN 109917648 B CN109917648 B CN 109917648B
Authority
CN
China
Prior art keywords
neuron
time lag
strong nuclear
lag
balance point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910183863.XA
Other languages
English (en)
Other versions
CN109917648A (zh
Inventor
施硕
肖敏
陶斌斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201910183863.XA priority Critical patent/CN109917648B/zh
Publication of CN109917648A publication Critical patent/CN109917648A/zh
Application granted granted Critical
Publication of CN109917648B publication Critical patent/CN109917648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明揭示了一种强核神经元系统的混合控制方法,包括步骤:S1:建立无控的时滞强核神经元模型,得到系统稳定性特性和平衡点信息;S2:对于无控的时滞强核神经元模型施加混合控制器;S3:将受混合控制器作用的时滞强核神经元模型在平衡点处线性化,得到线性化后的被控网络的特征方程;S4:选取泄漏时滞作为分岔参数,通过对该线性化后的被控网络的特征方程进行稳定性分析和分岔分析,调节并选取控制器参数,使得被控网络在平衡点附近局部稳定。应用本发明的技术方案,能更好拟合实际神经网络,对时滞神经网络动力学研究意义深远。提高了混合控制器的适用性;此外,建模时无需系统当前状态值,控制参数可调域大,实际操作简便易行,控制效果显著。

Description

一种强核神经元系统的混合控制方法
技术领域
本发明涉及一种含有泄漏时滞与分布时滞的强核神经元系统的混合控制技术的设计与实现,属于控制器技术领域。
背景技术
Marcus和Westervelt二人于1989年首次提出带有时滞的神经网络模型,被证明能够更好拟合实际生物学神经元网络。自此之后,越来越多的研究关注不同时滞对神经网络的动力学特性的影响。在实际的人工神经网络的应用中,由于神经元和放大器的有限转换速度,当神经元从网络和外部输入中脱离联系时,在重启电势与分离静态状态之间存在一种能让神经网络失衡的时滞,即泄漏时滞。
在复杂网络中,分岔控制是一种常用工具,可以通过对复杂网络施加控制器来改变系统的一些动力学行为。目前常用的分岔控制器有,时滞反馈控制器,状态反馈控制器和PD控制器以及混合控制器等。由于混合控制器不需要当前状态值,且控制器参数的可调域大,简便易行,因此在实际控制应用中常常被采用。
发明内容
本发明所要解决的技术问题在于充实延伸了神经网络控制的研究领域,提供了一种混合控制方法,对含有泄漏时滞与分布时滞的强核神经元系统的稳定性进行控制,并在控制器介入下讨论Hopf分岔产生的可能性。
为实现上述目的,本发明具体采用的技术方案为:一种强核神经元系统的混合控制方法,其特征在于:包括以下步骤:
S1:建立无控的时滞强核神经元模型,得到系统稳定性特性和平衡点信息;
S2:对于无控的时滞强核神经元模型施加混合控制器;
S3:将受混合控制器作用的时滞强核神经元模型在平衡点处线性化,得到线性化后的被控网络的特征方程;
S4:选取泄漏时滞作为分岔参数,通过对该线性化后的被控网络的特征方程进行稳定性分析和分岔分析,调节并选取控制器参数,使得被控网络在平衡点附近局部稳定。
进一步地,步骤S1中无控的时滞强核神经元模型的数学表达为:
Figure BDA0001992186150000021
其中-μx(t-τ)为泄漏时滞项,μ>0表示神经元的延时率,v为描述自反馈强度的实常数。f(·)为激活函数,并满足f(0)=0,f∈C1,C1表示一维复数域。
更进一步地,数学表达中分段连续的核函数Kn(·)需要满足条件:
Figure BDA0001992186150000022
其中
Figure BDA0001992186150000023
β为表示神经元记忆效果的时滞率且为正实数,n=0表示弱核,n=1表示强核,当n≥2时表示超强核。
进一步地,步骤S1中在求取系统平衡点的过程为,先对系统进行转化处理,令
Figure BDA0001992186150000024
将原一维系统转化为三维系统:
Figure BDA0001992186150000025
由此解方程可得到模型的非负平衡点为O(0,0,0)。
进一步地,步骤S2所施加的混合控制器的数学表达为:u(t)=α(-μx(t-τ)+vf(y1(t))+x(t)-x*),其中α∈[-1,1]为反馈增益参数,x*为非负平衡点中的x(t)分量。
进一步地,所述被控网络的系统模型为:
Figure BDA0001992186150000026
将被控网络中的泄漏时滞作为分岔参数,对被控网络的局部稳定性进行分析,并根据稳定性分析的结果,选择相应的混合控制器参数α,使被控网络在平衡点O(0,0,0)处渐进稳定。当系统无时滞(τ=0),特征方程可改写为:
λ3+(2β-α+μ-μα)λ2+(β2-2αβ+2μβ-2αμβ)λ+μ(1-α)β2-αβ22(1-α)vf′(0)=0,讨论上述方程的特征根是否具有负实部。当系统有时滞(τ>0),讨论有时延的特征方程是否存在分岔点出现,如存在分岔点τ0,比较分岔点τ0和网络时延τ的大小判断系统是否稳定。
较之于现有技术的混合控制器,本发明具有以下显著的技术效果:本发明所提出的带有泄漏时滞和分布时滞的神经元系统能更好拟合实际神经网络,所引入的泄漏时滞对时滞神经网络动力学研究具有重要指导意义。提高了混合控制器的适用性,尤其对于其它的复杂动力学网络;此外,建模时无需系统当前状态值,控制参数可调域大,实际操作简便易行,控制效果显著。
附图说明
图1为含可配置平衡点功能的PID控制器的系统原理图。
图2为无控模型(13)的τ=0.452时,系统稳定的波形图。
图3为无控模型(13)的τ=0.452时,系统稳定的相位图。
图4为无控模型(13)的τ=0.522的情况下,系统分岔的波形图。
图5为无控模型(13)的τ=0.522的情况下,系统分岔的相位图。
图6为在控制器参数α=-0.1,τ=0.432的情况下,被控模型(14)稳定的波形图。
图7为在控制器参数α=-0.1,τ=0.432的情况下,被控模型(14)稳定的相位图。
图8为在控制器参数α=-0.1,τ=0.475的情况下,被控模型(14)分岔的波形图。
图9为在控制器参数α=-0.1,τ=0.475的情况下,被控模型(14)分岔的相位图。
图10为在控制器参数α=0.5,τ=0.682的情况下,被控模型(15)稳定的波形图。
图11为在控制器参数α=0.5,τ=0.682的情况下,被控模型(15)稳定的相位图。
图12为在控制器参数α=0.5,τ=0.725的情况下,被控模型(15)分岔的波形图。
图13为在控制器参数α=0.5,τ=0.725的情况下,被控模型(15)分岔的相位图。
具体的实施方式
下面结合说明书附图对本发明的实施方式进行描述。
如图1所示,本发明是含有泄漏时滞和分布时滞的强核神经元系统的混合控制器设计与实现,具体详述如下。
步骤S1:建立无控的时滞强核神经元模型,得到系统稳定性特性和平衡点信息;,并对其施加控制器。
时滞强核神经元模型的数学模型为:
Figure BDA0001992186150000041
其中-μx(t-τ)为稳定负反馈项,即上述的泄漏时滞项。μ>0表示神经元的延时率。v为描述自反馈强度的实常数。f(·)为激活函数,并满足f(0)=0,f∈C1,C1表示一维复数域。分段连续的核函数Kn(·)需要满足如下两个条件:
Figure BDA0001992186150000042
其中Kn(s)通常取如下形式:
Figure BDA0001992186150000043
其中β为正实数,表示神经元记忆效果的时滞率。n=0表示弱核,n=1表示强核,当n≥2时表示超强核。在求取系统平衡点时,首先要对系统进行转化处理。
Figure BDA0001992186150000044
则原一维系统转化为三维系统如下:
Figure BDA0001992186150000045
因此,不难得到模型的非负平衡点为O(0,0,0)。
步骤S2:对于无控的时滞强核神经元模型施加混合控制器;即在平衡点处加入的混合控制器的表达如下:u(t)=α(-μx(t-τ)+vf(y1(t))+x(t)-x*) (3),其中α∈[-1,1]为反馈增益参数,x*为所求平衡点中x(t)分量。不难知道,x*=0。
因此,加入混合控制器的神经元网络的数学模型如下:
Figure BDA0001992186150000051
步骤S3:将受混合控制器作用的时滞强核神经元模型在平衡点处线性化,得到线性化后的被控网络的特征方程。
令u1(t)=x(t),u2(t)=y1(t),u3(t)=y0(t)。则在O(0,0,0)处线性化后的模型为:
Figure BDA0001992186150000052
则可知模型的特征方程为:
Figure BDA0001992186150000053
即λ3+(2β-α)λ2+(β2-2αβ)λ+μ(1-α)(λ+β2)eλτ-αβ22(1-α)vf′(0)=0 (7)。
步骤S4:选取泄漏时滞作为分岔参数,通过对该线性化后的被控网络的特征方程进行稳定性分析和分岔分析,调节并选取控制器参数,使得被控网络在平衡点附近局部稳定。
选定系统的泄漏时滞作为系统分岔参数进行稳定性研究。系统稳定的条件时特征方程的根具有负实部,因此需要找到临界稳定的条件,即特征方程出现纯虚根的情况。
一、当系统无时滞(τ=0),特征方程可改写为:
λ3+(2β-α+μ-μα)λ2+(β2-2αβ+2μβ-2αμβ)λ+μ(1-α)β2-αβ22(1-α)vf′(0)=0 (8),讨论上述方程的特征根是否具有负实部。
上述方程的根具有负实部的充要条件为如下的Routh-Hurwitz判据满足:
D1=C1>0 (9),
Figure BDA0001992186150000054
Figure BDA0001992186150000061
其中,
Figure BDA0001992186150000062
因此可得结论一:当控制器参数满足上述(9)-(11)三个不等式时,无时滞情况下的系统是稳定的。
二、当系统有时滞(τ>0),将λ=iω带入特征方程中,分离实部虚部可得:
Figure BDA0001992186150000063
等式两边平方相加可得ω6+B1ω4+B2ω2+B3=0 (12)。
其中
Figure BDA0001992186150000064
此时令h(ω)=ω6+B1ω4+B2ω2+B3
当B3<0,上述方程至少有一个正根ω0,对应可解出此时的时滞:
Figure BDA0001992186150000065
分岔点是系统从稳定到不稳定的一个临界点,那么对应的特征方程的根要从该点处穿越虚轴到达虚轴的右半平面,因此在该点出特征根对于分岔参数τ的导数在τ0处的实部是大于零的,那么特征根才能从左半平面穿越到右半平面。对于特征方程两边对于τ求导得出:
Figure BDA0001992186150000066
进一步可得导数的实部为:
Figure BDA0001992186150000067
将λ=iω0带入上式得:
Figure BDA0001992186150000071
其中,
Figure BDA0001992186150000072
进一步化简替换可得:
Figure BDA0001992186150000073
上述结果可以看出在τ0处满足穿越条件,因此,τ0是原被控系统的分岔点。可以得出以下结论二:a、当时滞选取满足τ∈[0,τ0),受控系统在平衡点O(0,0,0)处局部渐进稳定;b、当时滞满足τ=τ0时,系统在平衡点O(0,0,0)周围产生Hopf分岔现象,当τ穿越τ0时,系统产生一组周期解。
从更具体的实施例来理解本技术方案的创新,运用Matlab仿真实例来验证如下。
选取无控的含有泄漏时滞和分布时滞的强核神经元系统模型。具体数学表达如下:
Figure BDA0001992186150000074
由计算程序可得出,无控时系统的分岔点为τ0=0.489。
如图2,3所示,当选取泄漏时滞为τ=0.452<τ0时,无控系统在平衡点处渐进稳定。
如图4,5所示,当选取泄漏时滞为τ=0.522>τ0时,无控系统失去稳定性,产生震荡,且在平衡点周围出现Hopf分岔现象。
对的含有泄漏时滞和分布时滞的强核神经元系统模型加入混合控制器,控制器参数α=-0.1。受控系统的具体数学表达如下:
Figure BDA0001992186150000081
由计算程序可得出,无控时系统的分岔点为τ0=0.458。
如图6,7所示,当选取泄漏时滞为τ=0.432<τ0时,无控系统在平衡点处渐进稳定。
如图8,9所示,当选取泄漏时滞为τ=0.475>τ0时,无控系统失去稳定性,产生震荡,且在平衡点周围出现Hopf分岔现象。
对的含有泄漏时滞和分布时滞的强核神经元系统模型加入混合控制器,控制器参数α=0.5。受控系统的具体数学表达如下:
Figure BDA0001992186150000082
由计算程序可得出,无控时系统的分岔点为τ0=0.708。
如图10,11所示,当选取泄漏时滞为τ=0.682<τ0时,无控系统在平衡点处渐进稳定。
如图12,13所示,当选取泄漏时滞为τ=0.725>τ0时,无控系统失去稳定性,产生震荡,且在平衡点周围出现Hopf分岔现象。
应用本发明的强核神经元系统的混合控制设计方案,较之于现有技术的混合控制器,具有以下显著的技术效果:本发明所提出的带有泄漏时滞和分布时滞的神经元系统能更好拟合实际神经网络,所引入的泄漏时滞对时滞神经网络动力学研究具有重要指导意义。提高了混合控制器的适用性,尤其对于其它的复杂动力学网络;此外,建模时无需系统当前状态值,控制参数可调域大,实际操作简便易行,控制效果显著。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (2)

1.一种强核神经元系统的混合控制方法,其特征在于:包括以下步骤:
S1:建立无控的时滞强核神经元模型,得到系统稳定性特性和平衡点信息,其中无控的时滞强核神经元模型的数学表达为:
Figure FDA0003462344560000011
其中-μx(t-τ)为泄漏时滞项,μ>0表示神经元的延时率,v为描述自反馈强度的实常数; f(·)为激活函数,并满足f(0)=0,f(·)∈C1,C1表示一维的复数域;其中分段连续的核函数Kn(·)需要满足条件:
Figure FDA0003462344560000012
其中
Figure FDA0003462344560000013
β为表示神经元记忆效果的时滞率且为正实数,n=0表示弱核,n=1表示强核,当n≥2时表示超强核;在求取系统平衡点的过程为,先对系统进行转化处理,令
Figure FDA0003462344560000014
将原一维系统转化为三维系统:
Figure FDA0003462344560000015
Figure FDA0003462344560000016
由此解方程可得到模型的非负平衡点为O(0,0,0);
S2:对于无控的时滞强核神经元模型施加混合控制器,数学表达为:
u(t)=α(-μx(t-τ)+vf(y1(t))+x(t)-x*),其中α∈[-1,1]为反馈增益参数,x*为非负平衡点中的x(t)分量;
S3:将受混合控制器作用的时滞强核神经元模型在平衡点处线性化,得到线性化后的被控网络的特征方程;
S4:选取泄漏时滞作为分岔参数,通过对该线性化后的被控网络的特征方程进行稳定性分析和分岔分析,调节并选取反馈增益参数,使得被控网络在平衡点附近局部稳定。
2.根据权利要求1所述强核神经元系统的混合控制方法,其特征在于:所述被控网络的系统模型为:
Figure FDA0003462344560000021
将被控网络中的泄漏时滞作为分岔参数,对被控网络的局部稳定性进行分析,并根据稳定性分析的结果,选择相应的反馈增益参数α,使被控网络在平衡点O(0,0,0)处渐进稳定。
CN201910183863.XA 2019-03-12 2019-03-12 一种强核神经元系统的混合控制方法 Active CN109917648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910183863.XA CN109917648B (zh) 2019-03-12 2019-03-12 一种强核神经元系统的混合控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910183863.XA CN109917648B (zh) 2019-03-12 2019-03-12 一种强核神经元系统的混合控制方法

Publications (2)

Publication Number Publication Date
CN109917648A CN109917648A (zh) 2019-06-21
CN109917648B true CN109917648B (zh) 2022-03-15

Family

ID=66964346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910183863.XA Active CN109917648B (zh) 2019-03-12 2019-03-12 一种强核神经元系统的混合控制方法

Country Status (1)

Country Link
CN (1) CN109917648B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781825B (zh) * 2020-05-25 2022-09-23 南京邮电大学 基于多个时滞的双环神经元系统的混合控制器设计方法
CN111781817A (zh) * 2020-07-01 2020-10-16 南京邮电大学 基于pd控制器调节含有混合时滞神经网络分岔点的方法
CN113191490A (zh) * 2021-03-11 2021-07-30 杭州电子科技大学 单神经元的时滞神经网络混沌电路
CN113485116B (zh) * 2021-07-23 2023-08-25 南京邮电大学 时空扩散影响下海洋浮游生态系统的混合控制策略

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10205916B4 (de) * 2002-02-12 2004-09-16 Infineon Technologies Ag Verfahren zur Bestimmung von Hopf-Bifurkationspunkten einer periodischen Zustandsbeschreibung eines technischen Systems
CN108398878A (zh) * 2018-01-22 2018-08-14 南京邮电大学 基于血红细胞繁殖模型的分数阶pd控制器设计方法
CN108549227A (zh) * 2018-04-16 2018-09-18 南京邮电大学 一种基于分数阶血红细胞模型的时滞反馈控制器设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10205916B4 (de) * 2002-02-12 2004-09-16 Infineon Technologies Ag Verfahren zur Bestimmung von Hopf-Bifurkationspunkten einer periodischen Zustandsbeschreibung eines technischen Systems
CN108398878A (zh) * 2018-01-22 2018-08-14 南京邮电大学 基于血红细胞繁殖模型的分数阶pd控制器设计方法
CN108549227A (zh) * 2018-04-16 2018-09-18 南京邮电大学 一种基于分数阶血红细胞模型的时滞反馈控制器设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Stability Switches and Hopf Bifurcation of a Neuron System with both Leakage and Distributed Delays;Yao, Yi等;《Neural Processing Letters》;20180911;第50卷(第1期);第341-355页 *
几类时滞系统的分岔控制及应用;陶斌斌;《中国优秀硕士学位论文全文数据库基础科学辑》;20190215(第2期);第A002-90页 *

Also Published As

Publication number Publication date
CN109917648A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN109917648B (zh) 一种强核神经元系统的混合控制方法
Landín et al. Advantages of neurofuzzy logic against conventional experimental design and statistical analysis in studying and developing direct compression formulations
Li et al. Output tracking of stochastic high-order nonlinear systems with Markovian switching
CN108549227B (zh) 一种基于分数阶血红细胞模型的时滞反馈控制器设计方法
CN113110340B (zh) 非连续多智能体系统的分布式非平滑饱和一致性控制方法
Tepljakov et al. Closed-loop identification of fractional-order models using FOMCON toolbox for MATLAB
Liu et al. Stabilization of stochastic highly non-linear multi-links systems via aperiodically intermittent control
Li et al. Adaptive NN control for a class of stochastic nonlinear systems with unmodeled dynamics using DSC technique
CN104932256B (zh) 基于优化迭代算法的时滞广域电力系统控制器
CN110807168B (zh) 一种估算并网变换器次同步振荡模态的方法及装置
Xiaohua et al. Adaptive neural network decentralized stabilization for nonlinear large scale interconnected systems with expanding construction
CN111781825B (zh) 基于多个时滞的双环神经元系统的混合控制器设计方法
Ye et al. Decentralized prescribed-time control for interconnected nonlinear systems via output-feedback
CN105932675B (zh) 一种电力系统潮流并行协调算法
CN113485116B (zh) 时空扩散影响下海洋浮游生态系统的混合控制策略
CN108803315B (zh) 一种化工间歇过程的智能跟踪控制方法
CN113852290A (zh) 一种实时的电压稳态误差恢复控制方法及系统
CN111368982A (zh) 一种基于bm神经网络的新型延时pd控制器设计方法
CN111781817A (zh) 基于pd控制器调节含有混合时滞神经网络分岔点的方法
Ali et al. Robust level flight control design for scaled Yak-54 unmanned aerial vehicle using single sliding surface
CN111682552A (zh) 电压控制方法、装置、设备及存储介质
CN113703317A (zh) 一种基于改进的捕食被捕食模型的分岔延迟控制器设计方法
Grateloup et al. A combined decomposition and coordination method in large dimension optimization problems
CN113281997B (zh) 级联化学反应器的控制方法及系统
Cao et al. Collaborative optimization using hybrid simulated annealing optimization and sequential quadratic programming

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant