CN109635431B - 基于历史数据斜坡响应的动态系统静态增益估计方法 - Google Patents

基于历史数据斜坡响应的动态系统静态增益估计方法 Download PDF

Info

Publication number
CN109635431B
CN109635431B CN201811517302.0A CN201811517302A CN109635431B CN 109635431 B CN109635431 B CN 109635431B CN 201811517302 A CN201811517302 A CN 201811517302A CN 109635431 B CN109635431 B CN 109635431B
Authority
CN
China
Prior art keywords
data segment
data
input
dynamical system
static gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811517302.0A
Other languages
English (en)
Other versions
CN109635431A (zh
Inventor
王建东
周东华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201811517302.0A priority Critical patent/CN109635431B/zh
Publication of CN109635431A publication Critical patent/CN109635431A/zh
Priority to CA3109182A priority patent/CA3109182C/en
Priority to PCT/CN2019/085188 priority patent/WO2020119012A1/zh
Application granted granted Critical
Publication of CN109635431B publication Critical patent/CN109635431B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及基于历史数据斜坡响应的动态系统静态增益估计方法。该方法首先要完成对历史数据的分析,采用分段线性表示方法将输入和输出的时间序列分割成短数据段。其次,找出输入和输出同时呈直线且处于振幅变化较大的斜坡响应,较大幅度变化的阈值是根据振幅变化与确定系数之间的关系确定的。最后通过求解斜坡响应幅值变化较大的多个线性方程,得到估计的静态增益。本发明可以通过可视化验证该方法的有效性,克服了使用系统识别方法难以验证静态增益估计的问题。从而避免了估计的静态增益和实际增益之间偏差无法判断的情况。

Description

基于历史数据斜坡响应的动态系统静态增益估计方法
技术领域
本公开涉及工业大数据分析技术领域,特别是涉及基于历史数据斜坡响应的动态系统静态增益估计方法。
背景技术
本部分的陈述仅仅是提高了与本公开相关的背景技术,并不必然构成现有技术。
静态增益是动态系统的重要信息,动态系统的静态增益通常用于设计反馈控制器、监测过程变化和优化运行性能,静态增益可在动态系统设计阶段获得,而设计阶段和实际操作的条件不同,因此,动态系统的静态增益在实践中往往是不可用的,必须从观察到的数据样本中估计。一种常用的方法就是从输入和输出的稳态值或某些特殊类型的测试中估计动态系统的静态增益。
现有方法存在两个局限性。首先,稳态条件下的数据样本很难获得,对于某些动态系统,不允许做特殊类型的测试。因此,从日常操作收集的数据样本来估计静态增益是可取的。第二,系统辨识技术是基于一个假设条件,假设模型集足够丰富,足以包含真实模型;而且,这种假设在实践中无法证实,也无法找到估计的静态增益和实际增益之间的偏差。
发明内容
为了解决现有技术的不足,本公开提供了基于历史数据斜坡响应的动态系统静态增益估计方法,从隐藏在工业大数据中的相关信息估计动态系统的静态增益。此方法不依赖数据分析,而且也避免了估计的静态增益和实际增益之间偏差无法判断的情况。在模型估计方面有很好的应用价值,可以克服系统辨识的不确定性。
第一方面,本公开提供了基于历史数据斜坡响应的动态系统静态增益估计方法;
基于历史数据斜坡响应的动态系统静态增益估计方法,包括:
采用分段线性表示方法将动态系统的输出时间序列分割成若干个输出时间段;同时,将动态系统的输入时间序列分割成若干个输入数据段;每个数据段均用一条直线表示;
找出输入值和输出值同时均处于各自的直线数据段上且输入值和输出值的振幅变化均超过设定阈值的数据段,此数据段即为目标斜坡响应,将找出的所有输入数据段和所有输出数据段组成具有显著振幅变化的数据段集合;
通过具有显著振幅变化的数据段集合,估计静态增益。
作为一种可能的实现方式,所述将动态系统的输出时间序列分割成若干个输出时间段的具体步骤为:
将时间序列分离为M个数据段对于第m个数据段nm表示第m段中第一个数据样本,m∈[1,M],nm+1-nm-1为第m段数据段中的样本总数;
用线性回归模型来描述:
y(n)=am+bmn+e(n);
其中,am表示第m段数据段的初始值,bm表示第m段数据段的斜率,e(n)是干扰;
假设e(n)是具有零均值和方差为的白噪声;得到拟合线性方程:
其中,分别是y(n)、am和bm的估计值,用M表示数据段个数;
M的估计值
其中,L(M)为拟合误差损失函数:
作为一种可能的实现方式,将动态系统的输入时间序列分割成若干个输入数据段:
采用分段线性表示方法将输入的时间序列分割为M个数据段 时间序列的分段个数M,M的估计值:
作为一种可能的实现方式,找出输入值和输出值同时均处于各自的直线数据段上且输入值和输出值的振幅变化均超过设定阈值的数据段,此数据段即为目标斜坡响应,将找出的所有输入数据段和所有输出数据段组成具有显著振幅变化的数据段集合的具体步骤为:
对于输出来说,计算第m段的振幅变化量:
引入序列:
其中,Ay,0为y显著幅度变化的阈值;
对于输入来说,计算每个数据段的振幅变化值同样引入序列:
其中,为ui显著幅度变化的阈值;
整体序列:
保留整体序列I0(n)=1的数据段,当I0(n)=1时,表示输入输出同时处于幅度变化超过设定阈值且同时处于直线数据段上,将有显著振幅变化的数据段组成一个集合
作为一种可能的实现方式,通过具有显著振幅变化的数据段集合,估计静态增益的具体步骤为:
步骤3.1:通过最小二乘法估计的静态增益K1,K2,……KI
K是由K1,K2,……KI组成的I维向量,K的估计是由最小二乘法得到的:
从K的高斯分布,估计K的置信区间;
步骤3.2:找出中Ay,l与其估计值偏差最大的数据段第l0段,如果该段幅值变化满足不等式:
则将中移除,其中δy是用户选择的参数,表示最大偏差的可接受水平。
步骤3.3:重复步骤3.1和3.2,直到找不到幅值偏差大于δy的数据段;此时,估计的静态增益矢量表示为其中S1是当前步骤结束时得到幅度显著变化的集合,即
步骤3.4:剩余的具有显著变化幅值的数据段集合为:
重复步骤3.1到步骤3.3,直到剩余集合中数据段数目小于I,最后,获得静态增益
与现有技术相比,本公开的有益效果是:通过可视化验证该方法的有效性,克服了使用系统识别方法难以验证静态增益估计的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明的基于工业大数中斜坡响应的动态系统静态增益估计流程图;
图2(a)-图2(d)为本发明具体实施示例中的采样数据样本图;
图3(a)-图3(f)为本发明具体实施示例中的计算数据图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
专业术语解释:
所述动态系统,是指状态随时间而变化的系统。所述静态增益,是指从一个稳态到新的稳态,系统的单位变化程度。
所述斜坡响应,是指一个输入量的变化斜率从零跃增到某有限值引起的时间响应。
所述输出时间序列,是指输出数值按其发生的时间先后顺序排列而成的数列。
所述输入时间序列,是指输入变量值按其发生的时间先后顺序排列而成的数列。
如图1所示,基于历史数据斜坡响应的动态系统静态增益估计方法,包括:
步骤1:将输出y和输入ui的时间序列分割成短数据段,每个数据段用一条直线表示。我们采用分段线性表示方法描述输出y的分段。
将时间序列分离为M个短数据段对于第m个数据段nm表示第m段中第一个数据样本,m∈[1,M],nm+1-nm-1为第m段数据段中的样本总数;
用线性回归模型来描述:
y(n)=am+bmn+e(n),
其中,am表示第m段数据段的初始值,bm表示第m段数据段的斜率,e(n)是干扰;
假设e是具有零均值和方差为的白噪声;得到拟合线性方程:
其中,分别是y(n)、am和bm的估计值,用M表示数据段个数;
M的估计值
其中,L(M)为拟合误差损失函数:
步骤2:从数据段中找出输入和输出同时处于直线上且振幅变化较大的斜坡响应。
对于第m个数据段这段数据的振幅变化量:
引入指示序列:
其中,Ay,0为y显著幅度变化的阈值。
构造一个确定系数Dm,当Dm的值越接近1,说明拟合度越高。Dm与Ay,m可用一种关系近似表示若给定Dm的下界D0=0.8,可得到Ay,0的值。
同理,计算输入的振幅变化量和指示序列得到ui显著幅度变化的阈值那么整体序列为:
保留整体序列I0(n)=1的数据段,当I0(n)=1时,表示输入输出同时处于幅度变化较大且为直线的数据段上,所有这些显著的振幅变化的数据段组成一个集合
步骤3:由输入和输出有显著振幅变化的斜坡响应估计静态增益。
步骤3.1:通过求解多个线性方程组,估计的静态增益K1,K2,……KI。K是由K1,K2,……KI组成的I维向量,K的估计是由最小二乘法得到的:
从K的高斯分布,可以估计K的置信区间。
步骤3.2:找出振幅变化中Ay,l与其估计值之间偏差最大的数据段l0,如果该段幅值变化满足不等式:
则将中移除,其中δy是用户选择的参数,表示之间最大差的可接受水平。
步骤3.3:重复步骤3.1和3.2,直到找不到振幅变化偏差大于δy的数据段。估计的静态增益矢量表示为其中S1是本步骤结束时得到幅度显著变化的集合,即
步骤3.4:此时,剩余的具有显著变化幅值的数据集合为:
重复步骤3.1-3.3,直到剩余显著幅度变化的数据段数目小于I。最后,获得多组静态增益估计
以下是本发明所述方法在具体示例中的应用。
以某大型300MW燃煤发电机组为例,在采样周期h=1s的情况下,采集了机组中产生的有功功率(y)、主蒸汽流量的控制器输出(u1)和主蒸汽压力(u2)的数据样本。估计u1和y的静态增益G1及u2和y的静态增益G2
第一步,在2018年5月31日,采用分段线性表示方法对一个小时的数据样本进行分段。图2(a)和图2(b)为的时序图,计算出表示将一小时数据样本分为3段。类似地,可以得到了的分段结果,如图2(c)和图2(d)所示。
第二步,找到y、u1和u2的数据段同时处于振幅变化很大的直线上的斜坡响应。利用5月1日10小时数据样本-,计算振幅变化Ay,m和确定系数Dm,以及白噪声e的方差估计
已知和D0=0.8,计算出y的显著振幅变化阈值为Ay,0=2.9675。相应的可以计算出u1和u2的阈值分别为
表1为输出y和输入u1、u2的数据段振幅变化量。对于图2(a)中y的三个数据段,其振幅的变化都大于Ay,0;对于图2(c)中的u1,前三个振幅变化大于对于图2(d)中的u2,五个振幅变化中只有两个值大于根据总指示序列I(n),得到三段输入和输出同时有显著振幅变化的数据段:[1,658],[1136,1677]和[1678,2305]。得到
第三步,从集合中估计静态增益组,如图3(a)、图3(b)和图3(c)所示,选择Ay,l之间最大偏差的可接受水平表2给出了三组静态增益估计及其置信区间。如图3(d)、图3(e)和图3(f)所示Ay,l之间偏差都小于δy。说明此方法估计静态增益的有效性。
表1本发明具体实施示例中样本数据信息表
表2本发明具体实施示例中静态增益计算结果和置信区间表
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (4)

1.基于历史数据斜坡响应的动态系统静态增益估计方法,其特征是,包括:
采用分段线性表示方法将动态系统的输出时间序列分割成若干个输出时间段;同时,将动态系统的输入时间序列分割成若干个输入数据段;每个数据段均用一条直线表示;
所述动态系统的输出时间序列为燃煤发电机组产生的有功功率,所述动态系统的输入时间序列为主蒸汽流量的控制器输出值和主蒸汽压力值;找出输入值和输出值同时均处于各自的直线数据段上且输入值和输出值的振幅变化均超过设定阈值的数据段,此数据段即为目标斜坡响应,将找出的所有输入数据段和所有输出数据段组成具有显著振幅变化的数据段集合;
通过具有显著振幅变化的数据段集合,估计静态增益;
通过动态系统的静态增益来设计反馈控制器;
所述通过具有显著振幅变化的数据段集合,估计静态增益的具体步骤为:
步骤3.1:通过最小二乘法估计的静态增益K1,K2,……KI
K是由K1,K2,……KI组成的I维向量,K的估计是由最小二乘法得到的:
从K的高斯分布,估计K的置信区间;
步骤3.2:找出中Ay,l与其估计值偏差最大的数据段第l0段,如果该段幅值变化满足不等式:
则将中移除,其中δy是用户选择的参数,表示最大偏差的可接受水平;
步骤3.3:重复步骤3.1和3.2,直到找不到幅值偏差大于δy的数据段;此时,估计的静态增益矢量表示为其中S1是当前步骤结束时得到幅度显著变化的集合,即
步骤3.4:剩余的具有显著变化幅值的数据段集合为:
重复步骤3.1到步骤3.3,直到剩余集合中数据段数目小于I,最后,获得静态增益
2.如权利要求1所述的方法,其特征是,所述将动态系统的输出时间序列分割成若干个输出时间段的具体步骤为:
将时间序列分离为M个数据段对于第m个数据段nm表示第m段中第一个数据样本,m∈[1,M],nm+1-nm-1为第m段数据段中的样本总数;
用线性回归模型来描述:
y(n)=am+bmn+e(n);
其中,am表示第m段数据段的初始值,bm表示第m段数据段的斜率,e(n)是干扰;
假设e(n)是具有零均值和方差为的白噪声;得到拟合线性方程:
其中,分别是y(n)、am和bm的估计值,用M表示数据段个数;
M的估计值
其中,L(M)为拟合误差损失函数:
3.如权利要求1所述的方法,其特征是,将动态系统的输入时间序列分割成若干个输入数据段:
采用分段线性表示方法将输入的时间序列分割为M个数据段 时间序列的分段个数M,M的估计值:
4.如权利要求1所述的方法,其特征是,找出输入值和输出值同时均处于各自的直线数据段上且输入值和输出值的振幅变化均超过设定阈值的数据段,此数据段即为目标斜坡响应,将找出的所有输入数据段和所有输出数据段组成具有显著振幅变化的数据段集合的具体步骤为:
对于输出来说,计算第m段的振幅变化量:
引入序列:
其中,Ay,0为y显著幅度变化的阈值;
对于输入来说,计算每个数据段的振幅变化值同样引入序列:
其中,为ui显著幅度变化的阈值;
整体序列:
保留整体序列I0(n)=1的数据段,当I0(n)=1时,表示输入输出同时处于幅度变化超过设定阈值且同时处于直线数据段上,将有显著振幅变化的数据段组成一个集合
CN201811517302.0A 2018-12-12 2018-12-12 基于历史数据斜坡响应的动态系统静态增益估计方法 Active CN109635431B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811517302.0A CN109635431B (zh) 2018-12-12 2018-12-12 基于历史数据斜坡响应的动态系统静态增益估计方法
CA3109182A CA3109182C (en) 2018-12-12 2019-04-30 Static gain estimation method for dynamic system based on historical data ramp responses
PCT/CN2019/085188 WO2020119012A1 (zh) 2018-12-12 2019-04-30 基于历史数据斜坡响应的动态系统静态增益估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811517302.0A CN109635431B (zh) 2018-12-12 2018-12-12 基于历史数据斜坡响应的动态系统静态增益估计方法

Publications (2)

Publication Number Publication Date
CN109635431A CN109635431A (zh) 2019-04-16
CN109635431B true CN109635431B (zh) 2019-10-29

Family

ID=66073027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811517302.0A Active CN109635431B (zh) 2018-12-12 2018-12-12 基于历史数据斜坡响应的动态系统静态增益估计方法

Country Status (3)

Country Link
CN (1) CN109635431B (zh)
CA (1) CA3109182C (zh)
WO (1) WO2020119012A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109635431B (zh) * 2018-12-12 2019-10-29 山东科技大学 基于历史数据斜坡响应的动态系统静态增益估计方法
CN110350604B (zh) * 2019-07-18 2020-12-01 国网山东省电力公司电力科学研究院 基于静态特性的火电机组一次调频指标估计方法
CN112749496B (zh) * 2020-11-25 2022-09-27 中国人民解放军国防科技大学 基于时序作战环的装备体系作战效能评估方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684115B1 (en) * 2000-04-11 2004-01-27 George Shu-Xing Cheng Model-free adaptive control of quality variables
JP4422179B2 (ja) * 2007-10-19 2010-02-24 株式会社半導体理工学研究センター 半導体集積回路のタイミング解析装置及び方法
GB0721909D0 (en) * 2007-11-08 2007-12-19 Cnh Belgium Nv Apparatus and method for controlling the speed of a combine harvester
CN101877025A (zh) * 2010-07-02 2010-11-03 天津大学 复杂非线性静态特性描述的分布式电源模型简化方法
CN102012017B (zh) * 2010-11-19 2012-09-05 华北电力大学(保定) 一种锅炉汽温自动控制系统中前馈信号控制方法
CN102779216B (zh) * 2012-07-30 2014-09-17 杭州电子科技大学 基于有限元模型的电磁感应加热过程系统辨识方法
CN102778844B (zh) * 2012-07-30 2014-08-13 杭州电子科技大学 基于有限元模型和系统辨识的感应加热闭环仿真方法
US9249751B2 (en) * 2013-05-23 2016-02-02 Ford Global Technologies, Llc Exhaust gas sensor controls adaptation for asymmetric degradation responses
CN103744286A (zh) * 2013-12-31 2014-04-23 广东电网公司电力科学研究院 一种火力发电系统的控制器的设计方法和装置
US10100679B2 (en) * 2015-08-28 2018-10-16 General Electric Company Control system for managing steam turbine rotor stress and method of use
CN105275508B (zh) * 2015-11-06 2017-01-18 国网河南省电力公司电力科学研究院 一种基于功率值计算的汽轮机流量曲线辨识及优化方法
CN108205311B (zh) * 2018-01-14 2020-12-18 山东科技大学 一类事件触发传输时变系统基于未知输入观测器技术的故障估计方法
CN108549346B (zh) * 2018-05-14 2019-04-02 山东科技大学 一种适于系统辨识的历史数据段自动查找方法
CN109635431B (zh) * 2018-12-12 2019-10-29 山东科技大学 基于历史数据斜坡响应的动态系统静态增益估计方法

Also Published As

Publication number Publication date
CA3109182C (en) 2023-08-01
CN109635431A (zh) 2019-04-16
CA3109182A1 (en) 2020-06-18
WO2020119012A1 (zh) 2020-06-18

Similar Documents

Publication Publication Date Title
CN109635431B (zh) 基于历史数据斜坡响应的动态系统静态增益估计方法
Sun et al. Optimal full-order and reduced-order estimators for discrete-time systems with multiple packet dropouts
US11216741B2 (en) Analysis apparatus, analysis method, and non-transitory computer readable medium
JP6141235B2 (ja) 時系列データにおける異常を検出する方法
Chen et al. An improved Hurst parameter estimator based on fractional Fourier transform
Su et al. Model-based fault diagnosis system verification using reachability analysis
Zhao et al. Efficient algorithms for analysis and improvement of flexible manufacturing systems
Asgari et al. A new link function in GLM-based control charts to improve monitoring of two-stage processes with Poisson response
CN101924533A (zh) 基于fir模型辨识的多变量时滞参数估计方法
JP6758155B2 (ja) プラントの診断システム及び診断方法
CN109753634B (zh) 基于历史数据稳态值的动态系统增益估计方法
JP5048748B2 (ja) 試験テーブル生成装置及び試験テーブル生成方法
Tepljakov et al. Design of retuning fractional PID controllers for a closed-loop magnetic levitation control system
ATE396442T1 (de) Steuerung eines mehrfach-variablen prozesses
Castellano et al. On the numerical study of percolation and epidemic critical properties in networks
Park et al. Economic cost models of integrated APC controlled SPC charts
Isaza et al. State estimation using non-uniform and delayed information: A review
CN106569406B (zh) 基于尺度变换的有刷直流电机模型参数快速辨识方法
US20180356801A1 (en) Method and system for optimizing the operation of at least one of a plurality of field devices from automation technology
Wang et al. An adaptive T 2 chart for monitoring dynamic systems
Li et al. Building occupancy estimation with robust Kalman filter
CN112948755A (zh) 一种遥测正弦参数判读方法
Jiménez et al. Energy performance assessment of buildings and building components. Guidelines for data analysis from dynamic experimental campaigns part 1: physical aspects
CN102831105A (zh) 一种用excel和minitab15软件编制*-r控制图用系数表的方法
McDowell From the help desk: Transfer functions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant