CN109847803B - 一种缺陷mof催化剂及其制备方法与应用 - Google Patents

一种缺陷mof催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN109847803B
CN109847803B CN201910161986.3A CN201910161986A CN109847803B CN 109847803 B CN109847803 B CN 109847803B CN 201910161986 A CN201910161986 A CN 201910161986A CN 109847803 B CN109847803 B CN 109847803B
Authority
CN
China
Prior art keywords
mof
defect
acid
catalyst
mof catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910161986.3A
Other languages
English (en)
Other versions
CN109847803A (zh
Inventor
赵钟兴
王月新
钟贞
赵祯霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201910161986.3A priority Critical patent/CN109847803B/zh
Publication of CN109847803A publication Critical patent/CN109847803A/zh
Application granted granted Critical
Publication of CN109847803B publication Critical patent/CN109847803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种缺陷MOF催化剂及其制备方法与应用。其制备方法是先称取FeCl3·6H2O于容器中,加入N,N‑二甲基甲酰胺进行溶解,在搅拌条件下依次加入2‑氨基对苯二甲酸、五元杂环单羧酸、氢氧化钠溶液,搅拌混合得到悬浮液;再将悬浮液转移至高压反应釜中高温反应,反应结束后,清洗离心再烘干得到缺陷MOF催化剂。本发明的缺陷MOF催化剂可以应用在难降解有机污染的催化降解领域。

Description

一种缺陷MOF催化剂及其制备方法与应用
技术领域
本发明属于多孔碳材料领域,尤其涉及一种缺陷MOF催化剂及其制备方法与应用。
背景技术
目前,能源和环境问题已成为世界关注的重点,如何减少污染,保护生态平衡,解决环保问题,已经引起了各政府决策部门和学术研究部门的高度重视。其中,诸如染料、表面活性剂、有机卤化物、农药、氰化物等诸多难降解的有机污染物给人类居住的环境带来了严重的污染,特别是在有机污染物的降解过程中经常会存在难降解的中间产物,严重影响着有机污染物的彻底降解和矿化。如何绿色环保、快速高效除去这些有机物已成为目前亟待解决的问题。目前处理有机污染物的方法有物理法、化学法、生物法及光解等。物理法只能富集水中的污染物,不能对其进行降解;化学法由于使用化学试剂,会造成二次污染;生物法所使用的微生物对降解条件要求苛刻,且耗时长,单纯的光解法使用紫外光源,耗能高、成本高,因此,研发条件温和、无二次污染、高效、低耗、可彻底降解有机污染物和其难降解中间产物的催化剂是目前亟待解决的问题。
金属有机框架(mental-organic framework,MOF)是由无机金属离子或者金属簇与有机配体通过配位键作用而连接起来的具有网络结构的聚合物多孔材料。这类材料比表面积大,孔径大小和形状可调,容易进行修饰,在催化、分离和纯化、气体吸附、能源等领域具有广阔的应用前景,而在MOF晶体结构中引入缺陷,可以精细调节MOF的结构,使其吸附性能、催化活性和导电性能得到进一步提升。
发明内容
本发明针对目前有机污染物残留及危害严重的问题,提供一种对有机污染物具有化学吸附/光Fenton催化降解性能的缺陷铁MOFs(Fe)催化剂(HD-MOFs(Fe))及其制备方法与应用。通过选用五元杂环单羧酸对MOFs(Fe)进行原位修饰,构筑新型缺陷铁MOF材料,该材料可在可见/紫外光下通过化学吸附和光-Fenton协同作用实现对有机污染物的高效降解及矿化。
本发明的目的通过如下技术方案实现:
本发明的缺陷铁MOF催化剂为三维孔隙结构,其Langmuir比表面积在1413~1659m2/g,总孔容约在0.46~0.55cm3/g,其中微孔比表面积和孔容占到总比表面积和孔容的80~96%。
