CN109805453A - 一种基于金属纳米线的电子烟加热组件制作方法 - Google Patents

一种基于金属纳米线的电子烟加热组件制作方法 Download PDF

Info

Publication number
CN109805453A
CN109805453A CN201910179332.3A CN201910179332A CN109805453A CN 109805453 A CN109805453 A CN 109805453A CN 201910179332 A CN201910179332 A CN 201910179332A CN 109805453 A CN109805453 A CN 109805453A
Authority
CN
China
Prior art keywords
nanometer line
metal nanometer
heating component
electronic cigarette
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910179332.3A
Other languages
English (en)
Other versions
CN109805453B (zh
Inventor
杨泽芳
时君
季书林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bank Of Nanjing New Mstar Technology Ltd
Original Assignee
Bank Of Nanjing New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bank Of Nanjing New Mstar Technology Ltd filed Critical Bank Of Nanjing New Mstar Technology Ltd
Priority to CN201910179332.3A priority Critical patent/CN109805453B/zh
Publication of CN109805453A publication Critical patent/CN109805453A/zh
Application granted granted Critical
Publication of CN109805453B publication Critical patent/CN109805453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Heating Bodies (AREA)

Abstract

本发明公开了一种基于金属纳米线的电子烟加热组件制作方法,首先选择耐高温的基底,在基底正中间粘贴细长形掩膜版,将金属纳米线墨水涂覆在耐高温衬底上,薄膜放入四氯化锡醇溶液中浸泡后烘干处理,再将之前基底中间贴附的掩膜版去除,在导电薄膜两端制备线电极连接金属导线,再在衬底上涂覆一层纳米尺度的硅溶胶保护层和玻璃釉。通过本发明方法制备得到一种可以替代使用加热丝的传统电子烟加热组件,其具有加热温度高、加热均匀,并能够有效防止烟油对加热组件的腐蚀,且加热组件表面不导电,安全性高。

Description

一种基于金属纳米线的电子烟加热组件制作方法
技术领域
本发明涉及一种基于金属纳米线的电子烟加热组件制作方法。
背景技术
近年来,随着吸烟与健康问题日益受到人们的重视,为满足传统卷烟消费者的需求,市场上已经出现了各式各样的新型烟草制品,其中电子烟占据大部分市场份额。虽然电子烟口味众多,但基本原理均是利用电阻片加热,将烟油雾化或特选烟草烘烤成可供人们吸食的气溶胶。但是传统加热器使用的加热丝组件制备工艺复杂、成本高、不耐高温和腐蚀,因此研发工艺简单、廉价,并且能够适用于电子烟的加热器件尤为迫切目前电子烟加热片的制作方法工艺复杂、制备成本高。
发明内容
发明目的:针对上述现有技术,提出一种基于金属纳米线的电子烟加热组件制作方法,替代传统使用加热丝的电子烟加热组件。
技术方案:一种基于金属纳米线的电子烟加热组件制作方法,包括如下步骤:
步骤1:制备长条形耐高温基底,在所述基底中央沿长度方向粘贴一条细长形掩膜版,所述掩膜版长度小于基底长度,所述掩膜版的一端与基底一端齐平或超出基底端部;
步骤2:将金属纳米线墨水涂覆在所述基底上,形成金属纳米线前驱薄膜;
步骤3:将所述金属纳米线前驱薄膜在四氯化锡水溶液中浸泡后,再经过去离子水浸泡后取出烘干,形成金属纳米线导电薄膜;
步骤4:将所述掩膜版去除后,在所述金属纳米线导电薄膜中央沿长度方向形成未覆盖金属纳米线的绝缘带,然后进行热处理;
步骤5:在所述基底端部制备一对连接所述金属纳米线导电薄膜的导电电极,两个电极分别位于所述绝缘带两侧;
步骤6:在器件表面整体涂覆一层硅溶胶,然后放入烘箱进行干燥;
步骤7:在所述硅溶胶表面涂覆一层玻璃釉,然后放入陶瓷舟后在退火炉中进行退火处理,待玻璃釉完全晶化后完成制作。
进一步的,所述步骤1中,耐高温基底为陶瓷基底或玻璃基底,预先依次在丙酮、乙醇、去离子水中超声清洗20-30分钟。
进一步的,所述步骤1中,所述掩膜版远离导电电极的一端宽度大于另一端。
进一步的,所述金属纳米线墨水为银纳米线墨水,制备方法为:将多元醇法合成的银纳米线分散在乙醇溶液中,得到浓度为2.5-10mg/mL的银纳米线胶体,然后在所述银纳米线胶体中加入浓度为0.2-0.8mg/mL氧化石墨烯分散液,得到银纳米线墨水;其中,银纳米线胶体与氧化石墨烯分散液的体积比为95:5。
进一步的,所述步骤3中,所述四氯化锡水溶液的浓度为0.1-0.8mol/mL,浸泡时间为20-40秒。
进一步的,所述步骤4中,进行180℃,30分钟的热处理。
进一步的,所述步骤5中,所述导电电极的制备方法为:利用掩版遮盖导电薄膜,只留出导电电极的位置,然后通过蒸渡、溅射金属制得,或者用导电胶连接电极引线,实现引线与导电薄膜通电。
进一步的,所述步骤6中,在烘箱进行80℃干燥。
进一步的,步骤7中,所述陶瓷舟放入退火炉后,退火炉在30min内从室温升到350-450℃,然后最高温保持5min。
进一步的,所述掩膜版远离导电电极的一端宽度为0.6mm,比另一端宽0.3mm。
有益效果:本发明以低温液相法合成的银纳米线为原料,以非真空、非高温的制膜工艺涂覆导电薄膜,采用浸涂的方式改进薄膜的耐高温性,通过液相涂覆廉价的有机聚合物获得薄层保护膜来制备电子烟加热组件。制备工艺中,在制备银纳米线墨水时,加入的氧化石墨烯起到连接银纳米线网格的作用,使得整个银纳米线薄膜形成一个良好的传输通道,高温环境下整个传输通道不容易断裂;氧化石墨烯分散液的浓度太低则起不到耐高温作用,浓度太高容易导致银纳米线絮凝。在耐高温处理中,四氯化锡层对银纳米线产生一种包裹作用,且使银纳米线搭接更紧密,高温环境下不容易断裂;工艺中,四氯化锡水溶液浓度太低则银纳米线表面无法形成一层四氯化锡,浓度太高则容易形成厚厚的一层,组件加热过程中容易对银纳米线产生拉扯,从而导致银纳米线断裂。且四氯化锡水溶液中浸泡时间太短则四氯化锡不足以与银纳米线产生结合,时间太久则容易导致银纳米线薄膜脱落。同时,去离子水中浸泡时间太短则四氯化稀在银纳米线上形成的薄膜层太厚,组件加热过程中容易对银纳米线产生拉扯,从而导致银纳米线断裂,时间太长则容易导致银纳米线薄膜脱落。在银纳米线薄膜上覆盖硅溶胶作为保护层提高薄膜的耐磨性,且不影响薄膜表面导电性。硅溶胶质量分数过低则无法很好的形成保护层,质量分数太大则形成的保护层较厚,加热过程中易开裂。再涂覆玻璃釉作为保护层后,金属薄膜耐刮擦性显著提高,起到防腐蚀的作用;且保护层对纳米线薄膜表面起到一个包覆作用,釉高温烧制冷却过程中产生压力,可以增加与基底结合力。最后退火温度太低或时间太短则玻璃釉无法晶化完全,温度过高或时间过长则容易对纳米线产生破坏。通过本方法制备得到的组件可替代使用加热丝的传统电子烟加热组件,其具有加热温度高、加热均匀,并能够有效防止烟油对加热组件的腐蚀,且加热组件表面不导电,安全性高。
附图说明
图1是本发明方法的流程图;
图2是银纳米导电薄膜表面覆盖四氯化锡的扫描电子显微镜像及高分辨像;
图3是实施例1掩膜版远离导电电极的一端宽度大于另一端时制备得到加热组件结构示意图即对应的红外加热图;
图4是实施例2掩膜版宽度一致时制备得到加热组件结构示意图即对应的红外加热图;
图5是实施例3掩膜版远离导电电极的一端宽度小于另一端时制备得到加热组件结构示意图即对应的红外加热图;
图6是本方法制备得到加热组件循环加热次数测试图。
具体实施方式
下面结合附图对本发明做更进一步的解释。
实施例1:
如图1所示,一种基于金属纳米线的电子烟加热组件制作方法,包括如下步骤:
步骤1:制备长条形耐高温基底,可以是平面或曲面的玻璃或陶瓷基底,基底面积为0.8125cm2,预先依次在丙酮、乙醇、去离子水中超声清洗20-30分钟。在基底中央沿长度方向粘贴一条细长形掩膜版,掩膜版长度小于基底长度,掩膜版的一端与基底一端齐平或超出基底端部。掩膜版远离导电电极的一端宽度大于另一端,具体的掩膜版长15mm,一端宽度为0.6mm,另一端宽度为0.3mm,成倒梯形形状。
步骤2:将金属纳米线墨水利用刮涂、喷涂、旋涂等技术涂覆在基底上,形成金属纳米线前驱薄膜。其中,金属纳米线墨水为银纳米线墨水,制备方法为:将多元醇法合成的银纳米线分散在乙醇溶液中,得到浓度为2.5mg/mL的银纳米线胶体,然后在银纳米线胶体中加入浓度为0.2mg/mL氧化石墨烯分散液,得到银纳米线墨水;其中,银纳米线胶体与氧化石墨烯分散液的体积比为95:5。
步骤3:将涂覆好的金属纳米线前驱薄膜在浓度为0.1mol/ml的四氯化锡水溶液中浸泡20秒后,再经过去离子水浸泡20秒后取出烘干,形成金属纳米线导电薄膜。薄膜由银纳米线网格组成导电通道,银纳米线薄膜电阻依据厚度在0.1Ω/square-2Ω/square范围内可选。可根据所需加热片电阻大小来决定涂覆纳米线次数和四氯化锡水处理次数。如图2所示,扫描电子显微镜分析表明在银纳米线表层覆盖了一层四氯化锡,对银纳米线产生一种包裹作用,且使银纳米线搭接更紧密,高温环境下不容易断裂,从而对纳米线形成一种很好的保护作用。
步骤4:将掩膜版去除后,在金属纳米线导电薄膜中央沿长度方向形成未覆盖银纳米线的一条由宽像窄渐变的绝缘带,然后进行180℃,30分钟的热处理。
步骤5:在基底端部制备一对连接金属纳米线导电薄膜的导电电极,两个电极分别位于绝缘带两侧。导电电极的具体制备方法为:利用掩版遮盖导电薄膜,只留出导电电极的位置,然后通过蒸渡、溅射金属制得,或者用导电胶连接电极引线,实现引线与导电薄膜通电。
步骤6:在器件表面利用刮涂、喷涂、旋涂、浸涂等成膜技术整体涂覆一层硅溶胶作为透明保护层,然后放入烘箱进行80℃干燥后取出。
步骤7:在硅溶胶表面利用刮涂或丝印的方式涂覆一层玻璃釉,然后放入陶瓷舟后在退火炉中退火,退火炉在30min内从室温升到350℃,然后最高温保持5min,待玻璃釉完全晶化后完成制作。硅溶胶能够提高金属薄膜的耐刮擦性且与基底结合力明显增强。
采用导电性较好的银作为加热组件,相对于金属氧化物、碳纳米管、石墨烯等材料,减少了输入电压,提高了热响应率,利于低功耗、高灵敏器件中的应用。加热组件的不同构型,会使加热时均匀度有所不同,如图3所示,本实施例所制备得到的加热组件的耐高温性和均匀性优于图4和图5所示组件。但三种构型的加热组件核心加热温度均可保持在320℃以上。如表1所示,加热组件加热达到320℃以上时,其电阻和电压的大小可根据不同使用需求调节制备工艺,实现不同电阻的控制和调节。如图6所示,元件反复加热至350℃,经过200次循环,每隔10个周期器件完全冷却至室温后电阻变化可见电阻变化较小,器件可以多次稳定发热。
表1加热温度达到320℃时所需电压以及电流的大小
实施例2:
一种基于金属纳米线的电子烟加热组件制作方法,包括如下步骤:
步骤1:制备长条形耐高温基底,可以是平面或曲面的玻璃或陶瓷基底,基底面积为0.8125cm2,预先依次在丙酮、乙醇、去离子水中超声清洗20-30分钟。在基底中央沿长度方向粘贴一条细长形掩膜版,掩膜版长度小于基底长度,掩膜版的一端与基底一端齐平或超出基底端部。掩膜版宽度一致,具体的掩膜版长15mm,宽度为0.4mm。
步骤2:将金属纳米线墨水利用刮涂、喷涂、旋涂等技术涂覆在基底上,形成金属纳米线前驱薄膜。其中,金属纳米线墨水为银纳米线墨水,制备方法为:将多元醇法合成的银纳米线分散在乙醇溶液中,得到浓度为6.5mg/mL的银纳米线胶体,然后在银纳米线胶体中加入浓度为0.6mg/mL氧化石墨烯分散液,得到银纳米线墨水;其中,银纳米线胶体与氧化石墨烯分散液的体积比为95:5。
步骤3:将涂覆好的金属纳米线前驱薄膜在浓度为0.5mol/ml的四氯化锡水溶液中浸泡30秒后,再经过去离子水浸泡30秒后取出烘干,形成金属纳米线导电薄膜。薄膜由银纳米线网格组成导电通道,银纳米线薄膜电阻依据厚度在0.1Ω/square-2Ω/square范围内可选。可根据所需加热片电阻大小来决定涂覆纳米线次数和四氯化锡水处理次数。如图2所示,扫描电子显微镜分析表明在银纳米线表层覆盖了一层四氯化锡,对银纳米线产生一种包裹作用,且使银纳米线搭接更紧密,高温环境下不容易断裂,从而对纳米线形成一种很好的保护作用。
步骤4:将掩膜版去除后,在金属纳米线导电薄膜中央沿长度方向形成未覆盖银纳米线的一条由宽像窄渐变的绝缘带,然后进行180℃,30分钟的热处理。
步骤5:在基底端部制备一对连接金属纳米线导电薄膜的导电电极,两个电极分别位于绝缘带两侧。导电电极的具体制备方法为:利用掩版遮盖导电薄膜,只留出导电电极的位置,然后通过蒸渡、溅射金属制得,或者用导电胶连接电极引线,实现引线与导电薄膜通电。
步骤6:在器件表面利用刮涂、喷涂、旋涂、浸涂等成膜技术整体涂覆一层硅溶胶作为透明保护层,然后放入烘箱进行80℃干燥后取出。
步骤7:在硅溶胶表面利用刮涂或丝印的方式涂覆一层玻璃釉,然后放入陶瓷舟后在退火炉中退火,退火炉在30min内从室温升到400℃,然后最高温保持5min,待玻璃釉完全晶化后完成制作。硅溶胶能够提高金属薄膜的耐刮擦性且与基底结合力明显增强。
实施例3:
一种基于金属纳米线的电子烟加热组件制作方法,包括如下步骤:
步骤1:制备长条形耐高温基底,可以是平面或曲面的玻璃或陶瓷基底,基底面积为0.8125cm2,预先依次在丙酮、乙醇、去离子水中超声清洗20-30分钟。在基底中央沿长度方向粘贴一条细长形掩膜版,掩膜版长度小于基底长度,掩膜版的一端与基底一端齐平或超出基底端部。掩膜版远离导电电极的一端宽度小于另一端,具体的掩膜版长15mm,一端宽度为0.3mm,另一端宽度为0.6mm,成梯形形状。
步骤2:将金属纳米线墨水利用刮涂、喷涂、旋涂等技术涂覆在基底上,形成金属纳米线前驱薄膜。其中,金属纳米线墨水为银纳米线墨水,制备方法为:将多元醇法合成的银纳米线分散在乙醇溶液中,得到浓度为10mg/mL的银纳米线胶体,然后在银纳米线胶体中加入浓度为0.8mg/mL氧化石墨烯分散液,得到银纳米线墨水;其中,银纳米线胶体与氧化石墨烯分散液的体积比为95:5。
步骤3:将涂覆好的金属纳米线前驱薄膜在浓度为0.8mol/ml的四氯化锡水溶液中浸泡40秒后,再经过去离子水浸泡40秒后取出烘干,形成金属纳米线导电薄膜。薄膜由银纳米线网格组成导电通道,银纳米线薄膜电阻依据厚度在0.1Ω/square-2Ω/square范围内可选。可根据所需加热片电阻大小来决定涂覆纳米线次数和四氯化锡水处理次数。如图2所示,扫描电子显微镜分析表明在银纳米线表层覆盖了一层四氯化锡,对银纳米线产生一种包裹作用,且使银纳米线搭接更紧密,高温环境下不容易断裂,从而对纳米线形成一种很好的保护作用。
步骤4:将掩膜版去除后,在金属纳米线导电薄膜中央沿长度方向形成未覆盖银纳米线的一条由宽像窄渐变的绝缘带,然后进行180℃,30分钟的热处理。
步骤5:在基底端部制备一对连接金属纳米线导电薄膜的导电电极,两个电极分别位于绝缘带两侧。导电电极的具体制备方法为:利用掩版遮盖导电薄膜,只留出导电电极的位置,然后通过蒸渡、溅射金属制得,或者用导电胶连接电极引线,实现引线与导电薄膜通电。
步骤6:在器件表面利用刮涂、喷涂、旋涂、浸涂等成膜技术整体涂覆一层硅溶胶作为透明保护层,然后放入烘箱进行80℃干燥后取出。
步骤7:在硅溶胶表面利用刮涂或丝印的方式涂覆一层玻璃釉,然后放入陶瓷舟后在退火炉中退火,退火炉在30min内从室温升到450℃,然后最高温保持5min,待玻璃釉完全晶化后完成制作。硅溶胶能够提高金属薄膜的耐刮擦性且与基底结合力明显增强。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种基于金属纳米线的电子烟加热组件制作方法,其特征在于,包括如下步骤:
步骤1:制备长条形耐高温基底,在所述基底中央沿长度方向粘贴一条细长形掩膜版,所述掩膜版长度小于基底长度,所述掩膜版的一端与基底一端齐平或超出基底端部;
步骤2:将金属纳米线墨水涂覆在所述基底上,形成金属纳米线前驱薄膜;
步骤3:将所述金属纳米线前驱薄膜在四氯化锡水溶液中浸泡后,再经过去离子水浸泡后取出烘干,形成金属纳米线导电薄膜;
步骤4:将所述掩膜版去除后,在所述金属纳米线导电薄膜中央沿长度方向形成未覆盖金属纳米线的绝缘带,然后进行热处理;
步骤5:在所述基底端部制备一对连接所述金属纳米线导电薄膜的导电电极,两个电极分别位于所述绝缘带两侧;
步骤6:在器件表面整体涂覆一层硅溶胶,然后放入烘箱进行干燥;
步骤7:在所述硅溶胶表面涂覆一层玻璃釉,然后放入陶瓷舟后在退火炉中进行退火处理,待玻璃釉完全晶化后完成制作。
2.根据权利要求1所述的基于金属纳米线的电子烟加热组件制作方法,其特征在于,所述步骤1中,耐高温基底为陶瓷基底或玻璃基底,预先依次在丙酮、乙醇、去离子水中超声清洗20-30分钟。
3.根据权利要求1所述的基于金属纳米线的电子烟加热组件制作方法,其特征在于,所述步骤1中,所述掩膜版远离导电电极的一端宽度大于另一端。
4.根据权利要求1所述的基于金属纳米线的电子烟加热组件制作方法,其特征在于,所述金属纳米线墨水为银纳米线墨水,制备方法为:将多元醇法合成的银纳米线分散在乙醇溶液中,得到浓度为2.5-10mg/mL的银纳米线胶体,然后在所述银纳米线胶体中加入浓度为0.2-0.8mg/mL氧化石墨烯分散液,得到银纳米线墨水;其中,银纳米线胶体与氧化石墨烯分散液的体积比为95:5。
5.根据权利要求1所述的基于金属纳米线的电子烟加热组件制作方法,其特征在于,所述步骤3中,所述四氯化锡水溶液的浓度为0.1-0.8mol/mL,浸泡时间为20-40秒。
6.根据权利要求1所述的基于金属纳米线的电子烟加热组件制作方法,其特征在于,所述步骤4中,进行180℃,30分钟的热处理。
7.根据权利要求1所述的基于金属纳米线的电子烟加热组件制作方法,其特征在于,所述步骤5中,所述导电电极的制备方法为:利用掩版遮盖导电薄膜,只留出导电电极的位置,然后通过蒸渡、溅射金属制得,或者用导电胶连接电极引线,实现引线与导电薄膜通电。
8.根据权利要求1所述的基于金属纳米线的电子烟加热组件制作方法,其特征在于,所述步骤6中,在烘箱进行80℃干燥。
9.根据权利要求1所述的基于金属纳米线的电子烟加热组件制作方法,其特征在于,步骤7中,所述陶瓷舟放入退火炉后,退火炉在30min内从室温升到350-450℃,然后最高温保持5min。
10.根据权利要求3所述的基于金属纳米线的电子烟加热组件制作方法,其特征在于,所述掩膜版远离导电电极的一端宽度为0.6mm,比另一端宽0.3mm。
CN201910179332.3A 2019-03-11 2019-03-11 一种基于金属纳米线的电子烟加热组件制作方法 Active CN109805453B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910179332.3A CN109805453B (zh) 2019-03-11 2019-03-11 一种基于金属纳米线的电子烟加热组件制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910179332.3A CN109805453B (zh) 2019-03-11 2019-03-11 一种基于金属纳米线的电子烟加热组件制作方法

Publications (2)

Publication Number Publication Date
CN109805453A true CN109805453A (zh) 2019-05-28
CN109805453B CN109805453B (zh) 2022-07-26

Family

ID=66608584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910179332.3A Active CN109805453B (zh) 2019-03-11 2019-03-11 一种基于金属纳米线的电子烟加热组件制作方法

Country Status (1)

Country Link
CN (1) CN109805453B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793718A (zh) * 2021-08-23 2021-12-14 湖南兴威新材料有限公司 一种薄膜电极及其制备方法和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053256A (zh) * 2014-05-14 2014-09-17 中国科学院合肥物质科学研究院 基于银纳米线透明导电薄膜的加热器及其制备方法
CN104299722A (zh) * 2014-09-05 2015-01-21 中国科学院合肥物质科学研究院 一种利用溶液法提高银纳米线透明导电薄膜导电性的方法
CN104934109A (zh) * 2015-06-03 2015-09-23 林州市清华·红旗渠新材料产业化发展中心 玻璃基底石墨烯/银纳米线透明导电薄膜的制备方法
CN106131984A (zh) * 2016-09-12 2016-11-16 南京工业大学 一种银纳米线氧化石墨烯复合导电薄膜加热器的制备方法
CN106700113A (zh) * 2017-01-13 2017-05-24 合肥微晶材料科技有限公司 一种透明加热膜及其制备方法
CN106867315A (zh) * 2017-02-28 2017-06-20 南开大学 一种基于金属纳米线和氧化石墨烯的导电墨水的制备方法及用途
CN106862553A (zh) * 2017-03-20 2017-06-20 济宁利特纳米技术有限责任公司 一种金属纳米线的清洗方法
CN107039122A (zh) * 2017-04-09 2017-08-11 北京工业大学 一种石墨烯/超长银纳米线柔性透明导电薄膜的制备方法
CN107426836A (zh) * 2017-09-11 2017-12-01 南京银纳新材料科技有限公司 一种基于金属纳米线薄膜的非矩形面加热器
CN107635296A (zh) * 2017-09-13 2018-01-26 合肥微晶材料科技有限公司 一种石墨烯银纳米线复合柔性发热膜组件
US20180033516A1 (en) * 2015-01-30 2018-02-01 Nanyang Technological University Method of interconnecting nanowires, nanowire network and transparent condutive electrode
US20180247722A1 (en) * 2015-09-16 2018-08-30 The Regents Of The University Of California Transparent conductors
US20180277787A1 (en) * 2015-10-01 2018-09-27 The Regents Of The University Of California Thermally stable silver nanowire transparent electrode

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053256A (zh) * 2014-05-14 2014-09-17 中国科学院合肥物质科学研究院 基于银纳米线透明导电薄膜的加热器及其制备方法
CN104299722A (zh) * 2014-09-05 2015-01-21 中国科学院合肥物质科学研究院 一种利用溶液法提高银纳米线透明导电薄膜导电性的方法
US20180033516A1 (en) * 2015-01-30 2018-02-01 Nanyang Technological University Method of interconnecting nanowires, nanowire network and transparent condutive electrode
CN104934109A (zh) * 2015-06-03 2015-09-23 林州市清华·红旗渠新材料产业化发展中心 玻璃基底石墨烯/银纳米线透明导电薄膜的制备方法
US20180247722A1 (en) * 2015-09-16 2018-08-30 The Regents Of The University Of California Transparent conductors
US20180277787A1 (en) * 2015-10-01 2018-09-27 The Regents Of The University Of California Thermally stable silver nanowire transparent electrode
CN106131984A (zh) * 2016-09-12 2016-11-16 南京工业大学 一种银纳米线氧化石墨烯复合导电薄膜加热器的制备方法
CN106700113A (zh) * 2017-01-13 2017-05-24 合肥微晶材料科技有限公司 一种透明加热膜及其制备方法
CN106867315A (zh) * 2017-02-28 2017-06-20 南开大学 一种基于金属纳米线和氧化石墨烯的导电墨水的制备方法及用途
CN106862553A (zh) * 2017-03-20 2017-06-20 济宁利特纳米技术有限责任公司 一种金属纳米线的清洗方法
CN107039122A (zh) * 2017-04-09 2017-08-11 北京工业大学 一种石墨烯/超长银纳米线柔性透明导电薄膜的制备方法
CN107426836A (zh) * 2017-09-11 2017-12-01 南京银纳新材料科技有限公司 一种基于金属纳米线薄膜的非矩形面加热器
CN107635296A (zh) * 2017-09-13 2018-01-26 合肥微晶材料科技有限公司 一种石墨烯银纳米线复合柔性发热膜组件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘萍等: "纳米线透明导电薄膜的制备及在光电器件中的应用", 《材料导报》 *
唐燕等: "铜纳米线复合透明电极的构筑及应用研究进展", 《材料导报》 *
朱杰君等: "石墨烯的制备、表征及其在透明导电膜中的应用", 《物理化学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793718A (zh) * 2021-08-23 2021-12-14 湖南兴威新材料有限公司 一种薄膜电极及其制备方法和应用
CN113793718B (zh) * 2021-08-23 2024-01-09 湖南兴威新材料有限公司 一种薄膜电极及其制备方法和应用

Also Published As

Publication number Publication date
CN109805453B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
US20220192267A1 (en) Electronic baking cigarette device and heating apparatus thereof
Kiruthika et al. Large area defrosting windows based on electrothermal heating of highly conducting and transmitting Ag wire mesh
Bobinger et al. Infrared, transient thermal, and electrical properties of silver nanowire thin films for transparent heaters and energy‐efficient coatings
CN107874322A (zh) 一种发热体及电子烟
TW201517055A (zh) 可撓式透明電熱膜
CN110016803A (zh) 一种耐高温电热纤维及其应用
CN105916221A (zh) 一种石墨烯电加热体的制备方法
US20090114639A1 (en) Thin-film heating element
WO2021238427A1 (zh) 发热体和加热装置
Yu et al. High-performance flexible transparent conductive tape based on copper nanowires
CN109805453A (zh) 一种基于金属纳米线的电子烟加热组件制作方法
CN102036433A (zh) 一种双膜层结构的红外电热膜加热管、其制备方法及其应用
CN109661043A (zh) 一种可变色柔性加热复合薄膜
CN109246870B (zh) 一种全印制低压柔性的高性能图案化加热器件的制备方法
CN108766627A (zh) 一种银纳米网格柔性透明电极及其制备方法
CN112768116A (zh) 一种低表面粗糙度的柔性透明导电电极制备方法
Zhu et al. A cracked polymer templated Ag network for flexible transparent electrodes and heaters
CN109819535B (zh) 一种高温服役银纳米线导电薄膜加热器的制备方法
CN111698796A (zh) 一种耐反复刮擦银纳米线薄膜加热器的制备方法
CN209643873U (zh) 一种电子烟加热芯
Bobinger et al. Characterization and modeling of the thermal and electrical properties of transparent silver nanowire thin-film heaters
CN203057553U (zh) 一种透明发热膜
CN209358794U (zh) 加热不燃烧电子烟用中间发热的陶瓷加热片
CN208549031U (zh) 加热装置与测温装置的双层烧结及温度保护结构
WO2017133067A1 (zh) 一种涂覆基质具有高导热能力的厚膜元件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant