CN109870659A - 应用滑窗寻优策略的锂离子电池健康状态估算方法 - Google Patents

应用滑窗寻优策略的锂离子电池健康状态估算方法 Download PDF

Info

Publication number
CN109870659A
CN109870659A CN201910192641.4A CN201910192641A CN109870659A CN 109870659 A CN109870659 A CN 109870659A CN 201910192641 A CN201910192641 A CN 201910192641A CN 109870659 A CN109870659 A CN 109870659A
Authority
CN
China
Prior art keywords
battery
voltage
soh
aging
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910192641.4A
Other languages
English (en)
Inventor
张金龙
张迪
孙叶宁
漆汉宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201910192641.4A priority Critical patent/CN109870659A/zh
Publication of CN109870659A publication Critical patent/CN109870659A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明属于电池管理技术领域,具体涉及应用滑窗寻优策略的锂离子电池健康状态估算方法,首先需要通过多单体全寿命周期加速老化测试获取该类型电池的老化特征关系,即SOH‑Pf关系;而后即可根据待测电池的恒流充电电压特性计算其特征参数Pf,进而采用查表法获得待测电池的SOH。本发明充分适应锂离子电池老化过程中多单体之间存在的容量衰减差异现象,脱离电池循环次数的影响,对各单体SOH进行准确在线估算,SOH估算精度预期可达5%;考虑了电动汽车在实际工况中的充电机制,对实际充电设备的适应性较强,可在多种倍率充电以及充电初始SOC非零的条件下实现对电池的SOH估算;本发明所设计的SOH在线估算方案简单易行,便于采用常规MCU进行工程实现。

Description

应用滑窗寻优策略的锂离子电池健康状态估算方法
技术领域
本发明属于电池管理技术领域,具体涉及应用滑窗寻优策略的锂离子电池健康状态估算 方法。
背景技术
当前,锂离子蓄电池广泛应用于电动汽车储能等领域。虽然锂离子电池具有多项优势, 但同时业界也逐渐注意到锂离子电池单体之间存在的老化差异现象:当采用完全相同的工作 机制对同品牌同型号的不同单体分别进行持续循环充放电时,随着循环次数的增加,各单体 可用容量的衰减速度会呈现出明显的差别,这会造成串联电池组内部分单体循环寿命提前结 束,受短板效应(也称木桶效应)的制约,电池组整体的寿命也会随之终止。蓄电池所表现 出的这种容量衰减差异特性对于工程实际中应用电池组的系统如电动汽车、新能源发电储能 及无人飞行器等系统都具有重要意义:锂电池的老化差异现象会导致电池组整体寿命缩短; 在实际工况中,这些老化差异程度还可能会随时间逐渐扩大,使得电池内部结构被加速破坏, 电池组整体工作性能迅速恶化,进而可能导致整个用电系统的故障,甚至产生严重事故。
一项相关技术是清华大学冯旭宁等人的发明专利“一种实时评估电池健康状态的方法”, 申请公布号CN 103675702 A,该方案中特征电压区间的选取是通过人工分析观察法来实现, 不能保证精度最优;并且方案未明确考虑多个单体之间的容量衰减差异问题,单纯采用单个 电池样本的特性作为同类型电池的共性特征;另外方案未考虑电池应用系统(如电动汽车) 的实际工况;针对不同类型的蓄电池,该方案通用性差,工作量偏大。
发明内容
针对这一问题,本发明通过深入研究电池单体间老化差异特别是容量衰减差异,挖掘电 池老化差异现象中隐含的共性特征,进而设计实现一种应用滑动窗口寻优策略的PDF特征法 来准确估算电池的SOH。本方案对于延长电池组的寿命,提高电池使用效率,及时定位故障 单体,保障电池组及整个系统稳定运行具有重要的应用价值。
具体技术方案为:
应用滑窗寻优策略的锂离子电池健康状态估算方法,包括以下步骤:
首先需要通过多单体全寿命周期加速老化测试获取该类型电池的老化特征关系,即 SOH-Pf关系;而后即可根据待测电池的恒流充电电压特性计算其特征参数Pf,进而采用查表 法获得待测电池的SOH。
以上步骤,具体包括以下详细步骤:
(1)电池老化特征关系的提取
(1.1)样本电池选取
所选样本从批量的电池组中随机抽取,所选电池样本具有一般代表性;
(1.2)加速老化试验及容量标定
加速老化实验是覆盖样本电池全寿命周期的充放电循环,由新的电池开始实验,当电池 可用容量降至额定容量的70%时认为电池寿命终止;采用了加速工作应用强度的方式对样本 进行循环老化;加速的工作应力有三项,分别是充电上限电压、放电下限电压和充放电倍率;
对于加速老化实验的工作机制,充电过程采用CCCV模式,即先恒流充电再恒压充电, 充电电流降至0.1C视为充电完成;放电过程采用恒流模式,电池电压降至下限视为放电结束; 在老化循环过程中,每经历10个循环,需要进行一次多倍率恒流充电测试和标准容量测试, 即容量标定;
(1.3)单体容量衰减差异分析及SOH-Pf关系提取
(1.3.1)单体容量衰减差异分析
获取原始测试数据后,需要分析一下多单体间的容量衰减差异;
(1.3.2)老化特征提取
根据统计学基础,对于一个随机变量x,可将其取值范围划分为有限区间,每个区间长度 可定义为级宽或段宽Δxj,每个区间内的数值出现的次数称为频数ΔFj
将电池恒流充电过程的电压数据视作随机变量x,采样周期为1s,电压采样精度1mV。取 级宽区间Δxj为1mV,则可将每个区间视为1个电压点,那么在充电过程中每个电压点出现的 次数即为每个电压点的频数ΔFj。将电压特征区间内每个电压点的频数总和作为电池的老化特 征参数Pf
其中Vp表示频数最大的电压点,Vp-ΔVDEC和Vp+ΔVINC分别表示特征电压区间的下限和上 限。首先定位频数最大值对应的电压位置Vp,而后确定特征电压区间[Vp-ΔVDEC,Vp+ΔVINC], 则该特征区间内所有电压点对应的频数总和即为老化特征参数Pf
(1.3.3)滑窗寻优策略定位最优特征电压区间
电池所取特征电压区间为[Vp-20mV,Vp+100mV],为了确定该最优电压区间,采用变窗 口扫描寻优策略:
取电压寻优总区间下限V-、上限V+;设置滑动电压窗口的起点处于[V-,Vp-10mV]范围内, 而滑动窗口终点处于[Vp+10mV,V+]范围内,窗口的起点和终点分别按10mV的步长发生变化, 扫描所有可能出现的电压窗口,在每个窗口内分别计算多个单体老化过程所有老化节点的特 征参数Pf,统计Pf与电池实际SOH的对应关系,并对每个窗口获得的Pf点集合进行曲线拟合, 能够获得最优拟合优度(即R2最大)的窗口,即为期望的最优特征电压区间;而与该区间所 对应的具有最优拟合优度的曲线,就是期望提取的老化特征曲线,也即SOH-Pf曲线;而后, 依据加速老化测试中的多倍率充电电压特性,在不同充电倍率条件下重复以上步骤,可以获 取不同充电倍率条件下的SOH-Pf曲线。
(1.3.4)多种充电倍率条件下的老化特征曲面
获取了不同倍率条件下的老化特征关系曲线,基于这一系列的老化特征曲线,再综合运 用插值方法,初步绘制出表征该类型电池老化特征关系的三维老化特征曲面。依据该曲面, 当蓄电池充电倍率确定时,即可依据其充电过程老化特征参数Pf来估算出电池当前的健康状 态;
(2)待测电池SOH的在线估算
提取出蓄电池的三维老化特征曲面后,对处于任意老化状态的电池进行SOH诊断;具体 过程为:首先将处于较低SOC状态的电池进行充电,能够适应的充电机制包括恒流充电和 CCCV充电;恒流充电阶段结束后即可根据该充电过程的电压特性计算电池的老化特征参数 Pf;接着根据充电倍率从三维老化特征曲面中选择对应的SOH-Pf关系曲线,进而根据Pf值查 表获得待测的SOH。
本发明提供的应用滑窗寻优策略的锂离子电池健康状态估算方法,具有以下技术效果:
(1)充分适应锂离子电池老化过程中多单体之间存在的容量衰减差异现象,脱离电池循 环次数的影响,对各单体SOH进行准确在线估算,SOH估算精度预期可达5%;
(2)本技术方案考虑了电动汽车在实际工况中的充电机制,对实际充电设备的适应性较 强,可在多种倍率充电以及充电初始SOC非零的条件下实现对电池的SOH估算;
(3)本发明所设计的SOH在线估算方案简单易行,便于采用常规MCU进行工程实现。
附图说明
图1为本发明的锂离子电池在线SOH估算技术整体方案流程图;
图2为本发明的加速老化实验整体流程;
图3为本发明的多倍率恒流充电特性获取流程;
图4为本发明的节点标准可用容量测试流程;
图5为实施例加速老化过程中某品牌LiFePO4电池容量衰减图;
图6为实施例标准倍率恒流充电过程电压频数曲线(新电池SOH=100%);
图7(a)为实施例不同老化节点电池单体的电压频数曲线;
图7(b)为实施例不同老化节点电池单体的老化特征参数;
图8为实施例样本电池组老化特征曲线拟合;
图9为实施例变窗口扫描寻优流程图。
具体实施方式
结合附图说明本发明的具体技术方案。
本发明的整体方案如图1所示:该方案由两个环节构成,首先需要通过多单体全寿命周期 加速老化测试获取该类型电池的老化特征关系,即SOH-Pf关系;而后即可根据待测电池的恒 流充电电压特性计算其特征参数Pf,进而采用查表法获得待测电池的SOH。
该方案具有如下几项特征:第一,为了适应多单体容量衰减差异特性,特征关系提取用 的电池测试样本选取多个,而不是用某一个单体,从而保证了所提取特征关系的准确性和普 适性;第二,考虑电动汽车实际工况,带载放电时负载随机性强,而充电时充电桩工作机制 相对稳定,本方案采用电池的充电电压特性作为计算其特征参数的依据;第三,为提高SOH 估算精度,在电池老化特征关系提取环节,本方案采用滑窗寻优策略来获取具有最佳拟合优 度的特征拟合曲线;第四,考虑实际工况中电池充电起始SOC非零的情况,在特征提取环节 制定了相关的指导原则。
以下对该方案结合实施例进行具体描述:
1.电池老化特征关系的提取
1.1样本电池选取
本实施例以磷酸铁锂电池为例,选用国内某知名品牌的18650型3.3V/1350mAh全新电池 样本共8节作为测试样本,所选样本从批量采购的电池组中随机抽取,所选电池样本具有一般 代表性。
1.2加速老化试验及容量标定
加速老化实验的整体流程如图2所示:加速老化实验主体部分是覆盖样本电池全寿命周期 的充放电循环,由新的电池开始实验,当电池可用容量降至额定容量的70%时认为电池寿命 终止。为便于完成对电池样本全寿命周期的老化测试,本实施例采用了加速工作应用强度的 方式对样本进行循环老化。加速的工作应力有三项,分别是充电上限电压、放电下限电压和 充放电倍率,标准应力强度和加速应力强度见表1。
表1加速老化实验方案的标准应力及加速应力强度
对于加速老化实验的工作机制,充电过程采用常规的CCCV模式,即先恒流充电再恒压 充电,充电电流降至0.1C视为充电完成;放电过程采用恒流模式,电池电压降至下限视为放 电结束。在老化循环过程中,每经历10个循环,需要进行一次多倍率恒流充电测试和标准容 量测试(即容量标定)。图3和图4分别给出了多倍率恒流充电特性获取流程和标准可用容量 测试流程。多倍率充电测试主要是为了获取多种倍率充电条件下锂电池的老化特征,以便适 应实际工况中充电机可能采用的多倍率充电机制,该过程所选用的充电倍率Cp主要参考实际 充电设备常采用的恒流环节充电倍率来确定,本实施例中Cp取0.2C、0.5C、1C和2C四种典型 倍率,0.2C为慢充模式,0.5C为标准充模式,1C和2C为快充模式(该倍率亦可根据实际工况 进行调整);容量标定则是为了获取该特征对应的实际可用容量,两者结合来实现SOH-Pf老 化特征表的提取。其中作为特例,0.5C充电测试与0.5C容量标定实际为同一个充放电循环。 需要注意的是,图3和图4所做的多倍率充电测试和容量标定严格来讲应该是在相同的SOH状 态下完成的,考虑在这4次充放电循环中,除充电倍率稍大外,其余应力强度均为标准水平, 容量衰减非常小,故在此过程近似将SOH视为恒定。
1.3单体容量衰减差异分析及SOH-Pf关系提取
1.3.1单体容量衰减差异分析
获取原始测试数据后,首先需要分析一下多单体间的容量衰减差异,该问题在相关研究 中尚未得到充分考虑。图5为8个同型号样本单体可用容量随循环次数的衰减图,由图5可见, 在完全相同的加速老化工作机制和相同的应力强度条件下,各单体的容量衰减速率呈现出了 明显的差异。由该现象可知,在工程实际中,即使对于同品牌同型号的蓄电池,其循环次数 与其SOH之间的定量关系并不是确定的。
1.3.2老化特征提取原理
根据统计学基础,对于一个随机变量x,可将其取值范围划分为有限区间,每个区间长度 可定义为级宽或段宽:
Δxj=(xb-xa)j
每个区间内的数值出现的次数称为级频数ΔFj,频数ΔFj与整个数组中数值个数的比值称 为相对频数Δfj,用于描述本区间数值出现的概率:
Δfj=ΔFj/SF=ΔFj/∑ΔFj
在本方案中,将电池恒流充电过程的电压数据视作随机变量x,采样周期为1s,电压采样 精度1mV。取级宽区间Δxj为1mV,则可将每个区间视为1个电压点,那么在充电过程中每个 电压点出现的次数即为每个电压点的频数ΔFj。我们将电压特征区间内每个电压点的频数总和 作为电池的老化特征参数Pf,如图6所示:
图6给出了表1中某单个样本在标准倍率恒流充电过程中的电压频数曲线。首先定位频数 最大值对应的电压位置Vp,而后确定特征电压区间[Vp-ΔVDEC,Vp+ΔVINC],则该特征区间 内所有电压点对应的频数总和即为老化特征参数Pf,该参数值等效为图6中阴影部分的面积。 考虑工程实际如EV领域,电池并非是每次用至SOC=0%才充电,而是往往在电池还具有一定 剩余电量的情况下就去充电;另一方面,想采用本方案估算电池SOH,需要恒流充电阶段覆 盖整个特征电压区间,因此要想适应这种工况,需要将特征电压区间的起点设置在相对较高 的SOC状态,这也是总寻优区间选取的基本原则。基于该原则,再结合具体型号电池的频数 曲线特征,配合变窗口滑动寻优策略,即可最终确定用于计算Pf的特征电压区间,图6中的特 征电压区间为[Vp-20mV,Vp+100mV]。
采用以上方法,在任意老化节点,均可由容量标定过程的原始数据得到该SOH状态对应 的老化特征参数Pf。图7(a)给出了某样本单体老化循环20次、40次、60次和80次时的标准倍率 充电电压曲线及电压频数曲线;图7(b)给出了在这四个老化节点处电池SOH与其老化特征参 数Pf的关系。为强化SOH-Pf关系的泛化能力,我们将电池组8个单体所有老化节点的SOH-Pf对应关系进行统计,进而采用曲线拟合的手段即可得到该型号电池的SOH-Pf关系曲线,如图8 所示,进而得到期望的老化特征表。
对比图5和图8可知,虽然各单体老化差异较大,但各单体的老化过程均符合该型号电池 老化特征曲线,即各单体的SOH-Pf关系是一致的,这也是各单体所具有的一项共性老化特征。
1.3.3滑窗寻优策略定位最优特征电压区间
特征电压区间的选取对于SOH的估算精度影响很大,对上文中电池所取特征电压区间为 [Vp-20mV,Vp+100mV],为了确定该区间,除遵循基本原则外,本方案还设计了一种变窗口 扫描寻优策略以保证SOH估算结果具有最佳的估算精度,图9即为该方法的实现流程。
本实施例的电池样本取电压寻优总区间下限V-=Vp-30mV;上限为V+=Vp+100mV,对其 他型号的电池,可参考1.3.2节中的基础原则来选取。观察图9可知,该电压窗口的起点处于[V-, Vp-10mV]范围内,而窗口终点处于[Vp+10mV,V+]范围内,窗口的起点和终点分别按10mV的 步长发生变化,扫描所有可能出现的电压窗口,在每个窗口内分别计算多个单体老化过程的 特征参数Pf,并对每个窗口获得的Pf点集合进行曲线拟合,能够获得最优拟合优度(R2最大) 的窗口即为期望的最优特征电压区间。采用这种方法获得的特征电压区间可以确保SOH估算 结果具有最优精度,此外这种方法还具有更强的通用性。
1.3.4多种充电倍率条件下的老化特征曲面
以上图8是在标准充电倍率0.5C条件下获取的电池老化特征曲线,考虑充电设备实际工 况,除了标准充电模式外,还有快充和慢充等模式。为此,除0.5C标准倍率外,本实施例还 在0.2C、1C和2C几种不同的充电倍率下对该类型电池的SOH-Pf关系进行了提取,最终共计获 取了4条不同倍率条件下的老化特征关系曲线。基于这一系列的老化特征曲线,再综合运用插 值方法,可以初步绘制出表征该类型电池老化特征关系的三维曲面。依据该曲面,当蓄电池 充电倍率确定时,即可依据其充电过程老化特征参数Pf来估算出电池当前的健康状态。
2.待测电池SOH的在线估算
提取出蓄电池的三维老化特征曲面后,即可根据图1对处于任意老化状态的电池进行SOH 诊断。首先将处于较低SOC状态的电池进行充电(能够适应的充电机制包括恒流充电和CCCV 充电);恒流充电阶段结束后即可根据该充电过程的电压特性计算电池的老化特征参数Pf; 接着根据充电倍率从三维老化特征曲面中选择对应的SOH-Pf关系曲线,进而根据Pf值查表获 得待测的SOH。可见,本方案中SOH的估算主要依赖于恒流充电过程的电压特性,当恒流充 电阶段结束后,即可采用相应算法来完成SOH的诊断,故该方法是一种准在线SOH估算策略。 该方案的主要工作量在于前期的老化测试、数据处理和特征提取,这些都是离线完成的;获 取特征曲面后,SOH在线估算阶段的计算复杂性较小,便于工程实现。表2给出的随机电池样 本SOH测试结果也验证了本实施例具有良好的精度。
表2采用本方案获得的SOH估算结果
本发明提供的应用滑窗寻优策略的锂离子电池健康状态估算方法,主要实现对锂离子电 池SOH的准确在线估算,通过多单体老化特性统计分析法,实现该方案对多单体间容量衰减 差异的良好适应;通过滑窗寻优策略,定位最佳的特征电压区间,进而保证最优的SOH估算 精度;并且考虑了电动汽车实际工况,以电池充电特性作为SOH估算的参考依据,对于多种 倍率充电条件以及充电起始SOC非零的情况均具有一定的适应性。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的原理和内容之 内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.应用滑窗寻优策略的锂离子电池健康状态估算方法,其特征在于,包括以下步骤:首先需要通过多单体全寿命周期加速老化测试获取该类型电池的老化特征关系,即SOH-Pf关系;而后即可根据待测电池的恒流充电电压特性计算其特征参数Pf,进而采用查表法获得待测电池的SOH。
2.根据权利要求1所述的应用滑窗寻优策略的锂离子电池健康状态估算方法,其特征在于,具体包括以下步骤:
(1)电池老化特征关系的提取
(1.1)样本电池选取
所选样本从批量的电池组中随机抽取,所选电池样本具有一般代表性;
(1.2)加速老化试验及容量标定
加速老化实验是覆盖样本电池全寿命周期的充放电循环,由新的电池开始实验,当电池可用容量降至额定容量的70%时认为电池寿命终止;采用了加速工作应用强度的方式对样本进行循环老化;加速的工作应力有三项,分别是充电上限电压、放电下限电压和充放电倍率;
充电过程采用CCCV模式,先恒流充电再恒压充电,充电电流降至0.1C视为充电完成;放电过程采用恒流模式,电池电压降至下限视为放电结束;在老化循环过程中,每经历10个循环,需要进行一次多倍率恒流充电测试和标准容量测试,即容量标定;
(1.3)单体容量衰减差异分析及SOH-Pf关系提取
(1.3.1)单体容量衰减差异分析
获取原始测试数据后,需要分析一下多单体间的容量衰减差异;
(1.3.2)老化特征提取
将电池恒流充电过程的电压数据视作随机变量x,采样周期为1s,电压采样精度1mV;取级宽区间Δxj为1mV,则可将每个区间视为1个电压点,那么在充电过程中每个电压点出现的次数即为每个电压点的频数ΔFj;将电压特征区间内每个电压点的频数总和作为电池的老化特征参数Pf
其中Vp表示频数最大的电压点,Vp-ΔVDEC和Vp+ΔVINC分别表示特征电压区间的下限和上限;
首先定位频数最大值对应的电压位置Vp,而后确定特征电压区间[Vp-ΔVDEC,Vp+ΔVINC],则该特征区间内所有电压点对应的频数总和即为老化特征参数Pf
(1.3.3)滑窗寻优策略定位最优特征电压区间
电池所取特征电压区间为[Vp-20mV,Vp+100mV],为了确定该最优电压区间,采用变窗口扫描寻优策略:
取电压寻优总区间下限V-和上限V+;设置滑动电压窗口的起点处于[V-,Vp-10mV]范围内,而滑动窗口终点处于[Vp+10mV,V+]范围内,窗口的起点和终点分别按10mV的步长发生变化,扫描所有可能出现的电压窗口,在每个窗口内分别计算多个单体老化过程所有老化节点的特征参数Pf,统计Pf与电池实际SOH的对应关系,并对每个窗口获得的Pf点集合进行曲线拟合,能够获得最优拟合优度即R2最大的窗口,即为期望的最优特征电压区间;而与该区间所对应的具有最优拟合优度的曲线,就是期望提取的老化特征曲线,也即SOH-Pf曲线;而后,依据加速老化测试中的多倍率充电电压特性,在不同充电倍率条件下重复以上步骤,可以获取不同充电倍率条件下的SOH-Pf曲线;
(1.3.4)多种充电倍率条件下的老化特征曲面
基于所述的老化特征曲线,用插值方法,初步绘制出表征该类型电池老化特征关系的三维老化特征曲面;当蓄电池充电倍率确定时,即可依据其充电过程老化特征参数Pf来估算出电池当前的健康状态;
(2)待测电池SOH的在线估算
提取出蓄电池的三维老化特征曲面后,对处于任意老化状态的电池进行SOH诊断;具体过程为:首先将处于较低SOC状态的电池进行充电,恒流充电阶段结束后即可根据该充电过程的电压特性计算电池的老化特征参数Pf;接着根据充电倍率从三维老化特征曲面中选择对应的SOH-Pf关系曲线,进而根据Pf值查表获得待测的SOH。
CN201910192641.4A 2019-03-14 2019-03-14 应用滑窗寻优策略的锂离子电池健康状态估算方法 Pending CN109870659A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910192641.4A CN109870659A (zh) 2019-03-14 2019-03-14 应用滑窗寻优策略的锂离子电池健康状态估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910192641.4A CN109870659A (zh) 2019-03-14 2019-03-14 应用滑窗寻优策略的锂离子电池健康状态估算方法

Publications (1)

Publication Number Publication Date
CN109870659A true CN109870659A (zh) 2019-06-11

Family

ID=66920395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910192641.4A Pending CN109870659A (zh) 2019-03-14 2019-03-14 应用滑窗寻优策略的锂离子电池健康状态估算方法

Country Status (1)

Country Link
CN (1) CN109870659A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376525A (zh) * 2019-07-29 2019-10-25 国网河南省电力公司电力科学研究院 一种评价退役磷酸铁锂电池寿命衰减性能的方法
CN110542867A (zh) * 2019-08-05 2019-12-06 燕山大学 电池健康状态评估方法、装置及存储介质
CN110703112A (zh) * 2019-10-14 2020-01-17 重庆大学 一种基于局部充电数据的电池组状态的在线估计方法
CN111796195A (zh) * 2020-07-31 2020-10-20 中国汽车工程研究院股份有限公司 一种累积动力电池充放电曲线识别故障电池单体的方法
WO2021169162A1 (zh) * 2020-02-28 2021-09-02 苏州浪潮智能科技有限公司 电池备电单元监测方法、装置、服务器及可读存储介质
CN113341331A (zh) * 2021-05-31 2021-09-03 湖北亿纬动力有限公司 一种复合电源工作寿命的预测方法以及装置
CN113640673A (zh) * 2021-06-25 2021-11-12 国网冀北电力有限公司电力科学研究院 铅酸蓄电池寿命预测方法及装置
CN113794254A (zh) * 2021-09-13 2021-12-14 湖北亿纬动力有限公司 一种热管理策略配置方法、装置、计算机设备和存储介质
CN114035098A (zh) * 2021-12-14 2022-02-11 北京航空航天大学 一种融合未来工况信息和历史状态信息的锂电池健康状态预测方法
CN114217235A (zh) * 2021-11-05 2022-03-22 东软睿驰汽车技术(沈阳)有限公司 基于电池健康状态的加速校核方法、装置和电子设备
CN114400749A (zh) * 2022-03-23 2022-04-26 杭州科工电子科技有限公司 电池管理系统及充放电管理方法
CN114418465A (zh) * 2022-03-29 2022-04-29 湖北工业大学 一种数据驱动的动力电池使用行为量化评估方法
CN114706904A (zh) * 2022-03-24 2022-07-05 四川华能泸定水电有限公司 基于振冲施工大数据寻优策略的控制方法、设备及介质
CN114910795A (zh) * 2022-05-27 2022-08-16 上海玫克生储能科技有限公司 恒流充电中电池微短路判断方法及系统、存储介质及终端
CN116908723A (zh) * 2023-06-08 2023-10-20 武汉亿纬储能有限公司 一种电池循环次数的计算方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675702A (zh) * 2013-12-04 2014-03-26 清华大学 一种实时评估电池健康状态的方法
CN103760493A (zh) * 2014-01-17 2014-04-30 安徽江淮汽车股份有限公司 增程式电动车动力电池健康状态的检测方法及系统
CN104360282A (zh) * 2014-11-19 2015-02-18 奇瑞汽车股份有限公司 一种变长度滑动窗辨识电池参数的电池荷电状态估计方法
CN105676128A (zh) * 2015-08-17 2016-06-15 广西大学 一种用于电池管理系统的电池荷电状态预测方法
CN107895212A (zh) * 2017-12-01 2018-04-10 国网山东省电力公司信息通信公司 基于滑动窗口和多视角特征融合的铅酸电池寿命预测方法
CN108896913A (zh) * 2018-05-10 2018-11-27 燕山大学 一种锂离子电池健康状态的估算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675702A (zh) * 2013-12-04 2014-03-26 清华大学 一种实时评估电池健康状态的方法
CN103760493A (zh) * 2014-01-17 2014-04-30 安徽江淮汽车股份有限公司 增程式电动车动力电池健康状态的检测方法及系统
CN104360282A (zh) * 2014-11-19 2015-02-18 奇瑞汽车股份有限公司 一种变长度滑动窗辨识电池参数的电池荷电状态估计方法
CN105676128A (zh) * 2015-08-17 2016-06-15 广西大学 一种用于电池管理系统的电池荷电状态预测方法
CN107895212A (zh) * 2017-12-01 2018-04-10 国网山东省电力公司信息通信公司 基于滑动窗口和多视角特征融合的铅酸电池寿命预测方法
CN108896913A (zh) * 2018-05-10 2018-11-27 燕山大学 一种锂离子电池健康状态的估算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
静听尘落: "磷酸铁锂电池容量衰减差异特性分析及监控状态估算", 《道客巴巴HTTPS://WWW.DOC88.COM/P-7734829581318.HTML》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376525A (zh) * 2019-07-29 2019-10-25 国网河南省电力公司电力科学研究院 一种评价退役磷酸铁锂电池寿命衰减性能的方法
CN110542867A (zh) * 2019-08-05 2019-12-06 燕山大学 电池健康状态评估方法、装置及存储介质
CN110703112A (zh) * 2019-10-14 2020-01-17 重庆大学 一种基于局部充电数据的电池组状态的在线估计方法
WO2021169162A1 (zh) * 2020-02-28 2021-09-02 苏州浪潮智能科技有限公司 电池备电单元监测方法、装置、服务器及可读存储介质
US11846677B2 (en) 2020-02-28 2023-12-19 Inspur Suzhou Intelligent Technology Co., Ltd. Method and apparatus for monitoring battery backup unit, server, and readable storage medium
CN111796195A (zh) * 2020-07-31 2020-10-20 中国汽车工程研究院股份有限公司 一种累积动力电池充放电曲线识别故障电池单体的方法
CN113341331A (zh) * 2021-05-31 2021-09-03 湖北亿纬动力有限公司 一种复合电源工作寿命的预测方法以及装置
CN113640673A (zh) * 2021-06-25 2021-11-12 国网冀北电力有限公司电力科学研究院 铅酸蓄电池寿命预测方法及装置
CN113794254A (zh) * 2021-09-13 2021-12-14 湖北亿纬动力有限公司 一种热管理策略配置方法、装置、计算机设备和存储介质
CN113794254B (zh) * 2021-09-13 2023-09-01 湖北亿纬动力有限公司 一种热管理策略配置方法、装置、计算机设备和存储介质
CN114217235A (zh) * 2021-11-05 2022-03-22 东软睿驰汽车技术(沈阳)有限公司 基于电池健康状态的加速校核方法、装置和电子设备
CN114217235B (zh) * 2021-11-05 2024-02-20 东软睿驰汽车技术(沈阳)有限公司 基于电池健康状态的加速校核方法、装置和电子设备
CN114035098A (zh) * 2021-12-14 2022-02-11 北京航空航天大学 一种融合未来工况信息和历史状态信息的锂电池健康状态预测方法
CN114400749A (zh) * 2022-03-23 2022-04-26 杭州科工电子科技有限公司 电池管理系统及充放电管理方法
CN114706904A (zh) * 2022-03-24 2022-07-05 四川华能泸定水电有限公司 基于振冲施工大数据寻优策略的控制方法、设备及介质
CN114418465B (zh) * 2022-03-29 2022-08-05 湖北工业大学 一种数据驱动的动力电池使用行为量化评估方法
CN114418465A (zh) * 2022-03-29 2022-04-29 湖北工业大学 一种数据驱动的动力电池使用行为量化评估方法
CN114910795A (zh) * 2022-05-27 2022-08-16 上海玫克生储能科技有限公司 恒流充电中电池微短路判断方法及系统、存储介质及终端
CN114910795B (zh) * 2022-05-27 2023-06-06 上海玫克生储能科技有限公司 恒流充电中电池微短路判断方法及系统、存储介质及终端
CN116908723A (zh) * 2023-06-08 2023-10-20 武汉亿纬储能有限公司 一种电池循环次数的计算方法及装置

Similar Documents

Publication Publication Date Title
CN109870659A (zh) 应用滑窗寻优策略的锂离子电池健康状态估算方法
CN106443474B (zh) 一种动力电池系统寿命衰退特征快速识别的方法
CN103675702B (zh) 一种实时评估电池健康状态的方法
CN108896913A (zh) 一种锂离子电池健康状态的估算方法
CN104577242B (zh) 一种电池组管理系统和方法
CN105425153B (zh) 一种估计电动车辆的动力电池的荷电状态的方法
CN108445406A (zh) 一种动力电池健康状态估计方法
CN104977537B (zh) 电池soc的确定方法及使用该方法的电池管理系统
CN106569143B (zh) 一种在线计算电芯容量与soh的方法、系统及电动车辆
CN109444762B (zh) 一种基于数据融合的锂离子电池健康状态估计方法
CN109358293B (zh) 基于ipf的锂离子电池soc估计方法
CN103728563A (zh) 一种电池健康状态的测算方法
CN102565710A (zh) 用于估计蓄电池健康状态的方法和装置
CN107831444A (zh) 一种锂离子电池健康状态估计方法
CN107843846A (zh) 一种锂离子电池健康状态估计方法
CN106597288A (zh) 一种电源soc估算方法
CN109975715B (zh) 一种电动汽车锂离子电池模组剩余电量的获得方法
CN113109729B (zh) 基于加速老化试验与实车工况的车用动力电池soh评估方法
CN111064253A (zh) 一种基于平均离散Fréchet距离的电池健康度快速评估方法
CN111458649A (zh) 一种电池模组健康度快速检测方法
CN106772099A (zh) 一种动力锂电池劣化程度估算方法
CN111366864B (zh) 一种基于固定压升区间的电池soh在线估计方法
CN110548702A (zh) 一种功率型锂电池一致性筛选方法
CN104502844A (zh) 一种基于交流阻抗的动力锂电池劣化程度诊断方法
CN103278777A (zh) 一种基于动态贝叶斯网络的锂电池健康状况估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190611

WD01 Invention patent application deemed withdrawn after publication