本发明的缺陷MOF催化剂的制备方法,包括如下步骤:
(1)称取FeCl3·6H2O于容器中,加入N,N-二甲基甲酰胺进行溶解,在搅拌条件下依次加入2-氨基对苯二甲酸、五元杂环单羧酸、氢氧化钠溶液,搅拌混合得到悬浮液;
所述步骤(1)中的2-氨基对苯二甲酸与FeCl3·6H2O的摩尔比为0.7~0.96:1;五元杂环单羧酸与FeCl3·6H2O的摩尔比为0.04~0.3:1;氢氧化钠的浓度为1~3mol/L;
(2)将步骤(1)中悬浮液转移至高压反应釜中高温反应,反应结束后,清洗离心再烘干得到缺陷MOF催化剂(简称HD-MOFs(Fe))。
本发明中的五元杂环单羧酸为2-呋喃甲酸、噻吩-2-甲酸和/或吡咯-2-甲酸。作为技术方案的进一步优选,五元杂环单羧酸为吡咯-2-甲酸,吡咯-2-甲酸与FeCl3·6H2O的摩尔比为0.28~0.3:1。在该配比下,制备得到的缺陷MOF催化剂Langmuir比表面积最大,且对农药等污染物的光催化降解及矿化率最高。
作为方案的进一步优选,上述步骤(1)中的氢氧化钠的浓度为1~3mol/L,氢氧化钠与FeCl6·6H2O的摩尔比为0.4~1.2:1。
作为方案的进一步优选,所述步骤(2)中高温反应采用可程序控温烘干箱,具体控温过程:
(a)升温过程:以1~10℃/min的升温速率从室温升至90~120℃;
(b)恒温过程:置于90~120℃保持12~24h;
(c)降温过程:恒温过程结束后立即从干燥箱内取出,自然冷却至室温。
作为方案的进一步优选,所述步骤(2)中的烘干温度范围为60~150℃;时间为6~24h,离心速率为10000r/min。
本发明的缺陷MOF催化剂可应用在有机污染物降解方面的运用,特别是农药降解方面。
本发明的原理:选择具有超高比表面和表面性质及孔结构可调控的MOFs(Fe)作为光Fenton深度矿化难降解有机污染物的催化剂,利用五元杂环单羧酸对HD-MOFs(Fe)的原位修饰作用,一方面在HD-MOFs(Fe)骨架中构建能对难降解有机污染物形成“多位点化学吸附”孔结构,通过强化学吸附的诱导作用使难降解有机污染物产生分子结构变化,降低其化学稳定性,加快有机污染物的深度矿化过程;另一方面五元杂环单羧酸对HD-MOFs(Fe)的修饰作用,会使Fe-O金属簇产生产生不对称桥联并生成晶格缺陷,这些缺陷不仅能提高HD-MOFs(Fe)产生羟基自由基的能力(图1),还能提高电子的迁移速率(图2)和调控MOFs的禁带宽度,并最终能显著提升HD-MOFs(Fe)的催化活性。同时,五元杂环中的N/S官能团能作为量子级别的“电荷天线”降低吸收光的能量范围,能进一步提升MOFs(Fe)的光Fenton催化效率,最终通过“化学吸附-催化”协同机制实现有机污染物的高效矿化。
本发明具有以下有益效果:
1.本发明针对有机污染物的结构特性,甄选含五元杂环的单羧酸(如2-呋喃甲酸、噻吩-2-甲酸、吡咯-2-甲酸等)作为辅助配体与多元羧酸一起与Fe金属位进行配位构建HD-MOFs(Fe)材料,其所能形成的不对称桥连骨架能与有机污染物及其降解过程的中间产物形成“多位点化学吸附”,显著降低其化学稳定性,并最终加快NIs的深度矿化。
2.五元杂环单羧酸在HD-MOFs(Fe)骨架中的非对称单臂配位,易产生配位缺失并形成Fe-O晶格缺陷。这些存在的Fe-O晶格缺陷不仅能提高HD-MOFs(Fe)产生羟基自由基的能力,还能提高电子的迁移速率和调控MOFs的禁带宽度。因此,Fe-O晶格缺陷能显著提高材料的光Fenton催化活性。同时,辅助配体中N/S官能团的植入相当于在HD-MOFs(Fe)中安装了量子级均匀分散的“电荷天线”接收器,通过调变辅助配体中五元杂环的官能团,能进一步提升MOFs(Fe)的光Fenton催化效率。
3.五元杂环单羧酸上N、O、S等元素的引入不仅可以使材料对可见光的响应增强,而且该配体上的N通过与金属簇配位形成缺陷,得到的缺陷铁MOF比单纯的铁MOF具有更高的有机污染物捕获能力。既可以对有机污染物降解过程中间产物产生化学吸附诱导分子结构变化,又可以提高催化剂在光-Fenton联合作用下的氧化催化活性,最终通过“化学吸附-催化降解”协同机制实现对有机污染物(包括难降解中间产物)的高效降解及矿化。
4.本发明所得到的材料比表面较高,其BET比表面积为1413.6~1659.1m2/g。
5.本发明的制备方法简单易操作,适合大规模工业化生产。
附图说明
图1是两种材料的ESR图谱
图2是两种材料的PL图谱
图3是原始MOF催化剂的SEM。
图4是实施例5缺陷MOF催化剂的SEM。
图5是两种材料的XRD。
图6是三种材料对啶虫脒光催化降解效果图。
图7是两种材料的TOC降解图。
具体实施方式
下面结合附图和实施例对本发明做进一步的描述,但本发明要求保护的范围并不局限于实施例表述的范围。
实施例1
一种缺陷MOF催化剂的制备方法,包括如下步骤,
(1)称取1mmol FeCl3·6H2O于烧杯中,加入5mL N,N-二甲基甲酰胺,在搅拌条件下依次加入0.7mmol 2-氨基对苯二甲酸、0.3mmol 2-呋喃甲酸、1mol/L的NaOH 0.4mL,搅拌一段时间,搅拌混合得到悬浮液;
(2)将(1)中悬浮液转移至高压反应釜中高温反应,以1℃/min的升温速率升温至120℃,并在120℃下保持6h后降温到室温,依次用去离子水、丙酮、去离子水清洗后在10000r/min离心,然后将该材料在60℃下烘干24,制得缺陷MOF催化剂。
实施例2
一种缺陷MOF催化剂的制备方法,包括如下步骤,
(1)称取1mmol FeCl3·6H2O于烧杯中,加入5mL N,N-二甲基甲酰胺,在搅拌条件下依次加入0.96mmol 2-氨基对苯二甲酸、0.04mmol噻吩-2-甲酸、2mol/L的NaOH 0.4mL,搅拌一段时间,搅拌混合得到悬浮液;
(2)将(1)中悬浮液转移至高压反应釜中高温反应,以4℃/min的升温速率升温至100℃,并在100℃下保持15h后降温到室温,依次用去离子水、丙酮、去离子水清洗后在10000r/min离心,然后将该材料在100℃下烘干12h,制得缺陷MOF催化剂。
实施例3
一种缺陷MOF催化剂的制备方法,包括如下步骤,
(1)称取1mmol FeCl3·6H2O于烧杯中,加入5mL N,N-二甲基甲酰胺,在搅拌条件下依次加入0.7mmol 2-氨基对苯二甲酸、0.3mmol噻吩-2-甲酸、3mol/L的NaOH 0.4mL,搅拌一段时间,搅拌混合得到悬浮液;
(2)将(1)中悬浮液转移至高压反应釜中高温反应,以7℃/min的升温速率升温至90℃,并在90℃下保持24h后降温到室温,依次用去离子水、丙酮、去离子水清洗后在10000r/min离心,然后将该材料在150℃下烘干6h,制得缺陷MOF催化剂。
实施例4
一种缺陷MOF催化剂的制备方法,包括如下步骤,
(1)称取1mmol FeCl3·6H2O于烧杯中,加入5mL N,N-二甲基甲酰胺,在搅拌条件下依次加入0.72mmol 2-氨基对苯二甲酸、0.28mmol吡咯-2-甲酸、2mol/L的NaOH 0.4mL,搅拌一段时间,搅拌混合得到悬浮液;
(2)将(1)中悬浮液转移至高压反应釜中高温反应,以10℃/min的升温速率升温至120℃,并在120℃下保持6h后降温到室温,依次用去离子水、丙酮、去离子水清洗后在10000r/min离心,然后将该材料在60℃下烘干24h,制得缺陷MOF催化剂。
实施例5
一种缺陷MOF催化剂的制备方法,包括如下步骤,
(1)称取1mmol FeCl3·6H2O于烧杯中,加入5mL N,N-二甲基甲酰胺,在搅拌条件下依次加入0.75mmol 2-氨基对苯二甲酸、0.25mmol吡咯-2-甲酸、2mol/L的NaOH 0.4mL,搅拌一段时间,搅拌混合得到悬浮液;
(2)将(1)中悬浮液转移至高压反应釜中高温反应,以5.0℃/min的升温速率升温至100℃,并在100℃下保持12h后降温到室温,依次用去离子水、丙酮、去离子水清洗后在10000r/min离心,然后将该材料在100℃下烘干12h,制得缺陷MOF催化剂。
实施例6
一种缺陷MOF催化剂的制备方法,包括如下步骤,
(1)称取1mmol FeCl3·6H2O于烧杯中,加入5mL N,N-二甲基甲酰胺,在搅拌条件下依次加入0.8mmol 2-氨基对苯二甲酸、0.1mmol噻吩-2-甲酸、2mol/L的NaOH 0.4mL,搅拌一段时间,搅拌混合得到悬浮液;
(2)将(1)中悬浮液转移至高压反应釜中高温反应,以10℃/min的升温速率升温至120℃,并在120℃下保持7h后降温到室温,依次用去离子水、丙酮、去离子水清洗后在10000r/min离心,然后将该材料在60℃下烘干24h,制得缺陷MOF催化剂。
材料性能测试:
(一)两种材料的ESR图谱
将本发明制备的原始缺陷MOF以及实施例5的缺陷MOF进行ESR(电子顺磁光谱)测试,考察DMPO捕获羟基自由基的能力,得到图1。
从图1可以看出,经过少量吡咯-2甲酸改性后得到的实施例5缺陷MOF产生羟基自由基的能力相比于原始MOF有了大幅度的提高。这主要得益于吡咯-2甲酸对HD-MOFs(Fe)的修饰作用,该作用会使Fe-O金属簇产生产生不对称桥联并生成晶格缺陷,此缺陷大幅提高了实施例5缺陷MOF产生羟基自由基的能力。
(二)两种材料的PL图谱
将本发明制备的原始缺陷MOF以及实施例5的缺陷MOF进行PL(光致发光光谱)测试,得到图2。
从图2可以看出,经过少量吡咯-2甲酸改性后得到的实施例5缺陷MOF产生羟基自由基的能力相比于原始MOF有了大幅度的提高。这主要得益于吡咯-2甲酸对HD-MOFs(Fe)的修饰作用,该作用会使Fe-O金属簇产生产生不对称桥联并生成晶格缺陷,此缺陷能较好地抑制光生电子和空穴的复合,提高电子迁移率。
(三)原始及缺陷MOF催化剂的表面形貌
采用日本Hitachi S-3400N型低倍扫描电子显微镜对原始MOF和本发明实施例5所制得的缺陷MOF催化剂进行材料表面形貌的表征,如图3,图4所示。
图3是原始MOF催化剂电镜扫描图,体现了原始MOF梭形结构。图4是实施例5缺陷MOF催化剂电镜扫描图,可以看出缺陷MOF催化剂尺寸变小,但仍保持梭形结构。
(四)原始及缺陷MOF催化剂的孔结构分析
采用美国Micro公司生产的3-Flex比表面孔径分布仪对本发明所制备的缺陷铁MOF材料孔隙结构进行测定,结果如表1所示。
表1.原始及缺陷MOF催化剂的比表面积和孔径分布。
Figure BDA0001984962100000071
Smicro,Vt,和Vmicro分别表示微孔所提供的比表面积,总孔容和微孔所提供的孔容。
根据表1所列数据可知,五种实施例所制备的缺陷MOF催化剂Langmuir比表面积在1413.6~1659.1m2/g,总孔容约在0.46~0.55cm3/g,其中微孔比表面积和孔容占到总比表面积和孔容的80~96%。经少量五元杂环单羧酸改性获得的缺陷MOF的比表面和孔容等数据与未改性之前有一定幅度的上升(约在10%左右)。
(五)原始MOF及实施例5缺陷MOF的XRD分析
采用日本Rigaku D/MAX的X射线衍射仪对本发明所制备的原始MOF催化剂和实施例5的缺陷MOF催化剂进行XRD测试,测试条件为:Cu Kα靶,扫描速度0.2°/min,30kV,测试结果如图5所示。通过将实施例5的缺陷MOF与原始MOF对比可以看出,实施例5的缺陷MOF峰形略有宽化,这可能是由于吡咯-2羧酸的引入对MOF的晶面造成了缺陷,但是这种缺陷对光催化降解有机污染物农药是有益的。
(六)三种材料光催化性能
图6示出了三种材料实施例1缺陷MOF、实施例3缺陷MOF以及实施例5缺陷MOF在氙灯150W下照射,电流为15A,啶虫脒浓度为50mg/L,H2O2(30%)10μL条件下,对啶虫脒的光催化降解效果。从图中可以看出,实施例5的缺陷MOF在相同时间内对啶虫脒的降解率高于实施例1缺陷MOF和实施例3缺陷MOF,这表明实施例5缺陷MOF既可对啶虫脒分子进行高效的化学吸附,又可以较大幅度提高催化剂在光-Fenton联合作用下的氧化催化活性,协同效应的效果使得实施例5缺陷MOF在60min对啶虫脒的降解率可达100%。
(七)两种材料光催化性能
图7示出了实施例5缺陷MOF在氙灯150W下照射,电流为15A,啶虫脒浓度为50mg/L,H2O2(30%)40μL条件下,啶虫脒的矿化率。从图中可以看出,实施例5的缺陷MOF在相同时间内对啶虫脒的降解率高于原始MOF,这表明缺陷MOF既可以对啶虫脒降解过程中间产物产生化学吸附诱导分子结构变化,又可以提高催化剂在光-Fenton联合作用下的氧化催化活性,最终通过“化学吸附-催化降解”协同机制使得实施例5缺陷MOF在2h对啶虫脒的矿化率可达91%。

Claims (5)

1.一种缺陷MOF催化剂的制备方法,其特征在于:该催化剂为三维孔隙结构,其Langmuir比表面积在1413~1659 m2/g,总孔容在0.46~0.55 cm3/g,其中微孔比表面积和孔容占到总比表面积和孔容的80~96%;制备方法包括如下步骤:
(1)称取FeCl3•6H2O于容器中,加入N,N-二甲基甲酰胺进行溶解,在搅拌条件下依次加入2-氨基对苯二甲酸、五元杂环单羧酸、氢氧化钠溶液,搅拌混合得到悬浮液;所述五元杂环单羧酸为2-呋喃甲酸、噻吩-2-甲酸和/或吡咯-2-甲酸;
所述步骤(1)中的2-氨基对苯二甲酸与FeCl3•6H2O的摩尔比为 0.7~0.96 :1;五元杂环单羧酸与FeCl3•6H2O的摩尔比为 0.04~0.3 :1;
( 2 ) 将步骤(1)中悬浮液转移至高压反应釜中高温反应,反应结束后,清洗离心再烘干得到缺陷MOF催化剂。
2.根据权利要求1所述的缺陷MOF催化剂的制备方法,其特征在于:所述五元杂环单羧酸为2-呋喃甲酸、噻吩-2-甲酸和/或吡咯-2-甲酸,这三种物质与FeCl3•6H2O的摩尔比均为0.28~0.3 :1。
3.根据权利要求1所述的缺陷MOF催化剂的制备方法,其特征在于:所述步骤(1)中的氢氧化钠的浓度为1~3mol/L,氢氧化钠与FeCl3•6H2O的摩尔比为0. 4~1.2 :1。
4.根据权利要求1所述的缺陷MOF催化剂的制备方法,其特征在于:所述步骤(2)中的高温反应采用可程序控温烘干箱,具体控温过程:
(a) 升温过程:以1~10 ℃/min的升温速率从室温升至90~120 ℃;
(b) 恒温过程:置于90~120 ºC保持6~24 h;
(c) 降温过程:恒温过程结束后立即从干燥箱内取出,自然冷却至室温。
5.根据权利要求1所述的缺陷MOF催化剂的制备方法,其特征在于:所述步骤(2)中的烘干温度范围为60~150℃;时间为6~24h。
CN201910161986.3A 2019-03-05 2019-03-05 一种缺陷mof催化剂及其制备方法与应用 Active CN109847803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910161986.3A CN109847803B (zh) 2019-03-05 2019-03-05 一种缺陷mof催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910161986.3A CN109847803B (zh) 2019-03-05 2019-03-05 一种缺陷mof催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN109847803A CN109847803A (zh) 2019-06-07
CN109847803B true CN109847803B (zh) 2021-10-08

Family

ID=66899703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910161986.3A Active CN109847803B (zh) 2019-03-05 2019-03-05 一种缺陷mof催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109847803B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111957299B (zh) * 2020-08-19 2022-08-23 江西理工大学 一种功能化铜基MOFs材料及其制备方法和应用
CN114762819B (zh) * 2021-01-15 2024-01-12 广州华芳烟用香精有限公司 一种微波合成法制备类印迹mof吸附剂及其应用
CN112877714B (zh) * 2021-01-27 2022-04-08 浙江大学衢州研究院 一种双缺陷超薄金属有机框架纳米片催化剂及其制备方法和应用
CN113000069B (zh) * 2021-02-25 2022-10-11 广西大学 一种仿生漆酶功能化亚胺类共价有机骨架纳米酶的制备方法及其应用
CN114931978B (zh) * 2022-05-31 2023-09-26 华南理工大学 一种缺陷金属有机骨架材料及其制备方法与应用
CN116212949B (zh) * 2023-03-06 2024-06-21 南京大学 一种三价铁配合物及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473069A (zh) * 2006-05-16 2009-07-01 巴斯夫欧洲公司 制备多孔金属有机骨架材料的方法
CN106362700A (zh) * 2016-09-09 2017-02-01 广西大学 一种高比表面浸渍法蚕沙多孔炭MOFs复合材料及其制备方法与应用
CN106868332A (zh) * 2017-02-20 2017-06-20 安徽农业大学 一种基于金属有机凝胶制备过渡金属合金的方法和应用
CN107349964A (zh) * 2017-07-15 2017-11-17 北京化工大学 一种纳米颗粒@小尺寸金属有机框架材料的制备方法
CN107759801A (zh) * 2017-09-27 2018-03-06 华南理工大学 利用晶体缺陷法合成中微双孔mof‑74材料的方法
CN107913673A (zh) * 2017-10-27 2018-04-17 清华大学 一种金属有机骨架材料及其去除水体有机药物污染的方法
CN108129672A (zh) * 2017-12-18 2018-06-08 中南大学 一种聚合物改变MIL-53-Fe形貌的微波合成方法
CN108404987A (zh) * 2018-03-07 2018-08-17 南京工业大学 一种提高纳米颗粒@MOFs材料催化效率的方法
CN108620134A (zh) * 2018-05-11 2018-10-09 上海应用技术大学 一种复合磁性光催化剂的制备方法
CN108745418A (zh) * 2018-05-24 2018-11-06 浙江工商大学 一种异质结mof催化剂及其制备方法及应用
CN109021244A (zh) * 2018-06-12 2018-12-18 昆明理工大学 一种MOFs材料的制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11241678B2 (en) * 2017-05-01 2022-02-08 Iowa State University Research Foundation, Inc. Metal oxide materials made using self-assembled coordination polymers

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473069A (zh) * 2006-05-16 2009-07-01 巴斯夫欧洲公司 制备多孔金属有机骨架材料的方法
CN106362700A (zh) * 2016-09-09 2017-02-01 广西大学 一种高比表面浸渍法蚕沙多孔炭MOFs复合材料及其制备方法与应用
CN106868332A (zh) * 2017-02-20 2017-06-20 安徽农业大学 一种基于金属有机凝胶制备过渡金属合金的方法和应用
CN107349964A (zh) * 2017-07-15 2017-11-17 北京化工大学 一种纳米颗粒@小尺寸金属有机框架材料的制备方法
CN107759801A (zh) * 2017-09-27 2018-03-06 华南理工大学 利用晶体缺陷法合成中微双孔mof‑74材料的方法
CN107913673A (zh) * 2017-10-27 2018-04-17 清华大学 一种金属有机骨架材料及其去除水体有机药物污染的方法
CN108129672A (zh) * 2017-12-18 2018-06-08 中南大学 一种聚合物改变MIL-53-Fe形貌的微波合成方法
CN108404987A (zh) * 2018-03-07 2018-08-17 南京工业大学 一种提高纳米颗粒@MOFs材料催化效率的方法
CN108620134A (zh) * 2018-05-11 2018-10-09 上海应用技术大学 一种复合磁性光催化剂的制备方法
CN108745418A (zh) * 2018-05-24 2018-11-06 浙江工商大学 一种异质结mof催化剂及其制备方法及应用
CN109021244A (zh) * 2018-06-12 2018-12-18 昆明理工大学 一种MOFs材料的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes";Peng Hu et al.;《Chemical Engineering Journal》;20180908;第356卷;第329-340页 *
"Effects of Monocarboxylic Acid Additives on Synthesizing Metal-Organic Framework NH2 MIL-125 with Controllable Size and Morphology";Shen Hu et al.;《Cryst. Growth Des.》;20171016;第17卷;第6586-6595页 *
"调节剂诱导缺陷形成策略构筑高稳定且多级孔结构的金属有机框架材料";蔡国瑞等;《中国化学会第八届全国配位催化会议论文集》;20170719;第1-4页 *

Also Published As

Publication number Publication date
CN109847803A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN109847803B (zh) 一种缺陷mof催化剂及其制备方法与应用
CN109126893B (zh) 一种碳氧化钛-金属有机框架复合材料及制备方法和应用
CN111001439A (zh) 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用
Niu et al. In-situ growth of CF@ CCS@ ZIF8/67–1/1 photocatalysts with internal electric field and interfacial enhancement on cobalt-copper foam surface for simultaneous removal of ciprofloxacin and Cr (VI)
CN114225938A (zh) 磁性纳米Fe3O4@菌渣生物炭芬顿催化剂及制备方法
Vo et al. Facile synthesis of magnetic framework composite MgFe2O4@ UiO-66 (Zr) and its applications in the adsorption–photocatalytic degradation of tetracycline
CN107715916A (zh) 一种MIL‑100(Fe)纳米催化剂的制备方法及其应用
CN109499573A (zh) 一种磁性木基材料的原位制备方法
Liu et al. Fe-MOF by ligand selective pyrolysis for Fenton-like process and photocatalysis: accelerating effect of oxygen vacancy
CN113877581A (zh) 一种铁酸铜尖晶石材料及其制备方法与应用
CN115155526B (zh) 一种处理核废水的富勒烯共价有机框架材料的制备方法
CN111644190A (zh) 一种可磁分离TiO2/BN/Fe3O4复合材料及其制备方法
Esania et al. Characterization and assessment of the photocatalytic activity of ZnO-Fe3O4/TiO2 nanocomposite based on MIL-125 (Ti) synthesized by mixed solvo-hydrothermal and sol-gel methods
Niu et al. Construction of F–F@ FeVO4/ZnCo2O4 photocatalysts with heterojunction interfacial enhancement and surface oxygen vacancies for the removal of tetracycline, sulfamethoxazole, ciprofloxacin and Cr (VI)
CN114100573B (zh) 一种MOFs衍生多孔碳包覆的铁氧化物复合材料的制备方法
CN113457745B (zh) 一种选择性还原硝酸盐为n2的光催化剂制备方法及应用
CN105597793B (zh) 一种光催化剂及其制备方法和应用
CN113120977A (zh) 由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用
CN112320894B (zh) 一种硫化铋修饰铁碳填料及其制备方法、在污水处理中的应用
CN115353189B (zh) 一种调控溶解氧处理含环丙沙星的废水的方法
CN114100657B (zh) 一种α-Fe2O3/LaFeO3/g-C3N4/MXene材料及其制备方法和应用
Lu et al. The flower-like Ni-MOF modified BiOBr nanosheets with enhancing photocatalytic degradation performance
CN113976149B (zh) 钴铝水滑石/富铋氯氧化铋复合光催化剂及其制备方法和应用
CN115301294A (zh) 一种硫化铟锌改性铁基金属有机框架及其制备方法和在吸附-光催化剂中的应用
Jiang et al. Low-cost magnetic clay derivants from palygorskite/MIL-101 (Fe) for high-performance adsorption-photocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant