CN109879261A - 一种多面体结构焦磷酸钛粉体及其制备方法 - Google Patents

一种多面体结构焦磷酸钛粉体及其制备方法 Download PDF

Info

Publication number
CN109879261A
CN109879261A CN201910292837.0A CN201910292837A CN109879261A CN 109879261 A CN109879261 A CN 109879261A CN 201910292837 A CN201910292837 A CN 201910292837A CN 109879261 A CN109879261 A CN 109879261A
Authority
CN
China
Prior art keywords
titanium
alcohol
solution
polyhedral structure
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910292837.0A
Other languages
English (en)
Other versions
CN109879261B (zh
Inventor
黄强
包崇卓
陈明欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN201910292837.0A priority Critical patent/CN109879261B/zh
Publication of CN109879261A publication Critical patent/CN109879261A/zh
Application granted granted Critical
Publication of CN109879261B publication Critical patent/CN109879261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种多面体结构焦磷酸钛粉体及其制备方法,属于焦磷酸钛技术领域。本发明焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为100~1200 nm;本发明将钛源溶解到无水醇溶剂中得到钛‑醇溶液;将醇‑水混合液匀速滴加到钛‑醇溶液中反应得到悬浊液A;将磷源水溶液逐滴滴加到悬浊液A中反应至体系澄清得到澄清液B;挥发澄清液B中的溶剂得到凝胶C;将凝胶C作为前驱体匀速升温至焙烧温度并高温焙烧,随炉冷却后用水洗涤、干燥即得多面体结构焦磷酸钛粉体。本发明采用溶胶‑凝胶制备前驱体,再热解的方法合成了暴露面为高能晶面的焦磷酸钛多面体颗粒,制备过程操作简单,不需要惰性气体保护,重复性好,易于控制。

Description

一种多面体结构焦磷酸钛粉体及其制备方法
技术领域
本发明涉及一种多面体结构焦磷酸钛粉体及其制备方法,属于焦磷酸钛粉体技术领域。
背景技术
焦磷酸钛(TiP2O7)是一种具有立方晶系、超晶格结构的焦磷酸盐。焦磷酸钛物理化学性质稳定,用途广泛,在选择性催化氧化、混合烃分离、离子交换、紫外线吸收、锂钠钾碱金属离子电池电极活性材料和高折射率光学玻璃制造等诸多领域都有着潜在的应用价值,越来越多地受到关注。
焦磷酸钛的制备已有成熟的方法,主要是前驱体焙烧法。比如说以二氧化钛(TiO2)和磷酸(H3PO4)为原料的传统焙烧法,以四氯化钛(TiCl4)和H3PO4为原料、溶胶-凝胶法制备前体再焙烧的方法,还有以TiO2和H3PO4为原料、经水热反应生成α-Ti(HPO4)2·H2O前体再煅烧的方法。但是,这些传统方法制备的焦磷酸钛粉体产物的微观结构多为不规则的颗粒,且粒径分布不均匀、容易团聚而影响其使用性能。
合成颗粒尺寸均一、微观形貌可控的材料,对提升材料的性能大有裨益,但是现有技术中焦磷酸钛颗粒多为无定形结构,颗粒不规整,更不可能制备出多面体结构、尺寸均匀、单分散的焦磷酸钛粉体。
发明内容
针对现有技术中焦磷酸钛的制备技术问题,本发明提供一种多面体结构焦磷酸钛粉体的制备方法,本发明采用溶胶-凝胶制备前驱体,而后热解的方法合成了暴露面为高能晶面的焦磷酸钛多面体颗粒,制备过程操作简单,不需要惰性气体保护,重复性好,易于控制,所得多面体颗粒各个面均发育完全,形貌规整,且颗粒尺寸分布范围窄,物理化学性能稳定,在紫外线吸收、电极材料、催化剂、离子交换方面具有较大的应用前景。
一种多面体结构焦磷酸钛粉体,其焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为100~1200nm。
一种多面体结构焦磷酸钛粉体的制备方法,具体步骤如下:
(1)将钛源溶解到无水醇溶剂中得到钛-醇溶液;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应得到悬浊液A;
(3)将磷源水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度并高温焙烧,随炉冷却后用水洗涤、干燥即得多面体结构焦磷酸钛粉体。
所述步骤(1)钛源为四氯化钛、三氯化钛、钛酸四丁酯或钛酸异丙酯,无水醇溶剂为甲醇、乙醇、丙醇或丁醇,钛-醇溶液中钛源的浓度为0.02~0.5mol/L。
所述步骤(2)醇-水混合液中的醇为甲醇、乙醇、丙醇或丁醇,醇与水的体积比为(10:5)~(10:0.1)。
优选的,所述醇与水的体积比为(10:2)~(10:0.5)。
所述步骤(2)醇-水混合液与钛-醇溶液的体积比为1:(5~20),醇-水混合液的滴加速度为10~150μL/min。
优选的,所述醇-水混合液的滴加速度为20~60μL/min。
所述步骤(3)磷源为H3PO4、KH2PO4、NaH2PO4、NH4H2PO4、LiH2PO4、K2HPO4、Na2HPO4、(NH4)2HPO4或Li2HPO4,磷源水溶液中的质量浓度为20%~90%,磷源中的磷与步骤(1)钛源中的钛的摩尔比为(2.0~3.0):1。
优选的,所述磷源水溶液中的质量浓度为50%~85%,磷源中的磷与步骤(1)钛源中的钛的摩尔比为(2.0~2.5):1。
所述步骤(5)高温焙烧的温度为650~800℃,高温焙烧的时间为1~6h,升温速率为1~10℃/min。
所述步骤(4)中溶剂的挥发温度为室温~60℃,挥发时间为1~10d。
本发明的有益效果:
(1)本发明采用溶胶-凝胶制备前驱体,而后热解的方法合成了暴露面为高能晶面的焦磷酸钛多面体颗粒,制备过程操作简单,不需要惰性气体保护,重复性好,易于控制,所得多面体颗粒各个面均发育完全,形貌规整,且颗粒尺寸分布范围窄,物理化学性能稳定;
(2)本发明的多面体结构焦磷酸钛粉体可用于吸收紫外线;
(3)本发明的多面体结构焦磷酸钛粉体可用于做电极材料;
(4)本发明的多面体结构焦磷酸钛粉体的催化剂性能优越,可用于做氧化脱氢反应的催化剂;
(5)本发明的多面体结构焦磷酸钛粉体可用于做离子交换材料。
附图说明
图1为实施例2焦磷酸钛多面体颗粒的射扫描电镜(SEM)图;
图2为实施例2焦磷酸钛多面体颗粒的透射电镜(TEM)图;
图3为实施例2焦磷酸钛多面体颗粒的X射线粉末衍射(XRD)图谱;
图4为实施例2焦磷酸钛多面体颗粒的紫外可见光漫反射吸收图谱。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种多面体结构焦磷酸钛粉体,其焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为400~1000nm;
一种多面体结构焦磷酸钛粉体的制备方法,具体步骤如下:
(1)将钛源(四氯化钛(TiCl4))溶解到无水醇溶剂(乙醇)中得到钛-醇溶液;其中钛-醇溶液中钛源(四氯化钛(TiCl4))的浓度为0.273mol/L;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应120min得到悬浊液A;其中醇-水混合液中的醇为乙醇,乙醇与水的体积比为10:1,醇-水混合液与钛-醇溶液的体积比为1:10,醇-水混合液的滴加速度为25μL/min;
(3)将磷源(磷酸)水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B(透明清亮溶胶);其中磷源(磷酸)水溶液中的质量浓度为50%,磷源(磷酸)中的磷与步骤(1)钛源中的钛的摩尔比为2:1;磷源(磷酸)水溶液的滴加速度为30μL/min;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;其中溶剂的挥发温度为60℃,挥发时间为48h;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度(700℃)并高温焙烧1h,随炉冷却后用水洗涤3次、干燥即得多面体结构焦磷酸钛粉体;其中升温速率为5℃/min;
采用扫描电镜(SEM)和透射电镜(TEM)观察焦磷酸钛粉体的微观结构,本实施例焦磷酸钛粉体的形貌为多面体,横截面为多边形,粒径分布范围为400~1000nm,分布均匀;
