CN109715320A - 电解电容器和改进电解电容器阳极的方法 - Google Patents

电解电容器和改进电解电容器阳极的方法 Download PDF

Info

Publication number
CN109715320A
CN109715320A CN201780057333.XA CN201780057333A CN109715320A CN 109715320 A CN109715320 A CN 109715320A CN 201780057333 A CN201780057333 A CN 201780057333A CN 109715320 A CN109715320 A CN 109715320A
Authority
CN
China
Prior art keywords
tantalum
particle
volume
anode
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780057333.XA
Other languages
English (en)
Inventor
詹姆斯·翁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Composite Materials Technology Co
Composite Materials Technology Inc
Original Assignee
Composite Materials Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Composite Materials Technology Co filed Critical Composite Materials Technology Co
Publication of CN109715320A publication Critical patent/CN109715320A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

提供一种用于电解装置的阳极,其由细长元件与钽金属的电容器级钽粉末的基本均匀的混合物形成。还提供了一种用于形成电解装置的阳极或阴极的方法,该阳极或阴极由阀金属和导电粉末金属的细长元件的基本均匀的混合物形成。

Description

电解电容器和改进电解电容器阳极的方法
技术领域
本发明大体上涉及电容器的改进。本发明具有与包括由钽形成的阳极的电解电容器相关的用于高压应用的特别用途,并且将结合这种用途进行描述,尽管可以考虑其他用途,例如用作电池阳极。
背景技术
基于钽的电解电容器越来越多地用于电子工业中。小封装尺寸,对工作温度的不敏感性和出色的可靠性的结合使它们超越陶瓷多层和铝箔基电容器成为适用于许多应用的选择。随着电子工业的不断发展,对更高效的钽电解电容器的需求不断增长。
电解电容器具有三个基本组件:阳极,阴极和电解质。迄今为止,电解钽阳极主要使用细颗粒钽粉制造。将粉末压制成压坯(密度为20%至50%)并在真空下在1500℃-2000℃的温度下烧结15-30分钟以形成多孔的,机械上坚固的主体,其中钽是电连续的。在某些情况下,烧结过程依赖于将引线连接到压坯上。在这些情况下,在烧结之前将引线插入压坯中。如果没有以这种方式连接引线,则可以在压坯烧结后立即将其焊接到位。烧结操作的一个重要的辅助益处是钽颗粒表面的净化;驱除诸如氧气之类的杂质。
在烧结之后,将压坯阳极氧化以在暴露的表面上形成介电五氧化二钽(Ta2O5)。然后用导电电解质渗透阳极氧化的压坯的多孔区域。电解质可以是“固体”或“湿”类型。根据应用,湿式电解电容器可提供优于固体电解电容器的优点。湿式电解电容器往往比固体电解电容器大,因此可以提供更高的电容。这是所希望的,因为在许多现代应用中需要的是具有高能量密度的电容器。
现有技术的钽粉是通过K2TaF7的钠还原过程生产的。该方法的改进产生了市售的粉末,其能够产生超过50,000CV/g的比电容。更好地控制输入钽颗粒尺寸,反应温度和其他变量已导致比电容的改善。一个关键的进步是引入了能够生产非常高比电容粉末的掺杂剂。掺杂剂用于防止烧结过程中的表面损失。典型的添加剂是氮,氧,硫和磷化合物,其范围为50至500ppm。虽然选择掺杂剂是有益的,但重要的是限制其他污染,这可能削弱介电膜或甚至防止形成连续的Ta2O5层,连续的Ta2O5层可能导致介电膜的过早击穿和电容损失。
发明内容
通过球磨粉末获得了更高电容的钽颗粒。球磨将大致球形的粉末颗粒变成薄片。有利的是,在较高的形成电压下,薄片可以具有比粉末颗粒更高的比电容。当薄片形成阳极时,这转化为薄片更高的容积效率。通过球磨和其他旨在改善粉末性能的方法来确定钽颗粒虽然有效,但是具有实际缺点,包括增加的制造成本和产品产量的显著降低。目前,与标准粉末产品相比,最高电容薄片的费用为2-3倍。
目前市售的非常细的钽粉在阳极制造方面存在几个严重的问题。特别重要的一个问题是烧结过程中对表面积损失的敏感性。理想的烧结条件是高温和短时间。较高的温度用于净化钽表面并提供机械强度高的压坯。如果采用更高的烧结温度,则可以制造具有更低等效串联电阻(ESR)和等效串联电感(ESL)的电容器。遗憾的是,高电容粉末和薄片的细颗粒在超过1500℃的温度下损失表面积。表面积的损失导致较低的电容,降低了使用较高比电容粉末的益处。电容器制造商必须平衡烧结温度,机械性能以及ESR和ESL水平,以便最大化电容器性能。
细粉末和薄片对阳极氧化过程中的形成电压也很敏感。阳极氧化过程消耗一些金属钽以形成介电层。随着形成电压的增加,更多的钽被消耗,导致电容损失。随着粉末变得更细,这个问题变得越来越严重。
在今天的实践中,用于电容器阳极的高表面积粉末在低温(低于1500℃)下烧结并在低于150伏的电压下进行阳极氧化。大多数这些电容器的工作电压限制在100伏以下。
此外,当钽粉形成多孔阳极体然后烧结用于电解电容器时,已知所得阳极电容与烧结多孔体的比表面积成比例。烧结后的比表面积越大,阳极电容(μFV/g)越大。由于钽颗粒的阳极电容(μFV/g)是烧结粉末的比表面积的函数,因此获得更大净表面积的一种方法是通过增加每个颗粒的粉末量(克)。然而,通过这种方法,成本和尺寸显著增加。因此,成本和尺寸考虑要求钽粉的开发集中在增加粉末本身的比表面积的方式上。
一种常用的具有相对大颗粒的钽粉末可从H.C.Starck商购获得,商品名为QR-3。这种所谓的EB熔融型钽粉末可以制造具有相对较大孔结构的阳极。然而,这些大粒径粉末的相对低的比表面积不会导致每单位体积的高电容阳极。另一种常用材料可从H.C.Starck获得,其为钠还原的钽粉末,商品名为NH-175。由于其相对较高的表面积,已知该材料产生的电极比QR-3粉末具有更高的电容。然而,由于其较小的特征尺寸和宽的粒径分布,还已知NH-175粉末产生具有较小孔结构的阳极。较小的孔结构使得阳极氧化期间阳极颗粒的内部冷却更加困难,因此限制了这些阳极可以实现的形成电压。
粉末的纯度是另一个重要的考虑因素。金属和非金属污染会降低钽电容器中的介电氧化膜。虽然高烧结温度用于去除一些挥发性污染物,但并非所有都可以被充分除去,导致具有高DC泄漏的位点。已知高DC泄漏会导致过早的电气故障,特别是在高压应用中。此外,高烧结温度趋于使多孔阳极体收缩,从而降低其净比表面积并因此降低所得电容器的电容。因此,为了产生高μFV/g钽电容器,在烧结条件下最小化比表面积的损失,即收缩是必要的。
在申请人以前的美国专利号5,034,857中,公开了一种生产非常细的阀金属丝,优选钽的方法,用于形成阳极。细丝相对于细粉末的益处是更高的纯度,横截面的均匀性和易于电介质渗透,同时仍然保持用于阳极氧化的高表面积。与细粉末压坯相比,横截面的均匀性导致电容器具有高比电容,较低的ESR和ESL,并且对成形电压和烧结温度的敏感性较低。
如在前述'857美国专利中所公开的,阀金属丝,优选钽,是通过长丝与可延展金属的组合制造的,以便形成坯料(billet)。第二可延展金属与形成长丝的金属不同。长丝基本上是平行的,并且彼此分开并通过第二可延展金属与坯料表面分开。通过常规方法(例如挤出和拉丝)将坯料缩小至长丝直径在0.2至5.0微米直径范围内的点。此时,第二种可延展金属被除去,优选通过在无机酸中浸出,使阀金属丝保持完整。长丝适用于钽电容器制造。
涉及阀金属丝和纤维、其制造及由其制成的制品的其他专利包括美国专利号3,277,564(Webber),3,379,000(Webber),3,394,213,(Roberts),3,567,407(Yoblin),3,698,863(Roberts),3,742,369(Douglass),4,502,884(Fife),5,217,526(Fife),5,306,462(Fife),5,284,531(Fife)和5,245,514(Fife)。
还参见申请人之前的美国专利号5,869,196、之前的美国专利号8,858,738和申请人的美国专利号8,673,025,其中描述了通过挤出和拉伸来减少可延展金属基体中的阀金属丝或线,将挤出的长丝切成短段,浸出可延展金属以使短阀金属丝保持完整,并将阀金属丝从浆液形成或浇铸成薄片用于形成由细阀金属丝形成的阳极和阴极的各种方法。
虽然由上述'857,'196,'738和'025专利中描述的细阀金属丝形成的阳极提供了由压制粉末形成的阳极的优异性能,但由细金属丝形成的阳极更昂贵,因此对特殊应用具有有限的用途。
根据申请人当前的发明,在压制之前,通过将如钽或铌的阀金属的细长的长丝或纤维添加到导电粉末颗粒(例如钽粉颗粒)中,或反之亦然来形成用于电容器系统的阳极。细丝或纤维显著增加粉末颗粒之间的连接或导电性和孔隙率,与主要由阀金属丝或纤维形成的阳极相比,材料成本可显著降低。加入到粉末中的长丝或纤维的量,或反之亦然,取决于所需的性能,可以广泛地变化。通常,纤维/粉末混合物可以为10%-90%纤维,通常为20%-80%,30%-70%,40%-60%,50%-50%,40%-60%,30%-70%,20%-80%或10%-90%长丝,余量(balance)包括目前可用的钽颗粒或粉末。如本文所用,“长丝和纤维”和“颗粒和粉末”分别可互换使用。而且,长丝和纤维可具有任何横截面形状,包括圆形纤维,扁平带或其他几何形状。优选地,阀金属丝和导电材料颗粒是相同的材料,并且优选地包括钽或铌及其合金。然而,形成细长的长丝的材料和形成电活性颗粒的材料不必相同。在本发明的一个优选实施方式中,阀金属丝的长度为0.1-10微米,横截面为0.1-5微米,导电颗粒粉末具有小于0.5-5微米的粒径。
在一个实施方式中,细长的长丝的尺寸和形状基本均匀。或者,细长的长丝的尺寸和形状不同。
应该注意的是,混合钽粉是所有粉末生产商常用的。这是为了确保批次之间的产品均匀性和一致性。
附图说明
从以下结合附图的详细描述中可以看出本发明的其他特征和优点,其中:
图1是本发明方法的一个实施方式的示意性框图;
图2示意性地说明了用于制造形成根据本发明的高压电解电容器的阳极的钽材料的方法的第二实施方式;
图3示意性地说明了根据本发明的钽阳极的形成;和
具体实施方式
参照图1,该方法开始于制造阀金属丝,优选钽,通过在步骤10中将钽的长丝或线与如铜的可延展材料组合以形成坯料。然后在步骤12中将坯料密封在一个挤出罐中。按照申请人的'196美国专利的教导,在步骤14中挤出和拉伸。然后在切碎站16处将挤出和拉伸的长丝切割或切成短段,通常为1/16英寸-1/4英寸长。优选地,切割的长丝都具有大致相同的长度。实际上,长丝越均匀越好。然后将切碎的长丝传送到蚀刻站18,在那里使用合适的酸浸出可延展金属。例如,在铜是可延展金属的情况下,蚀刻剂可以包括硝酸。
酸中的蚀刻从钽丝之间除去铜。在蚀刻之后,留下多个短的钽丝。然后在洗涤站20将钽丝在水中洗涤,并且部分倾析洗涤水以在水中留下钽丝的浆液。然后蒸发水,留下大量钽丝,然后在压制和烧结之前将其与细电容器级粉末如钽粉混合。任选地,可以通过过滤收集来自洗涤水的钽细粒,并且在细丝干燥之前或之后,细粒也混入在水中的钽丝的浆液中。钽丝/粉末混合物中钽丝的量通常包括钽丝与粉末的体积比为90-10、80-20、70-30、60-40、50-50、40-60、30-70、20-80、10-90。
如上所述,钽丝与粉末的比例可以根据性能和成本考虑而变化。与仅由压制粉末形成的电极相比,所得电极的特征在于显著增强的内部孔隙率。
参考图2和3,替代方法开始于通过将钽的长丝或线与如铜的可延展材料组合以形成坯料,来制造钽金属丝。然后将坯料密封在挤出罐中,并按照例如申请人的美国专利号5,869,196的教导进行挤出和拉伸。然后切割挤出物,与粉末等混合蚀刻,并将所得纤维/颗粒聚集,压制和烧结,并用于形成电容器。Bates的美国专利号4,017,322和Fife的美国专利5,217,526详细描述了聚集过程。
本发明提供优于现有技术的若干优点,包括:
(1)由于阀金属元件的均匀分散,也可以实现一致且可靠的CV/g值。
(2)该方法确保了横截面均匀性改善的孔隙率结构和高表面积与体积比。这两个因素对于工业规模的高容量电容器的可靠制造是重要的。
(3)方法灵活。通过改变细长元件与粉末的比例,可以选择所得产品的成本/性能。
(4)与仅使用长丝的现有方法相比,该方法是经济的。即使少量添加细长元件也可以显著改善主要由粉末制成的电极的性能。
(5)该方法确保密度均匀。
(6)该方法提供高产率,低单元成本,以及更均匀和一致的结果。
(7)导电细长元件有利地将导电粉末连接在一起并且还便于连接到引线。因此,可以实现显著的成本节省,而不会牺牲CV/g值或其他容量值。
在不脱离本发明的精神和范围的情况下,可以进行其他改变。举例来说,尽管本发明已经说明了细长元件是圆形长丝或纤维,但是有利地可以使用具有包括扁平带或其他几何形状的其他横截面形状的元件,例如,如申请人之前的美国专利7,480,978中所描述的。

Claims (15)

1.一种形成电解装置的方法,包括以下步骤:
(a)在可延展材料的坯料中建立多个阀金属的组件;
(b操作坯料进行一系列缩小步骤,以将所述阀金属组件形成为细长组件;
(c)切割来自步骤b)的细长组件,并从组件中浸出可延展金属,释放由阀金属形成的细长元件;
(d)用水洗涤来自步骤c)中的细长元件,混合形成浆料,其中元件均匀分布;
(e)干燥洗涤的元件;
(f)将来自步骤(e)的干燥元件与导电颗粒混合;并聚集混合物;
(g)将混合物组装、压制和烧结成电解装置。
2.根据权利要求1所述的方法,其中阀金属是钽,酸蚀刻剂是硝酸。
3.根据权利要求1或2所述的方法,其中导电颗粒的粒径小于0.5-5微米,元件/颗粒体积比选自由90-10、80-20、70-30、60-40、50-50、40-60、30-70、20-80、10-90组成的组,和/或其中所述细长元件具有选自圆形、非圆形和扁平形的横截面形状。
4.一种用于电解装置的阳极,包括阀金属的细长元件和导电粉末金属的基本均匀的混合物。
5.根据权利要求4所述的阳极或阴极,其中所述元件和颗粒由钽或铌形成。
6.根据权利要求5或6所述的阳极,其中所述元件的长度不大于约50微米,并且所述颗粒的粒径为0.5-5微米,和/或其中所述细长元件具有选自圆形、非圆形和扁平形组成的组的横截面形状。
7.一种电容器组件,包括:
容纳在壳体内的钽阳极,其中钽阳极包括形成为多孔物质的钽纤维和钽颗粒的基本均匀的混合物,具有改善的结构孔隙率;
容纳在壳体内并与阳极隔开的阴极;和
电解质。
8.根据权利要求7所述的电容器,其中所述电容器是湿电容器,或者是干电容器。
9.根据权利要求7或8所述的电容器,其中所述阳极包括钽丝和10-50体积百分比的钽颗粒的混合物,优选15-45体积百分比的钽颗粒,更优选20-40体积百分比的钽颗粒,甚至更优选25-35体积百分比的钽颗粒,最优选约30体积百分比的钽颗粒。
10.一种用于形成钽阳极的材料,包括钽丝和钽颗粒的基本均匀的混合物。
11.根据权利要求10所述的材料,其中所述混合物包含钽丝和10-50体积百分比的钽颗粒,优选15-45体积百分比的钽颗粒,更优选20-40体积百分比的钽颗粒,甚至更优选25-35体积百分比的钽颗粒,最优选约30体积百分比的钽颗粒。
12.一种用于电气设备的阳极,所述阳极由钽丝和钽颗粒的基本均匀的混合物形成。
13.根据权利要求12所述的材料,其中所述混合物包括钽丝和10-50体积百分比的钽颗粒,优选15-45体积百分比的钽颗粒,更优选20-40体积百分比的钽颗粒,甚至更优选25-35体积百分比的钽颗粒,最优选约30体积百分比的钽颗粒。
14.一种制造用于形成电解装置的阀金属材料的方法,包括:
提供导电颗粒和阀金属的细长元件的基本均匀的混合物;和
将混合物压制并烧结成电解装置。
15.根据权利要求14所述的方法,其中所述阀金属包括钽或铌,和/或其中所述导电颗粒具有0.5-5微米的粒径,并且所述元件和颗粒的体积比选自由:90-10、80-20、70-30、60-40、50-50、40-60、30-70、20-80或10-90组成的组,和/或其中细长元件具有选自圆形、非圆形和扁平形组成的组的横截面形状。
CN201780057333.XA 2016-08-12 2017-08-11 电解电容器和改进电解电容器阳极的方法 Pending CN109715320A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662374570P 2016-08-12 2016-08-12
US62/374,570 2016-08-12
US201762447184P 2017-01-17 2017-01-17
US62/447,184 2017-01-17
PCT/US2017/046619 WO2018031943A1 (en) 2016-08-12 2017-08-11 Electrolytic capacitor and method for improved electrolytic capacitor anodes

Publications (1)

Publication Number Publication Date
CN109715320A true CN109715320A (zh) 2019-05-03

Family

ID=61159326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780057333.XA Pending CN109715320A (zh) 2016-08-12 2017-08-11 电解电容器和改进电解电容器阳极的方法

Country Status (4)

Country Link
US (1) US10192688B2 (zh)
EP (2) EP3496884B1 (zh)
CN (1) CN109715320A (zh)
WO (1) WO2018031943A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404439A (zh) * 2020-11-18 2021-02-26 贵州振华电子信息产业技术研究有限公司 一种电容器用高压钽粉及其制备方法和电容器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441927A (en) * 1982-11-16 1984-04-10 Cabot Corporation Tantalum powder composition
CN1240384A (zh) * 1996-12-20 2000-01-05 合成材料技术公司 受限金属丝电解阳极及其制作工艺
CN1350481A (zh) * 1999-05-12 2002-05-22 卡伯特公司 高电容的铌粉末和电解电容器阳极
CN1809904A (zh) * 2003-04-25 2006-07-26 卡伯特公司 一种形成烧结阀金属材料的方法
CN1816401A (zh) * 2003-07-02 2006-08-09 Ati资产公司 制备金属纤维的方法
JP2009230952A (ja) * 2008-03-21 2009-10-08 Fukuda Metal Foil & Powder Co Ltd 導電性ペースト組成物及び電子回路並びに電子部品
US8673025B1 (en) * 2008-12-11 2014-03-18 Composite Materials Technology, Inc. Wet electrolytic capacitor and method for fabricating of improved electrolytic capacitor cathode
CN104470656A (zh) * 2012-07-18 2015-03-25 福田金属箔粉工业株式会社 极薄小薄片状银粉及其制造方法
US9312075B1 (en) * 2013-09-06 2016-04-12 Greatbatch Ltd. High voltage tantalum anode and method of manufacture

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2310932A (en) 1938-11-30 1943-02-16 Brennan Electrolytic device
US2277687A (en) 1939-05-24 1942-03-31 Joseph B Brennan Electrolytic device
US2278161A (en) 1939-10-02 1942-03-31 Joseph B Brennan Electrolytic device and method of making same
US2299667A (en) 1939-10-25 1942-10-20 Aerovox Corp Electrolytic cell
US2616165A (en) 1947-01-18 1952-11-04 Everett D Mccurdy Electrode for electrolytic devices and methods of making same
US3141235A (en) * 1963-04-11 1964-07-21 William H Lenz Powdered tantalum articles
US3394213A (en) 1964-03-02 1968-07-23 Roehr Prod Co Inc Method of forming filaments
US3277564A (en) 1965-06-14 1966-10-11 Roehr Prod Co Inc Method of simultaneously forming a plurality of filaments
US3379000A (en) 1965-09-15 1968-04-23 Roehr Prod Co Inc Metal filaments suitable for textiles
US3567407A (en) 1966-06-27 1971-03-02 Whittaker Corp Composite materials
US3540114A (en) 1967-11-21 1970-11-17 Brunswick Corp Method of forming fine filaments
US3418106A (en) 1968-01-31 1968-12-24 Fansteel Inc Refractory metal powder
US3557795A (en) 1968-06-19 1971-01-26 Weck & Co Inc Edward Suture provided with wound healing coating
US3473915A (en) 1968-08-30 1969-10-21 Fansteel Inc Method of making tantalum metal powder
US3742369A (en) 1969-03-13 1973-06-26 R Douglass Capacitor with fibered valve metal anode
US3677795A (en) 1969-05-01 1972-07-18 Gulf Oil Corp Method of making a prosthetic device
GB1267699A (en) * 1969-10-01 1972-03-22 Norton Co Improvements in or relating to porous masses and processes for the production thereof
US3698863A (en) 1970-01-29 1972-10-17 Brunswick Corp Fibrous metal filaments
US3800414A (en) 1970-05-13 1974-04-02 Air Reduction Method of fabricating a hollow composite superconducting structure
US3740834A (en) 1971-11-15 1973-06-26 Norton Co Capacitor with fibered valve metal anode
US4017322A (en) 1973-11-20 1977-04-12 Japan Inorganic Material Method for reinforcing aqueous hydraulic cement
US4017302A (en) 1976-02-04 1977-04-12 Fansteel Inc. Tantalum metal powder
US4149277A (en) 1977-06-22 1979-04-17 General Atomic Company Artificial tendon prostheses
US4534366A (en) 1983-08-03 1985-08-13 Soukup Thomas M Carbon fiber pacing electrode
US4502884A (en) 1983-10-27 1985-03-05 Cabot Corporation Method for producing fiber-shaped tantalum powder and the powder produced thereby
HUT37689A (en) 1983-11-11 1986-01-23 Zoltan Leszlauer Anode structure for electrolytic fibre condensers and method for making thereof
US5030233A (en) 1984-10-17 1991-07-09 Paul Ducheyne Porous flexible metal fiber material for surgical implantation
US4674009A (en) 1985-12-23 1987-06-16 Supercon, Inc. Tantalum capacitor lead wire
US4734827A (en) 1985-12-23 1988-03-29 Supercon, Inc. Tantalum capacitor lead wire
US4646197A (en) 1985-12-23 1987-02-24 Supercon, Inc. Tantalum capacitor lead wire
US4846834A (en) 1986-05-27 1989-07-11 Clemson University Method for promoting tissue adhesion to soft tissue implants
US4699763A (en) 1986-06-25 1987-10-13 Westinghouse Electric Corp. Circuit breaker contact containing silver and graphite fibers
US4722756A (en) 1987-02-27 1988-02-02 Cabot Corp Method for deoxidizing tantalum material
US4740238A (en) * 1987-03-26 1988-04-26 Fansteel Inc. Platelet-containing tantalum powders
EP0312495A3 (de) 1987-10-16 1989-08-30 Institut Straumann Ag Elektrisches Kabel für die Durchführung mindestens einer Stimulation und/oder Messung in einem menschlichen oder tierischen Körper
EP0312494A3 (de) 1987-10-16 1991-01-16 Institut Straumann Ag Alloplastisches Material für die Bildung eines künstlichen und/oder Verstärkung eines natürlichen Weichgewebeteils
US5211741A (en) 1987-11-30 1993-05-18 Cabot Corporation Flaked tantalum powder
US4940490A (en) 1987-11-30 1990-07-10 Cabot Corporation Tantalum powder
US5580367A (en) 1987-11-30 1996-12-03 Cabot Corporation Flaked tantalum powder and method of using same flaked tantalum powder
DE3914662A1 (de) 1989-05-03 1990-11-08 Alt Eckhard Vorrichtung zum uebertragen elektrischer signale zwischen einem implantierbaren medizinischen geraet und elektrisch erregbarem menschlichen gewebe
US5034857A (en) 1989-10-06 1991-07-23 Composite Materials Technology, Inc. Porous electrolytic anode
US5217526A (en) 1991-05-31 1993-06-08 Cabot Corporation Fibrous tantalum and capacitors made therefrom
US5231996A (en) 1992-01-28 1993-08-03 Medtronic, Inc. Removable endocardial lead
US5282861A (en) 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
US5245514A (en) 1992-05-27 1993-09-14 Cabot Corporation Extruded capacitor electrode and method of making the same
US5284531A (en) 1992-07-31 1994-02-08 Cabot Corporation Cylindrical metal fibers made from tantalum, columbium, and alloys thereof
US5324328A (en) 1992-08-05 1994-06-28 Siemens Pacesetter, Inc. Conductor for a defibrillator patch lead
US5448447A (en) 1993-04-26 1995-09-05 Cabot Corporation Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
US5926362A (en) 1997-05-01 1999-07-20 Wilson Greatbatch Ltd. Hermetically sealed capacitor
US5894403A (en) 1997-05-01 1999-04-13 Wilson Greatbatch Ltd. Ultrasonically coated substrate for use in a capacitor
US5920455A (en) 1997-05-01 1999-07-06 Wilson Greatbatch Ltd. One step ultrasonically coated substrate for use in a capacitor
US7235096B1 (en) 1998-08-25 2007-06-26 Tricardia, Llc Implantable device for promoting repair of a body lumen
US6648903B1 (en) 1998-09-08 2003-11-18 Pierson, Iii Raymond H. Medical tensioning system
US6231993B1 (en) 1998-10-01 2001-05-15 Wilson Greatbatch Ltd. Anodized tantalum pellet for an electrolytic capacitor
SE9901032D0 (sv) 1999-03-22 1999-03-22 Pacesetter Ab Medical electrode lead
US6374141B1 (en) 1999-10-08 2002-04-16 Microhelix, Inc. Multi-lead bioelectrical stimulus cable
US6319459B1 (en) 1999-10-18 2001-11-20 Kemet Electronics Corporation Removal of organic acid based binders from powder metallurgy compacts
US7146709B2 (en) 2000-03-21 2006-12-12 Composite Materials Technology, Inc. Process for producing superconductor
JP3718412B2 (ja) 2000-06-01 2005-11-24 キャボットスーパーメタル株式会社 ニオブまたはタンタル粉末およびその製造方法
US8849403B2 (en) 2001-04-13 2014-09-30 Greatbatch Ltd. Active implantable medical system having EMI shielded lead
US6980865B1 (en) 2002-01-22 2005-12-27 Nanoset, Llc Implantable shielded medical device
US6687117B2 (en) 2002-01-31 2004-02-03 Wilson Greatbatch Technologies, Inc. Electrolytes for capacitors
US7158837B2 (en) 2002-07-10 2007-01-02 Oscor Inc. Low profile cardiac leads
US20040121290A1 (en) 2002-09-16 2004-06-24 Lynntech, Inc. Biocompatible implants
US7342774B2 (en) 2002-11-25 2008-03-11 Medtronic, Inc. Advanced valve metal anodes with complex interior and surface features and methods for processing same
US6859353B2 (en) 2002-12-16 2005-02-22 Wilson Greatbatch Technologies, Inc. Capacitor interconnect design
EP1618575B1 (en) 2003-04-28 2019-10-23 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
US7256982B2 (en) 2003-05-30 2007-08-14 Philip Michael Lessner Electrolytic capacitor
CA2478004A1 (en) 2003-08-18 2005-02-18 Wilson Greatbatch Technologies, Inc. Use of pad printing in the manufacture of capacitors
US7020947B2 (en) 2003-09-23 2006-04-04 Fort Wayne Metals Research Products Corporation Metal wire with filaments for biomedical applications
US6965510B1 (en) 2003-12-11 2005-11-15 Wilson Greatbatch Technologies, Inc. Sintered valve metal powders for implantable capacitors
US8460286B2 (en) 2004-01-16 2013-06-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Conforming electrode
US7326204B2 (en) 2004-01-16 2008-02-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Brush electrode and method for ablation
US7280875B1 (en) 2004-02-04 2007-10-09 Pacesetter, Inc. High strength, low resistivity electrode
EP1718361B1 (en) 2004-02-11 2015-06-17 Fort Wayne Metals Research Products Corporation Drawn strand filled tubing wire
EP1592031B1 (en) 2004-04-19 2016-04-13 Greatbatch Ltd. Flat back case for an electrolytic capacitor
US7286336B2 (en) 2004-05-14 2007-10-23 Greatbatch Ltd. Plasma treatment of anodic oxides for electrolytic capacitors
US9981063B2 (en) 2004-11-24 2018-05-29 Mayo Foundation For Medical Education And Research Biosynthetic composite for osteochondral defect repair
US7727372B2 (en) 2004-12-06 2010-06-01 Greatbatch Ltd. Anodizing valve metals by self-adjusted current and power
US7271994B2 (en) 2005-06-08 2007-09-18 Greatbatch Ltd. Energy dense electrolytic capacitor
JP2009505753A (ja) 2005-08-26 2009-02-12 タイコ ヘルスケア グループ リミテッド パートナーシップ 吸収性外科用材料
US7092242B1 (en) 2005-09-08 2006-08-15 Greatbatch, Inc. Polymeric restraints for containing an anode in an electrolytic capacitor from high shock and vibration conditions
KR100964565B1 (ko) 2005-09-29 2010-06-21 닝시아 오리엔트 탄탈럼 인더스트리 코포레이션 엘티디 금속 입자의 구형 입상화 및 응집화 방법 및 상기 방법으로제조된 금속 입자, 상기 금속 입자로부터 제조된 애노드
US20070093834A1 (en) 2005-10-06 2007-04-26 Stevens Peter M Bone alignment implant and method of use
US7612291B2 (en) 2005-11-10 2009-11-03 Cardiac Pacemakers, Inc. Composite wire for implantable cardiac lead conductor cable and coils
US7879217B2 (en) 2005-12-02 2011-02-01 Greatbatch Ltd. Method of forming valve metal anode pellets for capacitors using forced convection of liquid electrolyte during anodization
US7603153B2 (en) 2005-12-12 2009-10-13 Sterling Investments Lc Multi-element probe array
US7072171B1 (en) 2006-02-13 2006-07-04 Wilson Greatbatch Technologies, Inc. Electrolytic capacitor capable of insertion into the vasculature of a patient
US20070244548A1 (en) 2006-02-27 2007-10-18 Cook Incorporated Sugar-and drug-coated medical device
WO2007109612A2 (en) 2006-03-17 2007-09-27 Composite Materials Technology, Inc. Valve metal ribbon type fibers for solid electrolytic capacitors
DE112007001100T5 (de) 2006-05-05 2009-05-14 Cabot Corp., Boston Tantalpulver mit glatter Oberfläche und Verfahren zur Herstellung desselben
US8858738B2 (en) 2006-09-26 2014-10-14 Composite Materials Technology, Inc. Methods for fabrication of improved electrolytic capacitor anode
US8224457B2 (en) 2006-10-31 2012-07-17 St. Jude Medical Ab Medical implantable lead
WO2008063526A1 (en) 2006-11-13 2008-05-29 Howmedica Osteonics Corp. Preparation of formed orthopedic articles
US7483260B2 (en) 2006-12-22 2009-01-27 Greatbatch Ltd. Dual anode capacitor with internally connected anodes
EP2110824A4 (en) 2007-02-16 2015-02-25 Panasonic Corp CONDENSATE UNIT AND MANUFACTURING METHOD THEREFOR
US7813107B1 (en) 2007-03-15 2010-10-12 Greatbatch Ltd. Wet tantalum capacitor with multiple anode connections
US8764764B2 (en) 2007-03-21 2014-07-01 The University Of North Carolina At Chapel Hill Surgical plate puller devices and methods for use with surgical bone screw/plate systems
AU2008261691A1 (en) 2007-06-11 2008-12-18 Nanovasc, Inc. Stents
US20090075863A1 (en) 2007-07-10 2009-03-19 Mayo Foundation For Medical Education And Research Periosteal Tissue Grafts
US7837743B2 (en) 2007-09-24 2010-11-23 Medtronic, Inc. Tantalum anodes for high voltage capacitors employed by implantable medical devices and fabrication thereof
EP2214853A4 (en) 2007-10-15 2013-05-22 Hi Temp Specialty Metals Inc PROCESS FOR PREPARING TANTALUM POWDER USING RECYCLED AGENTS AS AN EXISTING MATERIAL
US8081419B2 (en) 2007-10-17 2011-12-20 Greatbatch Ltd. Interconnections for multiple capacitor anode leads
WO2009082631A1 (en) 2007-12-26 2009-07-02 Composite Materials Technology, Inc. Methods for fabrication of improved electrolytic capacitor anode
US8435676B2 (en) 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries
US8172908B2 (en) 2008-01-17 2012-05-08 The University Of Hong Kong Implant for tissue engineering
US7852615B2 (en) * 2008-01-22 2010-12-14 Avx Corporation Electrolytic capacitor anode treated with an organometallic compound
US7983022B2 (en) 2008-03-05 2011-07-19 Greatbatch Ltd. Electrically connecting multiple cathodes in a case negative multi-anode capacitor
US20090228021A1 (en) 2008-03-06 2009-09-10 Leung Jeffrey C Matrix material
EP2334838A1 (en) 2008-09-19 2011-06-22 Fort Wayne Metals Research Products Corporation Fatigue damage resistant wire and method of production thereof
DE102009009557A1 (de) 2009-02-19 2010-09-02 W.C. Heraeus Gmbh Elektrisch leitende Materialien, Zuleitungen und Kabel für Stimulationselektroden
JP2010265520A (ja) * 2009-05-15 2010-11-25 Cabot Supermetal Kk タンタル混合粉末及びその製造方法、並びにタンタルペレット及びその製造方法。
US10366802B2 (en) 2009-06-05 2019-07-30 University of Pittsburgh—of the Commonwealth System of Higher Education Compositions including nano-particles and a nano-structured support matrix and methods of preparation as reversible high capacity anodes in energy storage systems
EP2485780A4 (en) 2009-10-07 2014-05-21 Bio2 Technologies Inc DEVICES AND METHOD FOR TISSUE BREEDING
US20120239162A1 (en) 2009-10-07 2012-09-20 Bio2 Technologies, Inc Devices and Methods for Tissue Engineering
WO2011069161A1 (en) 2009-12-04 2011-06-09 Composite Materials Technology, Inc. Biocompatible tantalum fiber scaffolding for bone and soft tissue prosthesis
US20110189510A1 (en) 2010-01-29 2011-08-04 Illuminex Corporation Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same
US20120094192A1 (en) 2010-10-14 2012-04-19 Ut-Battelle, Llc Composite nanowire compositions and methods of synthesis
US8849421B2 (en) 2012-04-19 2014-09-30 Medtronic, Inc. Medical leads having forced strain relief loops
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
US9728777B2 (en) 2013-07-26 2017-08-08 Nanoteck Instruments, Inc. Methods for mass-producing silicon nano powder and graphene-doped silicon nano powder
US9633796B2 (en) 2013-09-06 2017-04-25 Greatbatch Ltd. High voltage tantalum anode and method of manufacture
US9155605B1 (en) 2014-07-10 2015-10-13 Composite Materials Technology, Inc. Biocompatible extremely fine tantalum filament scaffolding for bone and soft tissue prosthesis
US9498316B1 (en) 2014-07-10 2016-11-22 Composite Materials Technology, Inc. Biocompatible extremely fine tantalum filament scaffolding for bone and soft tissue prosthesis
US10737322B2 (en) * 2014-08-20 2020-08-11 Ningzia Orient Tanatum Industry Co., Ltd. Composite tantalum powder and process for preparing the same and capacitor anode prepared from the tantalum powder
CN107710474B (zh) 2015-05-15 2021-06-29 复合材料技术公司 改进的高容量充电电池
US9875855B2 (en) 2015-10-30 2018-01-23 Greatbatch Ltd. High voltage tantalum capacitor with improved cathode/separator design and method of manufacture
US20170125178A1 (en) 2015-10-30 2017-05-04 Greatbatch Ltd. High voltage dual anode tantalum capacitor with facing casing clamshells contacting an intermediate partition
EP3171378B1 (en) 2015-11-20 2021-12-22 Greatbatch Ltd. High voltage capacitor having a dual tantalum anode/cathode current collector electrode assembly housed in a dual separator envelope design

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441927A (en) * 1982-11-16 1984-04-10 Cabot Corporation Tantalum powder composition
CN1240384A (zh) * 1996-12-20 2000-01-05 合成材料技术公司 受限金属丝电解阳极及其制作工艺
CN1350481A (zh) * 1999-05-12 2002-05-22 卡伯特公司 高电容的铌粉末和电解电容器阳极
CN1809904A (zh) * 2003-04-25 2006-07-26 卡伯特公司 一种形成烧结阀金属材料的方法
CN1816401A (zh) * 2003-07-02 2006-08-09 Ati资产公司 制备金属纤维的方法
JP2009230952A (ja) * 2008-03-21 2009-10-08 Fukuda Metal Foil & Powder Co Ltd 導電性ペースト組成物及び電子回路並びに電子部品
US8673025B1 (en) * 2008-12-11 2014-03-18 Composite Materials Technology, Inc. Wet electrolytic capacitor and method for fabricating of improved electrolytic capacitor cathode
CN104470656A (zh) * 2012-07-18 2015-03-25 福田金属箔粉工业株式会社 极薄小薄片状银粉及其制造方法
US9312075B1 (en) * 2013-09-06 2016-04-12 Greatbatch Ltd. High voltage tantalum anode and method of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404439A (zh) * 2020-11-18 2021-02-26 贵州振华电子信息产业技术研究有限公司 一种电容器用高压钽粉及其制备方法和电容器

Also Published As

Publication number Publication date
US20180047515A1 (en) 2018-02-15
EP3895832B1 (en) 2022-12-28
EP3496884A4 (en) 2020-09-23
WO2018031943A1 (en) 2018-02-15
EP3895832A1 (en) 2021-10-20
US10192688B2 (en) 2019-01-29
EP3496884B1 (en) 2021-06-16
EP3496884A1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
KR100290995B1 (ko) 압출커패시터전극및그의제조방법
US8858738B2 (en) Methods for fabrication of improved electrolytic capacitor anode
WO2009082631A1 (en) Methods for fabrication of improved electrolytic capacitor anode
KR100751267B1 (ko) 니오브 소결체, 그 제조방법, 및 그것을 사용한 콘덴서
JP5698882B1 (ja) コンデンサ陽極体およびその製造方法
CN109715320A (zh) 电解电容器和改进电解电容器阳极的方法
US8673025B1 (en) Wet electrolytic capacitor and method for fabricating of improved electrolytic capacitor cathode
JP2004014667A (ja) 固体電解コンデンサ
CN100369169C (zh) 固体电解电容器的制造方法
JP5763932B2 (ja) 固体電解コンデンサおよびその製造方法
EP2866237A1 (en) Capacitor element
WO2006027767A1 (en) Porous anode body for solid electrolyte capacitor and method for manufacturing the same
JP4647744B2 (ja) コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ
JPH11224833A (ja) 固体電解コンデンサ用多孔質陽極体の製造方法
JP4697832B2 (ja) ニオブ焼結体、その製造方法及びその焼結体を用いたコンデンサ
EP1227508A1 (en) Niobium powder and anode for solid electrolytic capacitors made therefrom
JP2010265549A (ja) コンデンサ用ニオブ粉
JP2022115591A (ja) 電解コンデンサおよびその製造方法
JPH09134854A (ja) 固体電解コンデンサの製造方法及び固体電解コンデンサ陽極体
JPH06188158A (ja) コンデンサ
JPH11224832A (ja) 固体電解コンデンサ用多孔質陽極体の製造方法
JPH03232213A (ja) タンタル固体電解コンデンサの製造方法
JP2010261106A (ja) コンデンサ用ニオブ焼結体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190503

RJ01 Rejection of invention patent application after publication