CN109759054A - 一种室温分解甲醛的纳米催化剂复合材料及其制备方法 - Google Patents

一种室温分解甲醛的纳米催化剂复合材料及其制备方法 Download PDF

Info

Publication number
CN109759054A
CN109759054A CN201910136997.6A CN201910136997A CN109759054A CN 109759054 A CN109759054 A CN 109759054A CN 201910136997 A CN201910136997 A CN 201910136997A CN 109759054 A CN109759054 A CN 109759054A
Authority
CN
China
Prior art keywords
nanocatalyst
composite material
catalyst
manganese dioxide
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910136997.6A
Other languages
English (en)
Inventor
范丽丽
黄岳祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201910136997.6A priority Critical patent/CN109759054A/zh
Publication of CN109759054A publication Critical patent/CN109759054A/zh
Priority to US16/545,800 priority patent/US20200269216A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/455Gas separation or purification devices adapted for specific applications for transportable use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本发明涉及一种室温分解甲醛的纳米催化剂复合材料及其制备方法。一种室温分解甲醛的纳米催化剂复合材料,其特征是:该纳米催化剂复合材料包括具有纳米级双通孔结构的氧化铝载体;纳米氧化铝双通孔结构内部和表面负载有非化学计量比的纳米金属二氧化锰(MnO2‑x)催化剂。一种室温分解甲醛的纳米催化剂复合材料的制备方法,其特征是:纳米催化剂复合材料的制备方法包括以下步骤:1)通过电子束热蒸发工艺将二氧化锰负载到纳米氧化铝载体上;2)在一定氢压,温度,氢化时间的条件下对纳米氧化铝载体上的二氧化锰催化剂进行氢化处理,获得非化学计量比的纳米二氧化锰(MnO2‑x)催化剂。本发明具有室温分解甲醛的催化活性高,活性氧浓度可调,催化剂稳定性好,制备工艺简单,成本低廉等特点,可广泛应用于空气中甲醛污染物的治理,尤其是室内和车内的甲醛污染物的治理。

Description

一种室温分解甲醛的纳米催化剂复合材料及其制备方法
技术领域
本发明属于空气净化催化应用材料领域,特别是涉及一种室温分解甲醛的纳米催化剂复合材料及其制备方法。
背景技术
甲醛(HCHO)是一种常见的室内空气污染物,能与人体蛋白质中的氨基发生作用,影响蛋白质功能的正常发挥。甲醛可能对人体的嗅觉等感官系统,呼吸系统,免疫系统和中枢神经系统产生损伤,还有可能对人体遗传产生不良影响。甲醛浓度较低时可能会对眼睛和上呼吸道产生刺激,引起急性过敏反应,中等浓度时可能会导致呼吸道严重灼伤,流涕,呼吸困难,头痛等症状,浓度过高可能会导致肺水肿,肺炎,诱发基因突变,甚至导致死亡。室内或车内甲醛的主要来源是装修材料和家具材料中的粘合剂。特别是新装修的房间内,室内大量装修材料会散发出大量的甲醛,致使室内空气中甲醛的含量严重超过国家标准。
目前采用的甲醛去除方法有多种,可以粗略地分为开窗通风法、吸附法、光催化氧化法、臭氧氧化法和金属氧化物催化降解法。开窗通风法操作简单,但由于甲醛释放周期长,长期效果不明显。利用吸附法去除甲醛,只是将甲醛富集到吸附剂上,并不能将其分解,而且进行脱附时会造成二次污染。光催化氧化法中,目前普遍使用的光催化剂为二氧化钛,其能对甲醛和有机物等进行催化降解,但是由于二氧化钛光催化剂只对紫外光有响应,催化降解效率难以满足实际要求,而且系统设计要求较高,大规模推广有难度。臭氧氧化法是利用臭氧的强氧化性来催化甲醛分解,但是臭氧本身具有毒性,人在浓度为0 .1-1ppm的臭氧中就会产生头痛,眼睛灼热,且呼吸道会受刺激,难以实际应用于去除室内空气中的甲醛。金属氧化物催化降解法是目前比较有前景的降解甲醛技术,它利用具有催化作用的金属氧化物在常温条件下催化甲醛分解,具有快速反应且使用过程无损耗的特点。
在金属氧化物催化降解法中,目前研究较多的催化剂主要有铂、钯、钌等贵金属、稀土金属氧化物、过渡金属及其氧化物等。其中铂、钯、钌等贵金属催化剂具有稳定性好、催化效率高等优点,但由于价格昂贵,限制了其应用。稀土金属和过渡金属由于相对价格低廉、催化活性较高而成为了贵金属的替代材料。许多过渡金属由于具有多种可变价态,其氧化物中易形成复杂的缺陷,因此具有较强的氧化还原性能。如专利CN107626299A、CN105107524B、CN106238065B中公开了锰,铜,银,铁,铈的一种或多种复合氧化物在常温下显示出对甲醛明显的催化分解活性,在公开的这些复合催化剂组合中,主要利用不同金属氧化物之间的储氧特性差异来调控活性氧浓度,实际操作中其协同效应很难实现,而且这些复合氧化物制备方法的工艺过程比较复杂,难以获得一致性好的催化剂材料,难以实现广泛的实际应用。
在一个气固的催化反应体系中,含甲醛等污染物空气与催化剂的接触效率直接决定了最终的催化效果,因此催化剂和载体的比表面积选择也很关键。现有的催化剂材料大部分是微米级堆积颗粒,没有足够大的比表面积,在催化降解醛等污染物反应过程中,很难利用催化剂的催化活性。
发明内容
本发明为解决现有技术中存在的问题,提供了一种室温分解甲醛的纳米催化剂复合材料及其制备方法。这种纳米复合材料制备过程简单,活性氧浓度可调,能在室温下快速高效催化分解室内或车内空气中的甲醛。
本发明的目的之一是提供了一种室温分解甲醛的纳米催化剂复合材料,所述的纳米催化剂复合材料包括具有纳米级双通孔结构的氧化铝载体;纳米氧化铝双通孔结构内部和表面负载有非化学计量比的纳米金属二氧化锰(MnO2-x)催化剂;
所述的室温分解甲醛催化剂为非化学计量比的纳米金属二氧化锰(MnO2-x)催化剂。
所述的催化剂载体为具有纳米级双通孔结构的氧化铝。
所述的纳米二氧化锰(MnO2-x)催化剂的非化学计量比x在0.05-0.2之间,优选0.08-0.15。
所述的纳米级双通孔结构的氧化铝孔径在80-350 nm之间,优选100-300 nm。
该非化学计量比的纳米金属二氧化锰(MnO2-x)催化剂负载于纳米氧化铝双通孔结构内部和表面,由于非化学计量比的纳米金属二氧化锰(MnO2-x)具有大量的氧空位缺陷浓度,可在其表面和表面层吸附大量的活性氧,从而提高室温分解甲醛的催化活性,同时纳米氧化铝双通孔结构载体具有很高的机械强度,耐热性和耐腐蚀性,可方便设计甲醛催化降解反应器。
本发明的目的之二是提供一种纳米催化剂复合材料的制备方法,所述的纳米催化剂复合材料的制备方法包括以下步骤:1)通过电子束热蒸发工艺将二氧化锰负载到纳米氧化铝载体上;2)在一定氢压,温度,氢化时间的条件下对纳米氧化铝载体上的二氧化锰催化剂进行氢化处理,获得非化学计量比的纳米二氧化锰(MnO2-x)催化剂。
所述的氢化处理条件的氢气压力范围为1.5-2.5MPa,优选1.8-2.2MPa。
所述的氢化处理条件的温度范围为280-420oC,优选320-380oC。
所述的氢化处理条件的氢化处理时间范围为2-6小时,优选3-5小时。
采用氢化处理工艺的目的是可以获得可调控的氧空位浓度以及晶格氧和表面氧的比例,从而调控二氧化锰表面吸附氧的浓度,达到提高纳米二氧化锰(MnO2-x)甲醛催化降解活性的目的。
本发明具有的优点和积极效果:
室温分解甲醛的纳米催化剂复合材料及其制备方法,由于采用了本发明全新的技术方案,因此具有了以下主要特点:
1.活性氧浓度可控。通过调节非化学计量二氧化锰(MnO2-x)中的x值,可获得不同氧空位浓度以及晶格氧和表面氧的比例;
2.催化剂复合材料性能稳定,一致性好。由于本发明采用的是单一组份的非化学计量二氧化锰(MnO2-x)材料,采用电子束热蒸发工艺负载,催化剂的稳定性一致性有保障。
3.结构简单。由于采用的纳米氧化铝双通孔结构载体具有很高的机械强度,以及纳米二氧化锰(MnO2-x)催化剂的一体化负载,可实现甲醛降解反应器的小型化。
4.室温分解甲醛的非化学计量二氧化锰(MnO2-x)催化剂,无需额外能源,降解过程对环境污染小。
综上所述,本发明具有室温分解甲醛的催化活性高,活性氧浓度可调,催化剂稳定性好,制备工艺简单,成本低廉等特点,可广泛应用于空气中甲醛污染物的治理,尤其是室内和车内的甲醛污染物的治理。
附图说明
图1为孔径100 nm的氧化铝双通孔结构载体SEM照片
图2为负载在AAO上的纳米级二氧化锰SEM照片
图3为静态甲醛降解的检测装置(1-甲醛检测仪;2-容器盖;3-取样头;4-玻璃容器;5-光催化剂;6-光源;7-注气口;8-变压器)
图4为静态甲醛降解结果。(a)非化学计量二氧化锰MnO1.89(氢化条件320oC/1.5MPa/4小时);(b)非化学计量二氧化锰MnO1.85(氢化条件350oC/2.0MPa/4小时);(c)非化学计量二氧化锰MnO1.82(氢化条件380oC/2.5MPa/5小时);
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
请参阅附图1、图2、图3和图4。
实施例1
采用孔径为100nm的AAO氧化铝双通孔结构载体,孔结构如附图1所示,圆形纳米氧化铝载体的直径φ50mm,厚度120μm。二氧化锰靶材由纯度为99.99%的二氧化锰粉末压制而成。纳米催化剂复合材料按以下步骤制备:第一步,在一台真空电子束蒸发台中,采用适当工艺将一定量的二氧化锰负载到AAO氧化铝双通孔结构载体上,图2为负载在AAO上的纳米级二氧化锰形貌。第二步,将负载有二氧化锰的双通孔氧化铝载体置于一台高压氢化反应器中,先抽真空,然后以5oC/min的升温速率升到320oC,充纯氢压力至1.5MPa,保温4小时,然后自然冷却到室温,最后卸压,获得氢化处理的纳米催化剂复合材料。X射线衍射检测结果显示氢化处理后的样品仍是典型的二氧化锰斜方晶相,但晶胞体积有所变小,经计算测定x为0.11(MnO1.89)。
室温甲醛降解实验在图3所示的静态检测装置中进行,将纳米催化剂复合材料5放入密闭器皿4底部,用微量进样针从注气口7注入一定量的甲醛气体,甲醛检测仪通过取样头3实时检测容器内甲醛浓度的变化,每隔5分钟记录一次数据。测试结果如图4(a)所示,100分钟室温甲醛的降解率为57.6%。
实施例2
室温降解甲醛催化剂复合材料的制备过程同实施例1,但负载有二氧化锰的双通孔氧化铝载体的氢化条件改为氢化温度350 oC,氢化压力2.0MPa,保温4小时,X射线衍射实验测定的x为0.15(MnO1.85)。
室温甲醛降解实验同实施例1,测试结果如图4(b)所示,100分钟室温甲醛的降解率为70%。
实施例3
室温降解甲醛催化剂复合材料的制备过程同实施例1,但负载有二氧化锰的双通孔氧化铝载体的氢化条件改为氢化温度380 oC,氢化压力2.5MPa,保温5小时,X射线衍射实验测定的x为0.18(MnO1.82)。
室温甲醛降解实验同实施例1,测试结果如图4(c)所示,100分钟室温甲醛的降解率为54.5%。
以上实施例仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (7)

1.一种室温分解甲醛的纳米催化剂复合材料,其特征是:该纳米催化剂复合材料包括具有纳米级双通孔结构的氧化铝载体;纳米氧化铝双通孔结构内部和表面负载有非化学计量比的纳米金属二氧化锰(MnO2-x)催化剂;一种室温分解甲醛的纳米催化剂复合材料的制备方法,其特征是: 纳米催化剂复合材料的制备方法包括以下步骤:1)通过电子束热蒸发工艺将二氧化锰负载到纳米氧化铝载体上;2)在一定氢压,温度,氢化时间的条件下对纳米氧化铝载体上的二氧化锰催化剂进行氢化处理,获得非化学计量比的纳米二氧化锰(MnO2-x)催化剂。
2.根据权利要求1所述的纳米催化剂复合材料,其特征是:所述的室温分解甲醛催化剂为非化学计量比的纳米金属二氧化锰(MnO2-x)催化剂。
3.根据权利要求1所述的纳米催化剂复合材料,其特征是:所述的催化剂载体为具有纳米级双通孔结构的氧化铝。
4.根据权利要求1和2所述的纳米催化剂复合材料,其特征是:所述的纳米二氧化锰(MnO2-x)催化剂的非化学计量比x在0.05-0.2之间。
5.根据权利要求1和3所述的纳米催化剂复合材料,其特征是:所述的纳米级双通孔结构的氧化铝孔径在80-350 nm之间。
6.根据权利要求1所述的一种室温分解甲醛的纳米催化剂复合材料的制备方法,其特征是: 纳米催化剂复合材料的制备方法包括以下步骤:1)通过电子束热蒸发工艺将二氧化锰负载到纳米氧化铝载体上;2)在一定氢压,温度,氢化时间的条件下对纳米氧化铝载体上的二氧化锰催化剂进行氢化处理,获得非化学计量比的纳米二氧化锰(MnO2-x)催化剂。
7.根据权利要求6所述的一种室温分解甲醛的纳米催化剂复合材料的制备方法,其特征是: 所述的氢化处理条件的氢气压力范围为1.5-2.5MPa,温度范围为280-420oC,氢化处理时间范围为2-6小时。
CN201910136997.6A 2019-02-25 2019-02-25 一种室温分解甲醛的纳米催化剂复合材料及其制备方法 Pending CN109759054A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910136997.6A CN109759054A (zh) 2019-02-25 2019-02-25 一种室温分解甲醛的纳米催化剂复合材料及其制备方法
US16/545,800 US20200269216A1 (en) 2019-02-25 2019-08-20 Nano-catalyst composite for decomposing formaldehyde at room temperature and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910136997.6A CN109759054A (zh) 2019-02-25 2019-02-25 一种室温分解甲醛的纳米催化剂复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN109759054A true CN109759054A (zh) 2019-05-17

Family

ID=66457197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910136997.6A Pending CN109759054A (zh) 2019-02-25 2019-02-25 一种室温分解甲醛的纳米催化剂复合材料及其制备方法

Country Status (2)

Country Link
US (1) US20200269216A1 (zh)
CN (1) CN109759054A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114392735A (zh) * 2022-02-08 2022-04-26 中国科学院城市环境研究所 一种α-MnO2催化剂及其制备方法和用途
CN114392736A (zh) * 2022-02-17 2022-04-26 苏州道一至诚纳米材料技术有限公司 常温净化甲醛的催化膜及其制备方法与用途
CN115025770A (zh) * 2022-05-20 2022-09-09 中国科学院上海硅酸盐研究所 一种MnO2/γ-Al2O3低维纳米复合材料及其制备方法与应用
US11648329B1 (en) 2021-11-24 2023-05-16 Rht Limited Air purifiers
WO2023093655A1 (en) * 2021-11-24 2023-06-01 Rht Limited Catalyst compositions and methods for decomposing formaldehyde thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112547052A (zh) * 2020-12-25 2021-03-26 陕西科技大学 一种锰氧化物甲醛降解材料及其制备方法和催化剂
CN112915988B (zh) * 2021-01-26 2022-10-11 天津大学 二氧化钛/碳/二氧化锰复合光催化剂材料及制备方法和应用
CN114307626B (zh) * 2021-03-15 2023-04-07 苏州清泰环境科技有限公司 一种纳米光触媒甲醛清除剂及其制备方法
CN115253670B (zh) * 2022-08-04 2024-02-13 上海纳米技术及应用国家工程研究中心有限公司 一种使用氨水加速锰基催化剂催化降解甲醛的方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402869A (en) * 1979-03-12 1983-09-06 Exxon Research And Engineering Co. Group VIII metals on manganese-containing oxide supports which exhibit strong metal support interactions
CN87103502A (zh) * 1986-04-16 1988-02-24 艾尔坎国际有限公司 多孔无机隔膜催化剂载体
JP2003003174A (ja) * 2001-06-18 2003-01-08 Japan National Oil Corp フィッシャートロプシュ法による炭化水素類の製造方法
US20090142666A1 (en) * 2005-10-27 2009-06-04 Hae Jin Kim Methods for Manufacturing Manganese Oxide Nanotubes or Nanorods by Anodic Aluminum Oxide Template
CN102198405A (zh) * 2011-04-01 2011-09-28 天津工业大学 一种净化室内甲醛用的复合催化剂及其制备方法
CN102683044A (zh) * 2012-06-17 2012-09-19 兰州大学 一种超级电容器用复合电极及其制备方法
CN103506111A (zh) * 2012-06-26 2014-01-15 罗平 一种室温下除甲醛和臭氧的催化剂的制备方法
CN103566928A (zh) * 2013-11-05 2014-02-12 清华大学 用于室温下脱除NOx的负载二氧化锰的活性炭纤维及其制备方法
US20150068917A1 (en) * 2012-02-28 2015-03-12 Fritz Haber Institut Der Max Planck Gesellschaft Electrolytic water splitting using a carbon-supported mnox-composite
CN106334552A (zh) * 2016-09-30 2017-01-18 上海理工大学 一种MnOx催化剂、其制备方法和在防治环境污染中的应用
EP3207991A1 (en) * 2016-02-17 2017-08-23 Korea Institute of Energy Research Direct synthesis method of nanostructured catalyst particles on various supports and catalyst structure produced by the same
CN107519860A (zh) * 2016-06-21 2017-12-29 康宁股份有限公司 锰氧化物催化剂、包含所述锰氧化物的整体式催化剂以及它们的应用
CN107694559A (zh) * 2017-10-12 2018-02-16 安徽工程大学 一种氧空位可调的锌‑氧化锰‑四氧化三锰复合氧化物、制备方法及其应用
CN108751335A (zh) * 2018-05-04 2018-11-06 中山大学 一种光-芬顿体系协同催化氧化降解水环境中抗生素的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402869A (en) * 1979-03-12 1983-09-06 Exxon Research And Engineering Co. Group VIII metals on manganese-containing oxide supports which exhibit strong metal support interactions
CN87103502A (zh) * 1986-04-16 1988-02-24 艾尔坎国际有限公司 多孔无机隔膜催化剂载体
JP2003003174A (ja) * 2001-06-18 2003-01-08 Japan National Oil Corp フィッシャートロプシュ法による炭化水素類の製造方法
US20090142666A1 (en) * 2005-10-27 2009-06-04 Hae Jin Kim Methods for Manufacturing Manganese Oxide Nanotubes or Nanorods by Anodic Aluminum Oxide Template
CN102198405A (zh) * 2011-04-01 2011-09-28 天津工业大学 一种净化室内甲醛用的复合催化剂及其制备方法
US20150068917A1 (en) * 2012-02-28 2015-03-12 Fritz Haber Institut Der Max Planck Gesellschaft Electrolytic water splitting using a carbon-supported mnox-composite
CN102683044A (zh) * 2012-06-17 2012-09-19 兰州大学 一种超级电容器用复合电极及其制备方法
CN103506111A (zh) * 2012-06-26 2014-01-15 罗平 一种室温下除甲醛和臭氧的催化剂的制备方法
CN103566928A (zh) * 2013-11-05 2014-02-12 清华大学 用于室温下脱除NOx的负载二氧化锰的活性炭纤维及其制备方法
EP3207991A1 (en) * 2016-02-17 2017-08-23 Korea Institute of Energy Research Direct synthesis method of nanostructured catalyst particles on various supports and catalyst structure produced by the same
CN107519860A (zh) * 2016-06-21 2017-12-29 康宁股份有限公司 锰氧化物催化剂、包含所述锰氧化物的整体式催化剂以及它们的应用
CN106334552A (zh) * 2016-09-30 2017-01-18 上海理工大学 一种MnOx催化剂、其制备方法和在防治环境污染中的应用
CN107694559A (zh) * 2017-10-12 2018-02-16 安徽工程大学 一种氧空位可调的锌‑氧化锰‑四氧化三锰复合氧化物、制备方法及其应用
CN108751335A (zh) * 2018-05-04 2018-11-06 中山大学 一种光-芬顿体系协同催化氧化降解水环境中抗生素的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABHIMANYU SARKAR ET AL.: "Electron beam deposition of amorphous manganese oxide thin film electrodes and their predominant electrochemical properties" *
王鸣晓: "活性炭载锰氧化物的制备及其催化分解臭氧性能研究" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11648329B1 (en) 2021-11-24 2023-05-16 Rht Limited Air purifiers
WO2023093655A1 (en) * 2021-11-24 2023-06-01 Rht Limited Catalyst compositions and methods for decomposing formaldehyde thereof
CN114392735A (zh) * 2022-02-08 2022-04-26 中国科学院城市环境研究所 一种α-MnO2催化剂及其制备方法和用途
CN114392736A (zh) * 2022-02-17 2022-04-26 苏州道一至诚纳米材料技术有限公司 常温净化甲醛的催化膜及其制备方法与用途
CN115025770A (zh) * 2022-05-20 2022-09-09 中国科学院上海硅酸盐研究所 一种MnO2/γ-Al2O3低维纳米复合材料及其制备方法与应用

Also Published As

Publication number Publication date
US20200269216A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
CN109759054A (zh) 一种室温分解甲醛的纳米催化剂复合材料及其制备方法
Li et al. Amorphous TiO 2@ NH 2-MIL-125 (Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity
Li et al. Enhanced photocatalytic degradation of VOCs using Ln3+–TiO2 catalysts for indoor air purification
Xue et al. Morphology effects of Co3O4 on the catalytic activity of Au/Co3O4 catalysts for complete oxidation of trace ethylene
Oezaslan et al. In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD
Katta et al. Doped nanosized ceria solid solutions for low temperature soot oxidation: Zirconium versus lanthanum promoters
Wang et al. Origin of the high activity and stability of Co 3 O 4 in low-temperature CO oxidation
Sidheswaran et al. Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts
Feng et al. Highly active PdO/Mn3O4/CeO2 nanocomposites supported on one dimensional halloysite nanotubes for photoassisted thermal catalytic methane combustion
Zhang et al. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3
Kolobova et al. Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation
WO2007142641A1 (en) Improved carbon monoxide catalyst system to remove co
Dong et al. Recent advances of ceria‐based materials in the oxidation of carbon monoxide
CN108816244B (zh) 一种催化氧化降解甲醛的纳米碳基复合材料及其制备方法与应用
Yang et al. Defect engineering on CuMn2O4 spinel surface: a new path to high-performance oxidation catalysts
WO2021078308A1 (zh) 一种三维有序大孔氧缺陷型二氧化铈催化剂及其制备方法和应用
Li et al. Unraveling the mechanisms of room-temperature catalytic degradation of indoor formaldehyde and its biocompatibility on colloidal TiO 2-supported MnO x–CeO 2
Haidry et al. Hydrogen sensing and adsorption kinetics on ordered mesoporous anatase TiO2 surface
CN106381682A (zh) 一种高吸附‑光催化性能的纳米二氧化钛/活性炭纤维毡三维多孔材料及其制备方法
Xia et al. MnO2/Al foil decorated air cleaner with self-driven property for the abatement of indoor formaldehyde
CN115178284A (zh) 一种负载铂纳米颗粒的复合载体材料及其制备方法和应用
CN101485979B (zh) 多级结构铈掺杂二氧化钛介孔材料的制备以及在光催化和co氧化中的应用
Jaksic et al. Structural effects on kinetic properties for hydrogen electrode reactions and CO tolerance along Mo–Pt phase diagram
Challagulla et al. Understanding the role of catalytic active sites for heterogeneous photocatalytic oxidation of methanol and thermal reduction of NOx
Wei et al. The influence of Ce doping on catalytic oxidation of toluene over Co3O4/iron mesh monolithic catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190517