采用转靶X射线衍射仪对焦磷酸钛粉体进行物相分析,焦磷酸钛粉体样品的衍射峰位置与焦磷酸钛的标准卡JCPDS(38-1468)峰位完全一致,图谱峰强较强,无毛刺,没有观察到杂质的衍射峰;
采用紫外-可见分光光度计测量样品的紫外-可见光吸收性能,本实施例多面体结构焦磷酸钛粉体在320~420nm(UVA)和275~320nm(UVB)波段都表现出较强的吸收。
实施例2:一种多面体结构焦磷酸钛粉体,其焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为200~800nm;
一种多面体结构焦磷酸钛粉体的制备方法,具体步骤如下:
(1)将钛源(钛酸四丁酯(Ti(OC4H9)4))溶解到无水醇溶剂(乙醇)中得到钛-醇溶液;其中钛-醇溶液中钛源(钛酸四丁酯(Ti(OC4H9)4))的浓度为0.147mol/L;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应120min得到悬浊液A;其中醇-水混合液中的醇为乙醇,乙醇与水的体积比为10:1,醇-水混合液与钛-醇溶液的体积比为1:10,醇-水混合液的滴加速度为25μL/min;
(3)将磷源(磷酸)水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B(透明清亮溶胶);其中磷源(磷酸)水溶液中的质量浓度为50%,磷源(磷酸)中的磷与步骤(1)钛源中的钛的摩尔比为2.1:1;磷源(磷酸)水溶液的滴加速度为20μL/min;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;其中溶剂的挥发温度为60℃,挥发时间为48h;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度(700℃)并高温焙烧1h,随炉冷却后用水洗涤3次、干燥即得多面体结构焦磷酸钛粉体;其中升温速率为5℃/min;
采用扫描电镜(SEM)和透射电镜(TEM)观察焦磷酸钛粉体的微观结构,本实施例焦磷酸钛粉体的SEM见图1,TEM图见图2,从图1和图2可知,本实施例焦磷酸钛粉体的形貌为多面体,横截面为多边形,粒径分布范围为200~800nm,分布均匀;
采用转靶X射线衍射仪对焦磷酸钛粉体进行物相分析,本实施例焦磷酸钛粉体的XRD图如图3所示,从图3可知,焦磷酸钛粉体样品的衍射峰位置与焦磷酸钛的标准卡JCPDS(38-1468)峰位完全一致,图谱峰强较强,无毛刺,没有观察到杂质的衍射峰;
采用紫外-可见分光光度计测量样品的紫外-可见光吸收性能(见图4),本实施例多面体结构焦磷酸钛粉体在320~420nm(UVA)和275~320nm(UVB)波段都表现出较强的吸收。
实施例3:一种多面体结构焦磷酸钛粉体,其焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为200~1000nm;
一种多面体结构焦磷酸钛粉体的制备方法,具体步骤如下:
(1)将钛源(四氯化钛(TiCl4))溶解到无水醇溶剂(甲醇)中得到钛-醇溶液;其中钛-醇溶液中钛源(四氯化钛(TiCl4))的浓度为0.273mol/L;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应120min得到悬浊液A;其中醇-水混合液中的醇为甲醇,甲醇与水的体积比为10:1,醇-水混合液与钛-醇溶液的体积比为1:10,醇-水混合液的滴加速度为25μL/min;
(3)将磷源(磷酸二氢钾KH2PO4)水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B(透明清亮溶胶);其中磷源(磷酸二氢钾KH2PO4)水溶液中的质量浓度为50%,磷源(磷酸二氢钾KH2PO4)中的磷与步骤(1)钛源中的钛的摩尔比为2.5:1;磷源(磷酸二氢钾KH2PO4)水溶液的滴加速度为30μL/min;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;其中溶剂的挥发温度为50℃,挥发时间为72h;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度(700℃)并高温焙烧1h,随炉冷却后用水洗涤3次、干燥即得多面体结构焦磷酸钛粉体;其中升温速率为5℃/min;
采用扫描电镜(SEM)和透射电镜(TEM)观察焦磷酸钛粉体的微观结构,本实施例焦磷酸钛粉体的形貌为多面体,横截面为多边形,粒径分布范围为600~1200nm,分布均匀;
采用转靶X射线衍射仪对焦磷酸钛粉体进行物相分析,焦磷酸钛粉体样品的衍射峰位置与焦磷酸钛的标准卡JCPDS(38-1468)峰位完全一致,图谱峰强较强,无毛刺,没有观察到杂质的衍射峰;
采用紫外-可见分光光度计测量样品的紫外-可见光吸收性能,本实施例多面体结构焦磷酸钛粉体在UVA-UVB波段都表现出较强的吸收。
实施例4:一种多面体结构焦磷酸钛粉体,其焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为400~800nm;
一种多面体结构焦磷酸钛粉体的制备方法,具体步骤如下:
(1)将钛源(钛酸异丙酯)溶解到无水醇溶剂(甲醇)中得到钛-醇溶液;其中钛-醇溶液中钛源(钛酸异丙酯)的浓度为0.169mol/L;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应80min得到悬浊液A;其中醇-水混合液中的醇为甲醇,甲醇与水的体积比为10:2,醇-水混合液与钛-醇溶液的体积比为1:5,醇-水混合液的滴加速度为30μL/min;
(3)将磷源(NaH2PO4)水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B(透明清亮溶胶);其中磷源(NaH2PO4)水溶液中的质量浓度为60%,磷源(NaH2PO4)中的磷与步骤(1)钛源中的钛的摩尔比为2.3:1;磷源(NaH2PO4)水溶液的滴加速度为35μL/min;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;其中溶剂的挥发温度为40℃,挥发时间为96h;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度(650℃)并高温焙烧6h,随炉冷却后用水洗涤3次、干燥即得多面体结构焦磷酸钛粉体;其中升温速率为6℃/min;
采用扫描电镜(SEM)和透射电镜(TEM)观察焦磷酸钛粉体的微观结构,本实施例焦磷酸钛粉体的形貌为多面体,横截面为多边形,粒径分布范围为400~800nm,分布均匀;
采用转靶X射线衍射仪对焦磷酸钛粉体进行物相分析,焦磷酸钛粉体样品的衍射峰位置与焦磷酸钛的标准卡JCPDS(38-1468)峰位完全一致,图谱峰强较强,无毛刺,没有观察到杂质的衍射峰;
采用紫外-可见分光光度计测量样品的紫外-可见光吸收性能,本实施例多面体结构焦磷酸钛粉体在320~420nm(UVA)和275~320nm(UVB)波段都表现出较强的吸收。
实施例5:一种多面体结构焦磷酸钛粉体,其焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为400~1200nm;
一种多面体结构焦磷酸钛粉体的制备方法,具体步骤如下:
(1)将钛源(三氯化钛)溶解到无水醇溶剂(丙醇)中得到钛-醇溶液;其中钛-醇溶液中钛源(三氯化钛)的浓度为0.324mol/L;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应120min得到悬浊液A;其中醇-水混合液中的醇为丙醇,丙醇与水的体积比为10:1.5,醇-水混合液与钛-醇溶液的体积比为1:8,醇-水混合液的滴加速度为40μL/min;
(3)将磷源(NH4H2PO4)水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B(透明清亮溶胶);其中磷源(NH4H2PO4)水溶液中的质量浓度为60%,磷源(NH4H2PO4)中的磷与步骤(1)钛源中的钛的摩尔比为2.25:1;磷源(NH4H2PO4)水溶液的滴加速度为40μL/min;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;其中溶剂的挥发温度为室温,挥发时间为120h;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度(750℃)并高温焙烧2h,随炉冷却后用水洗涤4次、干燥即得多面体结构焦磷酸钛粉体;其中升温速率为8℃/min;
采用扫描电镜(SEM)和透射电镜(TEM)观察焦磷酸钛粉体的微观结构,本实施例焦磷酸钛粉体的形貌为多面体,横截面为多边形,粒径分布范围为400~1200nm,分布均匀;
采用转靶X射线衍射仪对焦磷酸钛粉体进行物相分析,焦磷酸钛粉体样品的衍射峰位置与焦磷酸钛的标准卡JCPDS(38-1468)峰位完全一致,图谱峰强较强,无毛刺,没有观察到杂质的衍射峰;
采用紫外-可见分光光度计测量样品的紫外-可见光吸收性能,本实施例多面体结构焦磷酸钛粉体在320~420nm(UVA)和275~320nm(UVB)波段都表现出较强的吸收,。
实施例6:一种多面体结构焦磷酸钛粉体,其焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为200~600nm;
一种多面体结构焦磷酸钛粉体的制备方法,具体步骤如下:
(1)将钛源(四氯化钛)溶解到无水醇溶剂(丁醇)中得到钛-醇溶液;其中钛-醇溶液中钛源(四氯化钛)的浓度为0.273mol/L;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应30min得到悬浊液A;其中醇-水混合液中的醇为丁醇,丁醇与水的体积比为10:0.5,醇-水混合液与钛-醇溶液的体积比为1:20,醇-水混合液的滴加速度为60μL/min;
(3)将磷源(LiH2PO4)水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B(透明清亮溶胶);其中磷源(LiH2PO4)水溶液中的质量浓度为75%,磷源(LiH2PO4)中的磷与步骤(1)钛源中的钛的摩尔比为2.1:1;磷源(LiH2PO4)水溶液的滴加速度为30μL/min;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;其中溶剂的挥发温度为60℃,挥发时间为24h;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度(800℃)并高温焙烧1.5h,随炉冷却后用水洗涤5次、干燥即得多面体结构焦磷酸钛粉体;其中升温速率为10℃/min;
采用扫描电镜(SEM)和透射电镜(TEM)观察焦磷酸钛粉体的微观结构,本实施例焦磷酸钛粉体的形貌为多面体,横截面为多边形,粒径分布范围为200~600nm,分布均匀;
采用转靶X射线衍射仪对焦磷酸钛粉体进行物相分析,焦磷酸钛粉体样品的衍射峰位置与焦磷酸钛的标准卡JCPDS(38-1468)峰位完全一致,图谱峰强较强,无毛刺,没有观察到杂质的衍射峰;
采用紫外-可见分光光度计测量样品的紫外-可见光吸收性能,本实施例多面体结构焦磷酸钛粉体在320~420nm(UVA)和275~320nm(UVB)波段都表现出较强的吸收,。
实施例7:一种多面体结构焦磷酸钛粉体,其焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为200~1000nm;
一种多面体结构焦磷酸钛粉体的制备方法,具体步骤如下:
(1)将钛源(四氯化钛(TiCl4))溶解到无水醇溶剂(乙醇)中得到钛-醇溶液;其中钛-醇溶液中钛源(四氯化钛(TiCl4))的浓度为0.273mol/L;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应120min得到悬浊液A;其中醇-水混合液中的醇为乙醇,乙醇与水的体积比为10:1.6,醇-水混合液与钛-醇溶液的体积比为1:15,醇-水混合液的滴加速度为50μL/min;
(3)将磷源(K2HPO4)水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B(透明清亮溶胶);其中磷源(K2HPO4)水溶液中的质量浓度为65%,磷源(K2HPO4)中的磷与步骤(1)钛源中的钛的摩尔比为2.5:1;磷源(K2HPO4)水溶液的滴加速度为40μL/min;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;其中溶剂的挥发温度为50℃,挥发时间为72h;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度(700℃)并高温焙烧3h,随炉冷却后用水洗涤3次、干燥即得多面体结构焦磷酸钛粉体;其中升温速率为6℃/min;
采用扫描电镜(SEM)和透射电镜(TEM)观察焦磷酸钛粉体的微观结构,本实施例焦磷酸钛粉体的形貌为多面体,横截面为多边形,粒径分布范围为200~1000nm,分布均匀;
采用转靶X射线衍射仪对焦磷酸钛粉体进行物相分析,焦磷酸钛粉体样品的衍射峰位置与焦磷酸钛的标准卡JCPDS(38-1468)峰位完全一致,图谱峰强较强,无毛刺,没有观察到杂质的衍射峰;
采用紫外-可见分光光度计测量样品的紫外-可见光吸收性能,本实施例多面体结构焦磷酸钛粉体在320~420nm(UVA)和275~320nm(UVB)波段都表现出较强的吸收,。
实施例8:一种多面体结构焦磷酸钛粉体,其焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为200~1000nm;
一种多面体结构焦磷酸钛粉体的制备方法,具体步骤如下:
(1)将钛源(四氯化钛(TiCl4))溶解到无水醇溶剂(乙醇)中得到钛-醇溶液;其中钛-醇溶液中钛源(四氯化钛(TiCl4))的浓度为0.273mol/L;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应120min得到悬浊液A;其中醇-水混合液中的醇为乙醇,乙醇与水的体积比为10:1.2,醇-水混合液与钛-醇溶液的体积比为1:12,醇-水混合液的滴加速度为30μL/min;
(3)将磷源(磷酸二氢钾KH2PO4)水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B(透明清亮溶胶);其中磷源(磷酸二氢钾KH2PO4)水溶液中的质量浓度为65%,磷源(磷酸二氢钾KH2PO4)中的磷与步骤(1)钛源中的钛的摩尔比为2.6:1;磷源(磷酸二氢钾KH2PO4)水溶液的滴加速度为30μL/min;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;其中溶剂的挥发温度为50℃,挥发时间为72h;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度(700℃)并高温焙烧5h,随炉冷却后用水洗涤4次、干燥即得多面体结构焦磷酸钛粉体;其中升温速率为5℃/min;
采用扫描电镜(SEM)和透射电镜(TEM)观察焦磷酸钛粉体的微观结构,本实施例焦磷酸钛粉体的形貌为多面体,横截面为多边形,粒径分布范围为200~1000nm,分布均匀;
采用转靶X射线衍射仪对焦磷酸钛粉体进行物相分析,焦磷酸钛粉体样品的衍射峰位置与焦磷酸钛的标准卡JCPDS(38-1468)峰位完全一致,图谱峰强较强,无毛刺,没有观察到杂质的衍射峰;
采用紫外-可见分光光度计测量样品的紫外-可见光吸收性能,本实施例多面体结构焦磷酸钛粉体在UVA-UVB波段都表现出较强的吸收。
实施例9:一种多面体结构焦磷酸钛粉体,其焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为100~500nm;
一种多面体结构焦磷酸钛粉体的制备方法,具体步骤如下:
(1)将钛源(钛酸四丁酯)溶解到无水醇溶剂(乙醇)中得到钛-醇溶液;其中钛-醇溶液中钛源(钛酸四丁酯)的浓度为0.147mol/L;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应120min得到悬浊液A;其中醇-水混合液中的醇为乙醇,乙醇与水的体积比为10:1.8,醇-水混合液与钛-醇溶液的体积比为1:8,醇-水混合液的滴加速度为40μL/min;
(3)将磷源(Li2HPO4)水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B(透明清亮溶胶);其中磷源(Li2HPO4)水溶液中的质量浓度为80%,磷源(Li2HPO4)中的磷与步骤(1)钛源中的钛的摩尔比为2.3:1;磷源(Li2HPO4)水溶液的滴加速度为25μL/min;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;其中溶剂的挥发温度为60℃,挥发时间为48h;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度(750℃)并高温焙烧2h,随炉冷却后用水洗涤5次、干燥即得多面体结构焦磷酸钛粉体;其中升温速率为6℃/min;
采用扫描电镜(SEM)和透射电镜(TEM)观察焦磷酸钛粉体的微观结构,本实施例焦磷酸钛粉体的形貌为多面体,横截面为多边形,粒径分布范围为100~500nm,分布均匀;
采用转靶X射线衍射仪对焦磷酸钛粉体进行物相分析,焦磷酸钛粉体样品的衍射峰位置与焦磷酸钛的标准卡JCPDS(38-1468)峰位完全一致,图谱峰强较强,无毛刺,没有观察到杂质的衍射峰;
采用紫外-可见分光光度计测量样品的紫外-可见光吸收性能,本实施例多面体结构焦磷酸钛粉体在320~420nm(UVA)和275~320nm(UVB)波段都表现出较强的吸收。

Claims (10)

1.一种多面体结构焦磷酸钛粉体,其特征在于:焦磷酸钛粉体的结构为立方切角多面体结构,横截面为多边形,颗粒直径为100~1200 nm。
2.一种多面体结构焦磷酸钛粉体的制备方法,其特征在于,具体步骤如下:
(1)将钛源溶解到无水醇溶剂中得到钛-醇溶液;
(2)将醇-水混合液匀速滴加到步骤(1)的钛-醇溶液中反应得到悬浊液A;
(3)将磷源水溶液逐滴滴加到步骤(2)悬浊液A中反应至体系澄清得到澄清液B;
(4)挥发步骤(3)澄清液B中的溶剂得到凝胶C;
(5)将步骤(4)的凝胶C作为前驱体匀速升温至焙烧温度并高温焙烧,随炉冷却后用水洗涤、干燥即得多面体结构焦磷酸钛粉体。
3.根据权利要求2所述多面体结构焦磷酸钛粉体的制备方法,其特征在于:步骤(1)钛源为四氯化钛、三氯化钛、钛酸四丁酯或钛酸异丙酯,无水醇溶剂为甲醇、乙醇、丙醇或丁醇,钛-醇溶液中钛源的浓度为0.02~0.5 mol/L。
4.根据权利要求2所述多面体结构焦磷酸钛粉体的制备方法,其特征在于:步骤(2)醇-水混合液中的醇为甲醇、乙醇、丙醇或丁醇,醇与水的体积比为(10:5)~(10:0.1)。
5.根据权利要求4所述多面体结构焦磷酸钛粉体的制备方法,其特征在于:醇与水的体积比为(10:2)~(10:0.5)。
6.根据权利要求2所述多面体结构焦磷酸钛粉体的制备方法,其特征在于:步骤(2)醇-水混合液与钛-醇溶液的体积比为1:(5~20),醇-水混合液的滴加速度为10~150μL/min。
7.根据权利要求6所述多面体结构焦磷酸钛粉体的制备方法,其特征在于:醇-水混合液的滴加速度为20~60μL/min。
8.根据权利要求2所述多面体结构焦磷酸钛粉体的制备方法,其特征在于:步骤(3)磷源为H3PO4、KH2PO4、NaH2PO4、NH4H2PO4、LiH2PO4、K2HPO4、Na2HPO4、(NH4)2HPO4或Li2HPO4,磷源水溶液中的质量浓度为20%~90%,磷源中的磷与步骤(1)钛源中的钛的摩尔比为(2.0~3.0):1。
9.根据权利要求8所述多面体结构焦磷酸钛粉体的制备方法,其特征在于:磷源水溶液中的质量浓度为50%~85%,磷源中的磷与步骤(1)钛源中的钛的摩尔比为(2.0~2.5):1。
10.根据权利要求1所述多面体结构焦磷酸钛粉体的制备方法,其特征在于:步骤(5)高温焙烧的温度为650~800℃,高温焙烧的时间为1~6h,升温速率为1~10℃/min。
CN201910292837.0A 2019-04-12 2019-04-12 一种多面体结构焦磷酸钛粉体及其制备方法 Active CN109879261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910292837.0A CN109879261B (zh) 2019-04-12 2019-04-12 一种多面体结构焦磷酸钛粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910292837.0A CN109879261B (zh) 2019-04-12 2019-04-12 一种多面体结构焦磷酸钛粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN109879261A true CN109879261A (zh) 2019-06-14
CN109879261B CN109879261B (zh) 2022-09-09

Family

ID=66937142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910292837.0A Active CN109879261B (zh) 2019-04-12 2019-04-12 一种多面体结构焦磷酸钛粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN109879261B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394583A (zh) * 2022-01-13 2022-04-26 上海太洋科技有限公司 一种锂电正极材料添加剂用焦磷酸钛浆料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2654001A1 (fr) * 1988-07-20 1991-05-10 Mitsubishi Mining & Cement Co Element pour le garnissage dans un defaut de l'os et une region d'osteoporose.
US5733519A (en) * 1996-02-05 1998-03-31 Monsanto Company Method for producing a dispersible, fine titanium pyrophosphate powder
CN101411008A (zh) * 2006-03-27 2009-04-15 原子能委员会 基于二磷酸钛和碳的化合物、制备方法及作为锂蓄电池的电极的活性材料的用途
CN102976301A (zh) * 2012-12-17 2013-03-20 山东轻工业学院 一种花状微/纳米结构焦磷酸钛的制备方法
CN107311137A (zh) * 2017-08-04 2017-11-03 武汉理工大学 一种利用四氯化钛溶剂热合成纳米焦磷酸钛的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2654001A1 (fr) * 1988-07-20 1991-05-10 Mitsubishi Mining & Cement Co Element pour le garnissage dans un defaut de l'os et une region d'osteoporose.
US5733519A (en) * 1996-02-05 1998-03-31 Monsanto Company Method for producing a dispersible, fine titanium pyrophosphate powder
CN101411008A (zh) * 2006-03-27 2009-04-15 原子能委员会 基于二磷酸钛和碳的化合物、制备方法及作为锂蓄电池的电极的活性材料的用途
CN102976301A (zh) * 2012-12-17 2013-03-20 山东轻工业学院 一种花状微/纳米结构焦磷酸钛的制备方法
CN107311137A (zh) * 2017-08-04 2017-11-03 武汉理工大学 一种利用四氯化钛溶剂热合成纳米焦磷酸钛的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YANG ZHU ET AL.: ""Comprehensive studies on phosphoric acid treatment of porous titania toward titanium phosphate and pyrophosphate monoliths with pore hierarchy and a nanostructured pore surface"", 《INORGANIC CHEMISTRY FRONTIERS》 *
周维磊 等: "低功率微波法合成焦磷酸钛纳米粉体及其机理", 《中国粉体技术》 *
孙爱华 等: ""一种用TiCl4合成焦磷酸钛的新方法"", 《中国粉体技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394583A (zh) * 2022-01-13 2022-04-26 上海太洋科技有限公司 一种锂电正极材料添加剂用焦磷酸钛浆料的制备方法

Also Published As

Publication number Publication date
CN109879261B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN101429348B (zh) 一种纳米二氧化钛-氧化锌复合粉体的制备方法
CN107935039B (zh) 一种二氧化钛水性溶胶的制备方法
CN106892460B (zh) 一种钨青铜纳米片的制备方法
CN101302036A (zh) 一种掺杂二氧化钛纳米管的制备方法
CN104307501B (zh) 一种作为光催化剂的纳米氧化锌的制备方法
CN105836793B (zh) 一种SnO2/ZnO纳米复合材料及其制备方法
CN102795664B (zh) 一种粒径可控的介孔二氧化钛微球的制备方法
CN102241415A (zh) 一种具有三维花状微观结构的溴氧化铋粒子及其制备方法和应用
CN103804967A (zh) 一种太阳能玻璃光转换减反射双功能涂料及其生产方法
CN102060330A (zh) 一种以微波幅射加热合成钼酸铋八面体纳米颗粒的方法
CN100445209C (zh) 一种纳米二氧化钛粉体制备方法
CN106732724A (zh) 一种氮掺杂TiO2空心纳米材料的制备方法
CN103613130B (zh) 一种二氧化钛纳米线与硫化铅量子点复合材料的制备方法
Zhang et al. Controlling the growth of hexagonal CsxWO3 nanorods by Li+-doping to further improve its near infrared shielding performance
CN101857267B (zh) 一种具有核壳结构的二氧化钛纳米材料的制备方法
CN107311137A (zh) 一种利用四氯化钛溶剂热合成纳米焦磷酸钛的方法
CN109879261A (zh) 一种多面体结构焦磷酸钛粉体及其制备方法
CN107902690A (zh) 微米级二氧化锡的制备方法
CN105948105B (zh) 一种SnO2/ZnO纳米复合材料及其制备方法
CN106517326A (zh) 一种花状五氧化二铌材料及其制备方法
CN106673426A (zh) 一种掺杂稀土元素的多孔微球状纳米级生物玻璃材料及其制备方法和应用
CN108654663B (zh) 一种混合硝酸盐熔盐法制备硼氮共掺杂单晶介孔TiO2催化材料的方法
CN109694101A (zh) 一种SnO2@ZnO纳米复合材料及其制备方法
CN109650438A (zh) 纳米钨掺杂二氧化锡粉体及其制备方法
CN103420619B (zh) 一种自二氧化硅水溶胶制备减反膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant