CN109652823A - 一种高性能质子导体陶瓷膜反应器电解池阳极材料 - Google Patents

一种高性能质子导体陶瓷膜反应器电解池阳极材料 Download PDF

Info

Publication number
CN109652823A
CN109652823A CN201811609224.7A CN201811609224A CN109652823A CN 109652823 A CN109652823 A CN 109652823A CN 201811609224 A CN201811609224 A CN 201811609224A CN 109652823 A CN109652823 A CN 109652823A
Authority
CN
China
Prior art keywords
anode material
electrolytic cell
ceramic membrane
proton conductor
membrane reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811609224.7A
Other languages
English (en)
Other versions
CN109652823B (zh
Inventor
江瑜华
张小珍
胡学兵
谭丽
曾倩楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingdezhen Ceramic Institute
Original Assignee
Jingdezhen Ceramic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingdezhen Ceramic Institute filed Critical Jingdezhen Ceramic Institute
Priority to CN201811609224.7A priority Critical patent/CN109652823B/zh
Publication of CN109652823A publication Critical patent/CN109652823A/zh
Application granted granted Critical
Publication of CN109652823B publication Critical patent/CN109652823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种高性能质子导体陶瓷膜反应器电解池阳极材料,所述阳极材料由铜和钇共掺杂的BaZr0.2Ce0.8O3‑δ基材料和YBa3Cu2O7‑δ晶相复合组成,所述阳极材料的化学组成式为:Ba1+z Zr0.2Ce0.8‑x‑y Cu x Y y O3‑δ,其中x=0.1~0.5、y=0.1~0.25、z=0.02~0.1。该阳极材料不但具有优异的中低温(400~600℃)催化活性和良好的化学稳定性,而且化学组成、热膨胀性能与BaCeO3基质子导体电解质材料相近。采用本发明提供的阳极材料制备的陶瓷膜反应器电解池具有高的水蒸气电解效率和高的CO2转化及甲醇产率,而且大大提高了电解池在高温长时间电解工作条件下的化学稳定性和结构稳定性,从而提高电解池性能和延长使用寿命。

Description

一种高性能质子导体陶瓷膜反应器电解池阳极材料
技术领域
本发明属无机非金属材料(陶瓷)领域,具体是一种高性能质子导体陶瓷膜反应器电解池阳极材料。
背景技术
高温质子导体陶瓷膜电解池可电解水制备氢气,或电解水产生高活性质子并进一步与二氧化碳反应合成碳氢燃料以替代传统的化石燃料,也可用于加氢反应与其他有机气体合成化工原料,其工作过程可采用丰富的可再生能源(风能、太阳能、地热能等)或先进核反应堆及其它工业废热等作为能量来源,对解决当前日益严峻的环境和能源问题、减缓能源危机具有重要意义,显示出了良好的应用前景,因而基于陶瓷膜电解池的陶瓷膜反应器近年来受到越来越多的关注,成为能源材料领域的研究热点之一。但目前关于陶瓷膜电解池的研究多集中于氧离子导体陶瓷膜电解池,而对质子导体陶瓷膜电解池的研究相对较少。对于高温水蒸气电解,质子导体陶瓷膜电解池无疑具有明显的优势,不但可在更低的温度下工作直接获得高纯氢气(无需后续的分离提纯)或高活性质子,还可与其它加氢反应过程耦合合成碳氢燃料或有机化工原料,能改善电池工作条件和长期稳定性及降低电池运行成本。
质子导体陶瓷膜电解池一般由阴极、质子导体电解质膜和阳极构成,其中电解池阳极作为水蒸气催化解离的唯一场所,是影响电解效率的最关键部分。现有的阳极材料一般采用La0.6Sr0.4MnO3-δ(LSM)、La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)、Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)等钙钛矿结构材料,这些材料存在以下致命缺陷:(1)在高温水蒸气电解工作条件下(存在外电场和氢气),化学稳定性差,阳极材料易分解使电解池性能快速衰减;(2)在中低温(400~600℃)条件下电催化性能差、电解效率低,所需工作温度一般要达到700~800℃,这一方面会降低阳极材料稳定性,另一方面对于陶瓷膜反应器,会导致合成碳氢燃料重新分解,影响合成产率;(3)与常用的BaCe0.8-x Zr x Y0.2O3基质子导体电解质材料的化学组成完全不同,在高温工作过程中,阳极材料与电解质膜之间容易产生相互扩散反应,导致阳极和电解质的化学组成改变和性能恶化;(4)LSCF、BSCF这些常用含钴阳极材料的热膨胀系数一般在质子导体电解质材料的2倍以上,导致电解池抗热震性差,阳极/电解质界面易开裂甚至阳极脱落,使电解池结构受到破坏。因此,为改善陶瓷膜电解池性能,亟需开发具有良好化学稳定性和高电催化活性并与电解质材料组成、性能匹配的阳极材料。
发明内容
本发明要解决的技术问题是提供一种具有良好化学稳定性和高电催化活性的高性能质子导体陶瓷膜反应器电解池阳极材料。
本发明的技术方案如下:一种高性能质子导体陶瓷膜反应器电解池阳极材料,其特征在于,所述阳极材料由铜和钇共掺杂的BaZr0.2Ce0.8O3-δ基材料和YBa3Cu2O7-δ晶相复合组成,所述阳极材料的化学组成式为:Ba1+z Zr0.2Ce0.8-x-y Cu x Y y O3-δ,其中x=0.1~0.5、y=0.1~0.25、z=0.02~0.1。
所述阳极材料的化学组成式为:Ba1+z Zr0.2Ce0.8-x-y Cu x Y y O3-δ,其中x=0.2~0.4、y=0.1~0.2、z=0.05~0.1。
所述阳极材料的化学组成式为:Ba1+z Zr0.2Ce0.8-x-y Cu x Y y O3-δ,其中x=0.3~0.4、y=0.1~0.15、z=0.05~0.08。
上述高性能质子导体陶瓷膜反应器电解池阳极材料的制备方法,其特征在于: 通过硝酸盐-柠檬酸络合法予以制备,具体步骤是:
步骤一:首先按照阳极材料的配方组成,将金属离子硝酸盐溶于适量去离子水中,再按总金属离子:柠檬酸=1:1.5的摩尔比加入柠檬酸,充分溶解并搅拌混合均匀后,滴加氨水调节溶液pH=6~8,然后将溶液置于加热板蒸干成深色凝胶直至自燃,得到阳极材料前驱物;
步骤二:将该前驱物在900~1000℃保温3 h煅烧,得到蓬松超细的阳极粉体材料。
与现有技术相比,本发明具有以下技术效果:
(1)在具有高的化学稳定性的铈锆酸钡基质子导体材料中引入少量Cu和Y共掺杂,获得质子/电子混合传导特性(仅钇掺杂的铈锆酸钡无明显电子电导)和提高材料低温电催化活性;
(2)高温反应中原位合成均匀分布、具有高电子电导率和高催化活性的第二相YBa3Cu2O7-δ晶相,提高三相界面面积;
(3)采用本发明采用的阳极材料组成配比,容易形成少量Ba缺位的掺杂铈锆酸钡基材料,可进一步提高阳极材料的催化活性;
(4)本发明提供的复合阳极化学组成与常用的质子导体电解质材料相近,有利于提高陶瓷膜反应器电解池的抗热震性,改善阳极/电解质膜的界面结合,从而提高电解池性能和延长使用寿命。
具体实施方式
下面将结合实施例对本发明作进一步的详细描述。
实施例一:陶瓷膜电解池反应器电解水制氢气
制备阴极支撑的圆片状陶瓷膜电解池,所用复合阳极材料组成可表示为Ba1.08Zr0.2Ce0.3Cu0.35Y0.15O3-δ,电解质膜材料为BaCe0.5Zr0.3Y0.2O3-δ,阴极支撑体材料为NiO-BaCe0.5Zr0.3Y0.2O3-δ (NiO与BaCe0.5Zr0.3Y0.2O3-δ的质量百分比为60:40)。
电解池制备过程:
(1)原料粉体合成
通过硝酸盐-柠檬酸络合法制备Ba1.08Zr0.2Ce0.3Cu0.35Y0.15O3-δ阳极材料粉体,首先按照配方组成,将金属离子硝酸盐溶于适量去离子水中,再按总金属离子:柠檬酸=1:1.5的摩尔比加入柠檬酸,充分溶解并搅拌混合均匀后,滴加氨水调节溶液pH=6,然后将溶液置于加热板蒸干成深色凝胶直至自燃,得到阳极材料前驱物。再将该前驱物在920℃保温3 h煅烧,得到蓬松超细的阳极粉体。采用同样的方法,制备电解质膜和阴极支撑体材料粉体。
(2)电解池制备
先采用共压/一次烧成工艺制备阴极支撑体/电解质膜(NiO-BaCe0.5Zr0.3Y0.2O3-δ/BaCe0.5Zr0.3Y0.2O3-δ)双层结构,共烧条件为1400℃保温10 h,阴极支撑体和电解质膜厚度分别为2 mm和20 μm;将2g阳极粉体与适量乙基纤维素和松油醇一起研磨混合均匀,得到粘稠的阳极浆料。通过丝网印刷法将该阳极浆料涂覆在上述双层结构的电解质膜表面,干燥后,再经过1050℃保温2h 热处理后得到结构为NiO-BaCe0.5Zr0.3Y0.2O3-δ(阴极)/BaCe0.5Zr0.3Y0.2O3-δ(电解质)/Ba1.08Zr0.2Ce0.3Cu0.35Y0.15O3-δ(阳极)的陶瓷膜电解池。
高温水蒸气电解制氢性能:
将电解池密封构建陶瓷膜反应器,工作温度为600℃、阳极侧水蒸气分压40%(Ar气为载气,流速100ml/min)、阴极侧扫气为Ar气(流速100ml/min),运行10h后,电解电压为1.5 V和2.0 V时,氢气产率分别可达到为7.3 ml/(cm2·min)和21.5 ml/(cm2·min)。
实施例二:微管陶瓷膜电解池反应器电解水制氢气
制备微管阴极支撑的陶瓷膜电解池构建膜反应器,所用复合阳极材料组成可表示为Ba1.05Zr0.2Ce0.35Cu0.3Y0.15O3-δ,电解质膜材料为BaCe0.5Zr0.3Y0.16Zn0.04O3-δ,阴极支撑体材料为NiO-BaCe0.5Zr0.3Y0.16Zn0.04O3-δ (NiO与BaCe0.5Zr0.3Y0.16O3-δ的质量百分比为60:40)。
电解池制备过程:
原料粉体的制备方法同实施例1,其中溶液pH=7、前驱物的煅烧温度为960℃。
通过纺丝成型制备微管阴极支撑体:将阴极材料混合粉体、聚醚砜(PES)、N-甲基毗咯烷酮(NMP)按60:8:32 的质量百分比取料。先把PES溶于NMP 中,形成均匀溶液,再外加1%的聚乙烯毗咯烷酮,搅拌均匀。然后加入NiO-BaCe0.5Zr0.3Y0.16Zn0.04O3-δ混合粉体,搅拌5h使之形成均匀的铸膜浆料。最后通过干/湿法纺丝成型和高温预烧结(1350℃保温3h)制备外径为1.5mm的多孔微管阴极支撑体(管壁厚度为0.25mm)。
电解质膜制备:先将适量BaCe0.5Zr0.3Y0.16Zn0.04O3-δ球磨分散于PVB的乙醇溶液制备固含量为10%(质量百分含量)的电解质浆料,再通过浸渍涂敷法在阴极支撑体上形成电解质层,最后经1450℃保温5h共烧后,在阴极支撑体上制备出厚度为20μm电解质膜。
阳极制备:采用与实施例1相同的方法,制备Ba1.05Zr0.2Ce0.35Cu0.3Y0.15O3-δ阳极浆料。然后通过涂刷法在电解质膜表面涂覆阳极层,干燥后,最后经1050℃保温2h 热处理后得到结构为NiO-BaCe0.5Zr0.3Y0.16Zn0.04O3-δ(阴极)/ BaCe0.5Zr0.3Y0.16Zn0.04O3-δ(电解质)/Ba1.05Zr0.2Ce0.35Cu0.3Y0.15O3-δ(阳极)的微管陶瓷膜电解池。
高温水蒸气电解制氢性能:
采用6根长度10cm的微管电解池组装密封构建陶瓷膜反应器,工作温度为600℃、阳极侧水蒸气分压40%(Ar气为载气,流速100ml/min)、阴极侧扫气为Ar气(流速100ml/min),运行10h后,电解电压为1.5 V 和2.0 V时,氢气产率分别可达到为9.5 ml/(cm2·min)和30.4ml/(cm2·min)。
实施例三:微管陶瓷膜电解池反应器合成甲醇燃料
陶瓷膜反应器电解池材料和制备方法同实施例2,其中溶液pH=7、前驱物的煅烧温度为1000℃。
高温水蒸气电解并与CO2耦合制备甲醇性能:
采用6根长度10cm的微管电解池组装密封构建陶瓷膜反应器,阳极侧水蒸气分压40%(Ar气为载气,流速100ml/min)、阴极侧通入CO2气体(流速40ml/min)、电解电压2.0 V,工作温度为600℃时,运行10h后,合成过程中CO2转化率为58.5%,甲醇产率为32.2%;工作温度为400℃时,合成过程中CO2转化率为31.7%,甲醇产率为40.3%。

Claims (4)

1.一种高性能质子导体陶瓷膜反应器电解池阳极材料,其特征在于,所述阳极材料由铜和钇共掺杂的BaZr0.2Ce0.8O3-δ基材料和YBa3Cu2O7-δ晶相复合组成,所述阳极材料的化学组成式为:Ba1+z Zr0.2Ce0.8-x-y Cu x Y y O3-δ,其中x=0.1~0.5、y=0.1~0.25、z=0.02~0.1。
2.根据权利要求1所述的高性能质子导体陶瓷膜反应器电解池阳极材料,其特征在于,所述阳极材料的化学组成式为:Ba1+z Zr0.2Ce0.8-x-y Cu x Y y O3-δ,其中x=0.2~0.4、y=0.1~0.2、z=0.05~0.1。
3.根据权利要求1所述的高性能质子导体陶瓷膜反应器电解池阳极材料,其特征在于,所述阳极材料的化学组成式为:Ba1+z Zr0.2Ce0.8-x-y Cu x Y y O3-δ,其中x=0.3~0.4、y=0.1~0.15、z=0.05~0.08。
4.根据权利要求1~3任一所述的高性能质子导体陶瓷膜反应器电解池阳极材料的制备方法,其特征在于: 通过硝酸盐-柠檬酸络合法予以制备,具体步骤是:
步骤一:首先按照阳极材料的配方组成,将金属离子硝酸盐溶于适量去离子水中,再按总金属离子:柠檬酸=1:1.5的摩尔比加入柠檬酸,充分溶解并搅拌混合均匀后,滴加氨水调节溶液pH=6~8然后将溶液置于加热板蒸干成深色凝胶直至自燃,得到阳极材料前驱物;
步骤二:将该前驱物在900~1000℃保温3 h煅烧,得到蓬松超细的阳极粉体材料。
CN201811609224.7A 2018-12-27 2018-12-27 一种高性能质子导体陶瓷膜反应器电解池阳极材料 Active CN109652823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811609224.7A CN109652823B (zh) 2018-12-27 2018-12-27 一种高性能质子导体陶瓷膜反应器电解池阳极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811609224.7A CN109652823B (zh) 2018-12-27 2018-12-27 一种高性能质子导体陶瓷膜反应器电解池阳极材料

Publications (2)

Publication Number Publication Date
CN109652823A true CN109652823A (zh) 2019-04-19
CN109652823B CN109652823B (zh) 2020-10-16

Family

ID=66117082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811609224.7A Active CN109652823B (zh) 2018-12-27 2018-12-27 一种高性能质子导体陶瓷膜反应器电解池阳极材料

Country Status (1)

Country Link
CN (1) CN109652823B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760671A (zh) * 2020-12-22 2021-05-07 广东工业大学 一种基于混合离子导体膜反应器的甲醇合成方法及其应用
CN113012842A (zh) * 2019-12-20 2021-06-22 中国科学院福建物质结构研究所 同位素14c的固化方法
CN113549934A (zh) * 2020-04-03 2021-10-26 中国科学院福建物质结构研究所 一种电化学氧化石墨制一氧化碳的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338555A4 (en) * 2000-10-17 2004-12-08 Sharp Kk OXIDE MATERIAL, METHOD FOR PRODUCING OXIDE THIN FILM AND ELEMENT USING THIS MATERIAL
CN1635658A (zh) * 2004-11-09 2005-07-06 施秀英 中、低温陶瓷氧化物燃料电池及制备工艺方法
CN105845945A (zh) * 2016-04-15 2016-08-10 暨南大学 一种中低温质子导体固体氧化物电池用复合电极及制备
CN106505211A (zh) * 2016-11-18 2017-03-15 安徽工业大学 一种降低CeO2基固体氧化物燃料电池电子电导的阳极材料及其制备方法
CN107250085A (zh) * 2015-02-27 2017-10-13 住友电气工业株式会社 陶瓷材料的制造方法、电容器、固体氧化物型燃料电池、水电解装置和氢泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338555A4 (en) * 2000-10-17 2004-12-08 Sharp Kk OXIDE MATERIAL, METHOD FOR PRODUCING OXIDE THIN FILM AND ELEMENT USING THIS MATERIAL
CN1635658A (zh) * 2004-11-09 2005-07-06 施秀英 中、低温陶瓷氧化物燃料电池及制备工艺方法
CN107250085A (zh) * 2015-02-27 2017-10-13 住友电气工业株式会社 陶瓷材料的制造方法、电容器、固体氧化物型燃料电池、水电解装置和氢泵
CN105845945A (zh) * 2016-04-15 2016-08-10 暨南大学 一种中低温质子导体固体氧化物电池用复合电极及制备
CN106505211A (zh) * 2016-11-18 2017-03-15 安徽工业大学 一种降低CeO2基固体氧化物燃料电池电子电导的阳极材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113012842A (zh) * 2019-12-20 2021-06-22 中国科学院福建物质结构研究所 同位素14c的固化方法
CN113012842B (zh) * 2019-12-20 2022-08-12 中国科学院福建物质结构研究所 同位素14c的固化方法
CN113549934A (zh) * 2020-04-03 2021-10-26 中国科学院福建物质结构研究所 一种电化学氧化石墨制一氧化碳的方法
CN112760671A (zh) * 2020-12-22 2021-05-07 广东工业大学 一种基于混合离子导体膜反应器的甲醇合成方法及其应用
CN112760671B (zh) * 2020-12-22 2022-08-09 广东工业大学 一种基于混合离子导体膜反应器的甲醇合成方法及其应用

Also Published As

Publication number Publication date
CN109652823B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
CN105107536B (zh) 一种多面体形磷化钴电解水制氢催化剂的制备方法
CN108579751B (zh) 一种层状钙钛矿氧化物、制备方法及其在析氧反应电催化中的用途
CN109921079B (zh) 一种复合型固体氧化物燃料电池及其制备方法
CN1323459C (zh) 燃料电池的结构和制备方法
CN100399611C (zh) 固体氧化物燃料电池阴极负载型半电池的制备方法
CN103296286B (zh) 新型co2和h2o高温共电解的超晶格复合氧电极及其制备方法
CN111430734B (zh) (Pr0.5Sr0.5)xFe1-yRuyO3-δ钙钛矿材料及其制备方法与应用
CN109652823A (zh) 一种高性能质子导体陶瓷膜反应器电解池阳极材料
CN102651480A (zh) 一种阳极支撑的固体氧化物燃料电池、电池堆及其制备方法
CN100448088C (zh) 一种自支撑型固体氧化物燃料电池的制备方法
CN113839054B (zh) 一种可逆质子陶瓷电池电极材料及其制备方法和用途
Shao et al. Stable SrCo0. 7Fe0. 2Zr0. 1O3-δ cathode material for proton conducting solid oxide fuel cell reactors
CN109860626A (zh) 负载铁镍合金纳米粒子的rp结构的氧化物及其制备与应用
CN107195938A (zh) 一种简单的固体氧化物燃料电池制备方法
CN108565469B (zh) 一种钴-氮掺杂碳复合材料及其制备方法
CN101307461B (zh) 固体氧化物电解池ysz-lsm氧电极粉体的制备方法
Hu et al. Visiting the roles of Sr‐or Ca‐doping on the oxygen reduction reaction activity and stability of a perovskite cathode for proton conducting solid oxide fuel cells
Liu et al. Hierarchical molybdenum-doped NiCoP@ carbon microspheres: a highly-efficient electrocatalyst for the hydrogen evolution reaction
CN109468661A (zh) 一种固体氧化物电解池用复合氧电极及其制备方法
KR101534607B1 (ko) 고체 산화물 재생 연료전지용 다공성 공기극 복합체, 이의 제조방법 및 이를 포함하는 고체 산화물 재생 연료전지
CN104577142A (zh) 一种固体氧化物燃料电池梯度结构阴极膜的制备方法
CN112663079B (zh) 一种管状固体氧化物电解池及其制备方法与应用
CN113764710B (zh) 一种cgo/dwsb双电解质层的固体氧化物电解池
CN114806659B (zh) 煤制甲烷电化学合成器及方法
CN106835191B (zh) 一种低温质子导体固体氧化物电解池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant