CN109680327A - 一种金属锂表面及电化学抛光方法 - Google Patents

一种金属锂表面及电化学抛光方法 Download PDF

Info

Publication number
CN109680327A
CN109680327A CN201910035526.6A CN201910035526A CN109680327A CN 109680327 A CN109680327 A CN 109680327A CN 201910035526 A CN201910035526 A CN 201910035526A CN 109680327 A CN109680327 A CN 109680327A
Authority
CN
China
Prior art keywords
electrode
lithium
working electrode
smooth
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910035526.6A
Other languages
English (en)
Inventor
谷宇
王卫伟
毛秉伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201910035526.6A priority Critical patent/CN109680327A/zh
Publication of CN109680327A publication Critical patent/CN109680327A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/18Polishing of light metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种金属锂表面及电化学抛光方法,涉及金属锂表面处理。包括以下步骤:1)在电解池中设有电极室,在电极室内注入电解液,并放入两片金属锂片分别作为工作电极和对电极,并与金属锂参比电极构成三电极体系;2)工作电极、对电极和参比电极分别与恒电位仪的工作电极、对电极和参比电极连接,以控制金属锂工作电极恒电位或恒电流极化;对工作电极施加氧化电位,使工作电极发生锂的溶出反应,再对工作电极施加还原电流,并使工作电极在该还原电流下发生锂沉积反应,同时完成电解液的还原,即得大范围原子平整的金属锂表面和分子尺度光滑的SEI膜,完成金属锂表面的电化学抛光。可同时获得大范围原子平整的锂表面和分子尺度均匀光滑的SEI膜。

Description

一种金属锂表面及电化学抛光方法
技术领域
本发明涉及金属锂表面处理,尤其是涉及一种金属锂表面的电化学抛光方法。
背景技术
金属锂作为元素周期表中电势最负的金属,对其化学和物理性质的研究具有重要学术意义(如锂的晶相学和电沉积行为)和应用价值(如金属锂二次电池)。然而,锂金属作为电池的负极,锂沉积过程中的枝晶生长可引起电池短路,造成安全问题;同时,锂的沉积-溶解过程伴随大的体积变化,可导致其上的固态电解质膜(SEI)发生破裂而暴露新鲜的锂表面,后者与溶液接触发生反应而消耗电解液并造成锂的腐蚀,降低金属锂负极的稳定性和电池的库仑效率。这些问题是制约锂-硫和锂-空等电池负极走向实用的关键因素之一。
过去的几十年中,人们尝试运用物理和化学方法对金属锂表面进行保护。物理方法通常将高分子或无机材料涂覆于金属锂表面以隔离其与电解液的接触,可避免锂枝晶的危害以及锂表面的腐蚀,但其最大缺陷在于引入的隔离层降低了金属锂的动力学性能,且操作工艺复杂、成本高,难以实现规模化;化学方法则致力于通过调节电解液的组成,尤其是使用添加剂和高浓度锂盐,使金属锂在浸泡或低电流循环过程中发生化学和电化学反应,以期形成化学和物理性质良好的固体电解质界面相(SEI),在一定程度上抑制锂枝晶的生长及腐蚀的发生。
然而,抑制锂枝晶生长并缓解锂沉积-溶解循环过程体积变化所带来的危害,需要同时针对SEI膜的性质和锂表面形貌加以改善:理想的SEI膜应该具有均匀致密、兼具弹性和刚性且仅对锂离子导通的特性;平整光滑的锂表面缺陷少,减少成核位点从而抑制锂枝晶生长。事实上,锂表面的平整光滑性也是促使形成均匀致密SEI膜的重要基础。因此,SEI膜的制备不仅依赖于电解液的组成,而且与成膜方法和过程,尤其是锂表面形貌密切相关,常规的浸泡和小电流化成方法所获得的SEI膜在上述性能方面仍存在较大不足。
然而,金属锂具有十分活泼的表面化学,光滑的高质量锂表面的制备具有极大的挑战性,以至于锂表面形貌研究未受到足够重视。因此,亟待发展方法,获得高质量光滑的锂表面和性能优越的SEI层,为基础和应用研究提供平整光滑的锂表面和性能优越的金属锂负极。
发明内容
本发明的目的在于针对现有技术存在的上述不足,提供可同时获得大范围原子平整的金属锂表面并在其上形成致密、均匀和分子尺度光滑的富锂SEI层,不仅为锂-硫和锂-空电池等的实际应用提供性能优越的金属锂负极,而且为金属锂晶相学等研究提供平整光滑锂表面的一种金属锂表面的电化学抛光方法。
本发明包括以下步骤:
1)在电解池中设有电极室,在电极室内注入电解液,并放入两片金属锂片分别作为工作电极和对电极,并与金属锂参比电极构成三电极体系;
2)工作电极、对电极和参比电极分别与恒电位仪的工作电极、对电极和参比电极连接,以控制金属锂工作电极恒电位或恒电流极化;对工作电极施加氧化电位,使工作电极发生锂的溶出反应(即电化学剥离过程),再对工作电极施加还原电流,并使工作电极在该还原电流下发生锂沉积反应(即电化学沉积退火过程),同时完成电解液的还原,即得大范围原子平整的金属锂表面和分子尺度光滑的SEI膜,完成金属锂表面的电化学抛光。
在步骤1)中,所述电解液可采用醚类电解液或酯类电解液;所述醚类电解液可采用LiTFSI/DME-DOL,其中,LiTFSI的摩尔浓度可为0.5~2M,DME与DOL的体积比可为(0.5~1)∶(0.5~1);所述酯类电解液可采用LiPF6/EC-DMC,LiPF6的摩尔浓度可为0.5~2M,EC与DMC的体积比可为(0.5~2)∶(0.25~1)所述工作电极的直径可为10~20mm,厚度可为0.5~1cm;所述对电极的直径可为0.5~1mm,厚度可为1cm;所述金属锂参比电极E的直径可为10~20mm,厚度可为0.5~1cm。
在步骤2)中,所述氧化电位可为0.4~1.5V vs.Li/Li+;所述溶出反应的时间可为50~150s;所述还原电流可为0.1~0.5mA/cm2;所述锂沉积反应的时间可为500~1500s。
所述对电极和参比电极合并,并与工作电极组成两电极体系,合并后的对电极和参比电极与恒电位仪的对电极和参比电极连接,工作电极与恒电位仪的工作电极连接,以控制金属锂工作电极恒电位或恒电流极化。
本发明是一种对金属锂表面进行电化学抛光并同时形成固体界面层(SEI)的方法,可获得大范围原子平整的金属锂表面,并在其上形成致密、均匀和分子尺度光滑的SEI,不仅为锂-硫和锂-空电池等的实际应用提供性能优越的金属锂负极,同时也为金属锂晶相学等研究提供平整光滑的锂表面。
本发明的工作原理是:
结合恒电势-恒电流联合控制的策略,通过剥离-退火二步过程,实现对锂表面的电化学抛光和SEI膜的原位成膜。第一步,在恒电势控制下使锂发生阳极溶解剥离,而电解液在高的锂离子局域浓度下发生温和还原并初步形成SEI膜;第二步,控制恒电流阴极极化,使锂发生电沉积,达到进一步修复锂表面缺陷的目的,同时充分完成电解液的还原,并形成性能独特的SEI膜。所获得的金属锂电极具有优越的电化学循环和阴极极化性能,可在0.5~5mA/cm2(1~3mA.h/cm2)下稳定循环至少400周。
本发明的突出优点在于:
1.首次提出用于锂表面的电化学抛光方法,可同时获得大范围原子平整的锂表面和分子尺度均匀光滑的SEI膜;
2.结合恒电位-恒电流联合控制的策略,在严格的电势和电流控制下,分别实施剥离和退火二步过程,使锂发生各向异性溶解及随后的电沉积,达到对锂表面极致的抛光效果;
3.调控锂的阳极溶出和电解液还原共轭电极反应动力学,提供新鲜的锂表面和高浓度表面锂离子,促使形成性能独特的富锂SEI膜,并在后续的阴极恒电流极化下活化SEI膜的离子传输性;
4.所获得的金属锂电极具有优越的电化学循环和阴极极化性能,可在0.5~5mA/cm2(1~3mA·h/cm2)下稳定循环至少400周;
5.本发明不仅为锂-硫和锂-空电池等的实际应用提供性能优越的金属锂负极,而且为金属锂晶相学等研究提供平整光滑的锂表面。
附图说明
图1为本发明实施例实现电化学抛光的装置图。
图2为本发明获得的大范围原子平整的锂表面的原子力显微镜(AFM)图。
图3为本发明获得的分子尺度光滑的SEI膜表面的原子力显微镜(AFM)图。
图4为未经电化学抛光的锂金属电极组成的Li/Li对称电池在3mA cm-2(1mAh cm-2)下恒流循环充放电曲线。
图5为经电化学抛光的锂金属电极组成的Li/Li对称电池在3mA cm-2(1mAh cm-2)下恒流循环充放电曲线。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
参见图1,本发明包括以下步骤:
1)在电解池中设有电极室A,在电极室A内注入电解液B,并放入两片金属锂片分别作为工作电极C和对电极D,并与金属锂参比电极E构成三电极体系(也可将对电极D和参比电极E合并,简化为两电极体系);所述电解液B为醚类电解液(如LiTFSI/DME-DOL,其中,LiTFSI浓度可为0.5~2M,DME与DOL的体积比可为0.5~1∶0.5~1)或酯类电解液(如LiPF6/EC-DMC,LiPF6浓度可为0.5~2M,EC与DMC的体积比可为0.5~2∶0.25~1);所述工作电极C的直径可为10~20mm,厚度可为0.5~1cm;所述对电极D的直径可为0.5~1mm,厚度可为1cm;所述金属锂参比电极E的直径可为10~20mm,厚度可为0.5~1cm
2)工作电极C、对电极D和参比电极E分别与恒电位仪F的工作电极、对电极和参比电极连接,以控制金属锂工作电极恒电位或恒电流极化;对工作电极C施加氧化电位,使工作电极C发生锂的溶出反应(即电化学剥离过程),再对工作电极C施加还原电流,并使工作电极C在该还原电流下发生锂沉积反应(即电化学沉积退火过程),同时充分完成电解液的还原。在上述的电化学阳极剥离-沉积退火过程及电解液还原完成后即得大范围原子平整的金属锂表面和分子尺度光滑的SEI膜。所述氧化电位可为0.4~1.5V vs.Li/Li+;所述溶出反应的时间可为50~150s;所述还原电流可为0.1~0.5mA/cm2;所述锂沉积反应的时间可为500~1500s。
以上所有操作最好均在充满高纯氩气的手套箱内进行,反应得到的金属锂存于手套箱内待用。反应完成后即获得大范围原子平整的金属锂表面和分子尺度光滑的SEI膜,如图2和3所示。
在恒电势步骤中,改变电势和时间,可以调节锂的阳极溶出和电解液还原动力学及其匹配性,优化锂表面抛光和SEI膜形成的条件;在随后的恒电流阴极极化步骤中,改变电流密度和极化时间,进一步促使溶剂的充分还原,并活化SEI膜的离子传输性。
本发明采用电化学阳极剥离和沉积退火过程,可同时形成大范围原子平整的锂表面和致密均匀且分子光滑的固态电解质膜(SEI)膜。在电化学阳极剥离和沉积退火过程中,恒电位-恒电流联合控制,在一定的电势和电流控制下,先后实施锂表面的溶解和沉积的二步过程,达到对锂表面极致的抛光效果。在锂的溶出-沉积过程与电解液还原同时进行,所提供的新鲜锂表面和超高锂离子表面局域浓度促使形成性能独特的SEI膜。

Claims (9)

1.一种金属锂表面,表面覆盖SEI膜。
2.根据权利要求1的一种金属锂表面,其特征在于所述的锂表面为大范围原子平整的金属锂表面和分子尺度光滑的SEI膜。
3.一种锂-硫或锂-空电池,其特征在于其金属锂负极的表面具有SEI膜。
4.如权利要求1至3所述的锂金属表面的电化学抛光方法,包括以下步骤:1)在电解池中设有电极室,在电极室内注入电解液,并放入两片金属锂片分别作为工作电极和对电极,并与金属锂参比电极构成三电极体系;2)工作电极、对电极和参比电极分别与恒电位仪的工作电极、对电极和参比电极连接,以控制金属锂工作电极恒电位或恒电流极化;对工作电极施加氧化电位,使工作电极发生锂的溶出反应,再对工作电极施加还原电流,并使工作电极在该还原电流下发生锂沉积反应,同时完成电解液的还原,即得大范围原子平整的金属锂表面和分子尺度光滑的SEI膜,完成金属锂表面的电化学抛光。
5.如权利要求4所述金属锂表面的电化学抛光方法,其特征在于在步骤1)中,所述电解液采用醚类电解液或酯类电解液。
6.如权利要求5所述金属锂表面的电化学抛光方法,其特征在于所述醚类电解液采用LiTFSI/DME-DOL,其中,LiTFSI的摩尔浓度为0.5~2M,DME与DOL的体积比为(0.5~1)∶(0.5~1)。
7.如权利要求5所述金属锂表面的电化学抛光方法,其特征在于所述酯类电解液采用LiPF6/EC-DMC,LiPF6的摩尔浓度为0.5~2M,EC与DMC的体积比为(0.5~2)∶(0.25~1)。
8.如权利要求4所述金属锂表面的电化学抛光方法,其特征在于在步骤1)中,所述工作电极的直径为10~20mm,厚度为0.5~1cm;所述对电极的直径为0.5~1mm,厚度为1cm;所述金属锂参比电极E的直径为10~20mm,厚度为0.5~1cm。
9.如权利要求4所述金属锂表面的电化学抛光方法,其特征在于所述对电极和参比电极合并,并与工作电极组成两电极体系,合并后的对电极和参比电极与恒电位仪的对电极和参比电极连接,工作电极与恒电位仪的工作电极连接,以控制金属锂工作电极恒电位或恒电流极化。
CN201910035526.6A 2016-09-12 2016-09-12 一种金属锂表面及电化学抛光方法 Pending CN109680327A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910035526.6A CN109680327A (zh) 2016-09-12 2016-09-12 一种金属锂表面及电化学抛光方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910035526.6A CN109680327A (zh) 2016-09-12 2016-09-12 一种金属锂表面及电化学抛光方法
CN201610816640.9A CN107815724B (zh) 2016-09-12 2016-09-12 金属锂表面的电化学抛光方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610816640.9A Division CN107815724B (zh) 2016-09-12 2016-09-12 金属锂表面的电化学抛光方法

Publications (1)

Publication Number Publication Date
CN109680327A true CN109680327A (zh) 2019-04-26

Family

ID=61601339

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610816640.9A Active CN107815724B (zh) 2016-09-12 2016-09-12 金属锂表面的电化学抛光方法
CN201910035526.6A Pending CN109680327A (zh) 2016-09-12 2016-09-12 一种金属锂表面及电化学抛光方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610816640.9A Active CN107815724B (zh) 2016-09-12 2016-09-12 金属锂表面的电化学抛光方法

Country Status (1)

Country Link
CN (2) CN107815724B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112072076A (zh) * 2020-07-22 2020-12-11 宁波大学 一种锂金属电池负极表面的改性方法
CN112786841A (zh) * 2021-01-28 2021-05-11 宁波大学 一种锂金属表面的改性方法及锂金属电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107815724B (zh) * 2016-09-12 2019-07-23 厦门大学 金属锂表面的电化学抛光方法
CN111416156A (zh) * 2020-03-30 2020-07-14 武汉中原长江科技发展有限公司 一种金属锂二次电池负极用非锂基底asei及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311602A (zh) * 2013-04-11 2013-09-18 华中科技大学 一种锂空气电池用电解液及相应的电池产品
CN104810546A (zh) * 2014-01-27 2015-07-29 中国人民解放军63971部队 一种用于锂硫电池的电解液及其制备方法
CN107815724B (zh) * 2016-09-12 2019-07-23 厦门大学 金属锂表面的电化学抛光方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506729B (zh) * 2016-01-19 2018-04-10 西安爱德万思医疗科技有限公司 一种锌合金器件电化学抛光液及其抛光方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311602A (zh) * 2013-04-11 2013-09-18 华中科技大学 一种锂空气电池用电解液及相应的电池产品
CN104810546A (zh) * 2014-01-27 2015-07-29 中国人民解放军63971部队 一种用于锂硫电池的电解液及其制备方法
CN107815724B (zh) * 2016-09-12 2019-07-23 厦门大学 金属锂表面的电化学抛光方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112072076A (zh) * 2020-07-22 2020-12-11 宁波大学 一种锂金属电池负极表面的改性方法
CN112072076B (zh) * 2020-07-22 2021-07-27 宁波大学 一种锂金属电池负极表面的改性方法
CN112786841A (zh) * 2021-01-28 2021-05-11 宁波大学 一种锂金属表面的改性方法及锂金属电池

Also Published As

Publication number Publication date
CN107815724B (zh) 2019-07-23
CN107815724A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
Zhu et al. Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode
Dong et al. Grain refining mechanisms: Initial levelling stage during nucleation for high-stability lithium anodes
CN107815724B (zh) 金属锂表面的电化学抛光方法
Aurbach et al. A Study of Lithium Deposition‐Dissolution Processes in a Few Selected Electrolyte Solutions by Electrochemical Quartz Crystal Microbalance
CN109004276A (zh) 一种锂负极保护膜、制备方法及锂金属二次电池
Sha et al. Printing 3D mesh-like grooves on zinc surface to enhance the stability of aqueous zinc ion batteries
CN105280886A (zh) 金属锂负极表面原位处理方法与应用
CN109585855B (zh) 金属锂支撑体及其制备方法与应用
CN109524621A (zh) 一种预锂化程度可控的锂离子电池负极极片的预锂化方法及装置
CN108321432A (zh) 一种用于抑制锂枝晶生长的碳氮聚合物基准固态电解质及其制备方法和应用
CN110061285A (zh) 一种全固态锂电池及其制备方法
CN111048750A (zh) 一种石墨烯气凝胶/金属锂复合负极材料及其制备方法
Gong et al. MXene-modified conductive framework as a universal current collector for dendrite-free lithium and zinc metal anode
CN112786841A (zh) 一种锂金属表面的改性方法及锂金属电池
Yang et al. Bimetallic composite induced ultra-stable solid electrolyte interphase for dendrite-free lithium metal anode
Zhang et al. In Situ Electrochemically‐Bonded Self‐Adapting Polymeric Interface for Durable Aqueous Zinc Ion Batteries
Kim et al. Li-Dendrite cage electrode with 3-D interconnected pores for Anode-Free Lithium-Metal batteries
Wang et al. g-C3N4 Boosting the Interfacial Compatibility of Solid-State Lithium-Sulfur Battery
Zhou et al. Accelerating Li+/Li redox through the regulation of the electric double layer for efficient lithium metal anodes
CN109494400A (zh) 双氟磺酰亚胺锂/1,3-二氧五环锂电池凝胶电解液及其制备方法和电池
CN111799442A (zh) 无枝晶化的钠钾离子电池的半液态负极及其制备方法与应用
Su et al. A Holistic Additive Protocol Steers Dendrite‐Free Zn (101) Orientational Electrodeposition
CN110289419A (zh) 一种可耐腐蚀的金属锂负极集流体及其制备方法、用途
CN115951227A (zh) 一种基于改进的单粒子模型估算电池端电压的估算系统
CN114552017A (zh) 一种电解液添加剂稳定金属锂负极

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190426

RJ01 Rejection of invention patent application after publication