CN109603517A - 一种火电厂scr脱硝催化剂寿命预测及更换策略优化方法 - Google Patents

一种火电厂scr脱硝催化剂寿命预测及更换策略优化方法 Download PDF

Info

Publication number
CN109603517A
CN109603517A CN201811344030.9A CN201811344030A CN109603517A CN 109603517 A CN109603517 A CN 109603517A CN 201811344030 A CN201811344030 A CN 201811344030A CN 109603517 A CN109603517 A CN 109603517A
Authority
CN
China
Prior art keywords
catalyst
layer
reactor
equation
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811344030.9A
Other languages
English (en)
Inventor
雷鉴琦
吴春华
陈城
孙英浩
张德强
周洋
王文双
李曈
吕秀川
闫俊刚
严冰清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matou Co Generation Branch Of Datang Hebei Power Generation Co ltd
Datang Northeast Electric Power Test and Research Institute Co Ltd
Original Assignee
Matou Co Generation Branch Of Datang Hebei Power Generation Co ltd
Datang Northeast Electric Power Test and Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matou Co Generation Branch Of Datang Hebei Power Generation Co ltd, Datang Northeast Electric Power Test and Research Institute Co Ltd filed Critical Matou Co Generation Branch Of Datang Hebei Power Generation Co ltd
Priority to CN201811344030.9A priority Critical patent/CN109603517A/zh
Publication of CN109603517A publication Critical patent/CN109603517A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明涉及一种火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,包括:将各层催化剂失活方程、脱硝效率方程、反应器脱硝效率方程及第2、3层催化剂入口氨氮比方程建立成数学模型,根据所述数学模型对催化剂寿命进行预测。本发明采用数学建模能够更好的对催化剂寿命进行预测,并改变了传统的始终更换活性最低层催化剂的思路,延长了反应器整体催化剂寿命。

Description

一种火电厂SCR脱硝催化剂寿命预测及更换策略优化方法
技术领域
本发明属于火电厂大气污染控制技术领域,尤其涉及一种火电厂SCR脱硝催化剂寿命预测及更换策略优化方法。
背景技术
选择性催化还原脱硝技术是目前脱除烟气中氮氧化物最有效、应用最广泛的技术。催化剂是火电厂SCR脱硝系统的核心,其在运行过程中会缓慢失活,及时更换失活催化剂或者加装新催化剂是保证SCR脱硝系统高效经济运行的关键。为了简化催化剂寿命管理计算过程,大部分研究均将反应器入口氨氮摩尔比等于1作为假设条件进行模拟计算,此方法虽简单易行,但与电厂实际运行状态不符,会对催化剂的更换或加装时间设计造成较大的误差。另外,由于对反应器失效时间的评判标准不同,计算得到的催化剂更换时间也有所区别。
发明内容
本发明的目的是提供一种火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,以火电厂实际运行情况为基础,将反应器出口氨逃逸量作为更换或加装催化剂的标准,以真实工况(氨氮摩尔比小于1)为建模条件,并且考虑了反应器间氨氮摩尔比变化的情况,建立了催化剂寿命管理模型,用于得到准确的SCR脱硝催化剂加装、更换时间及策略。
本发明提供了一种火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,包括:将各层催化剂失活方程、脱硝效率方程、反应器脱硝效率方程及第2、3层催化剂入口氨氮比方程建立成数学模型,根据该数学模型对催化剂寿命进行预测。
进一步地,该方法包括如下步骤:
步骤1,利用催化剂活性中试装置并以实际电厂的烟气参数作为测试条件,对SCR反应器内各层催化剂活性进行检测;
步骤2,确定边界条件;所述边界条件包括各层催化剂的出厂活性、SCR反应器出口氨逃逸率、反应器入口氨氮比及SCR脱硝催化剂活性检测过程中所采集的各层催化剂的失活速率、面速度;
步骤3,对第1、2、3层催化剂失活方程、脱硝效率方程,反应器脱硝效率方程,第2、3层催化剂入口氨氮比方程进行数学建模,构建成存在唯一解的非线性方程组,所述建立的非线性方程组中存在第1、2、3层催化剂剩余活性、脱硝效率,催化剂的运行时间,第2、3层催化剂入口氨氮比共9个未知变量;
步骤4,基于迭代法对步骤3中非线性方程组进行求解,得到反应器出口氨逃逸达到3ppm时催化剂的运行时间、各层催化剂的剩余活性、脱硝效率;
步骤5,将步骤3所建数学模型应用于可能的催化剂层加装、更换、换位方案中,对所有可能方案进行步骤4计算,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案;
步骤6,根据步骤5的计算结果,绘制催化剂寿命管理曲线。
进一步地,步骤1包括:
以氨氮摩尔比小于1的真实工况为建模条件,并综合考虑反应器入口氨氮摩尔比以及反应器内部各层催化剂入口氨氮摩尔比变化。
进一步地,步骤3中数学建模过程包括:
利用中试装置并以实际电厂的烟气参数作为测试条件对催化剂进行测量,活性计算式为:
式中:k为催化剂的活性,m/h;MR为氨氮摩尔比;η为脱硝效率;Av为催化剂的面速度,m/h;
将上式变形后,得到每层催化剂脱硝效率和催化剂活性的关系为:
根据催化剂的整体失活特性,其失活方程具有指数型特征,方程描述为:
上式微分方程的特定解为:
k=k0exp(-Qt);
式中,K0为初始活性,m/h;Q为失活速率,m/h;t为催化剂的服役时间,h;
装有3层催化剂的SCR反应器,各层催化剂失活方程如下:
k1=k0exp(-Q1t) (4)
k2=k0exp(-Q2t) (5)
k3=k0exp(-Q3t) (6)
SCR脱硝催化剂反应器出口的NOx浓度计算为:
式中:为反应器入口NOx浓度,mg/m3为反应器出口NOx浓度,mg/m3
将上式带入到反应器脱硝效率计算公式:
可得:
第2、3层催化剂的氨氮摩尔比MR,2、MR,3的值利用上一层催化剂的脱硝效率和氨氮摩尔比表示,计算公式为:
由方程(1)~(9)构成非线性方程组,基于迭代法对该模型进行求解,得到反应器出口氨逃逸达到3ppm时催化剂的运行时间、各层催化剂的剩余活性、脱硝效率。
进一步地,步骤5中催化剂层加装、更换、换位策略优化最优方案包括:
反应器内催化剂层自上向下定义为A、B、C,更换催化剂位置时字母不变而字母顺序相应改变,更换催化剂时则在字母后添加“’”表示;
反应器内初装两层催化剂,即为AB方案,当2层催化剂由于失活不能满足电厂脱硝要求时,采用进一步加装第3层催化剂的方法提高反应器脱硝效率,当不允许催化剂到层换位时仅有1种ABC方案;当允许催化剂到层换位时,则有CAB、ACB、BCA、BAC、CBA方案,对6种方案进行步骤4计算,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案。
进一步地,步骤5中催化剂层加装、更换、换位策略优化最优方案还包括;
当备用层催化剂投入使用后再次不满足脱硝要求时,更换其中某一层催化剂,以后继续更换不同的催化剂层以确保脱硝性能;
该过程中存在着多种可能的催化剂管理方案,包括AB→ABC→A’BC;
基于催化剂更换时,不会更换最新一层的催化剂,当不允许催化剂到层换位时仅有2种方案,即AB→ABC→A’BC、AB→ABC→AB’C;当允许催化剂到层换位时有10种方案,即AB→CAB→CA’B、AB→CAB→CAB’、AB→ACB→A’CB、AB→ACB→ACB’、AB→BCA→BCA’、AB→BCA→B’CA、AB→BAC→B’AC、AB→BAC→BA’C、AB→CBA→CB’A、AB→CBA→CBA’;
对12种方案进行步骤4计算,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案。
借由上述方案,通过火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,采用数学建模能够更好的对催化剂寿命进行预测,并改变了传统的始终更换活性最低层催化剂的思路,延长了反应器整体催化剂寿命。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明脱硝结构示意图;
图2为本发明方案1、方案2催化剂寿命与脱硝效率、氨逃逸率之间关系曲线图一;
图3为本发明方案1、方案2催化剂寿命与脱硝效率、氨逃逸率之间关系曲线图二。
图中标号:
1-锅炉省煤器出口;
2-第一弯折烟道;21-第一导流板;
3-竖直烟道;31-喷氨格栅;32-圆盘型气固两相均流装置;
4-第二弯折烟道;41-导流板;
5-反应器;51-第一层催化剂;52-第二层催化剂;53-第三层催化剂;
6-第三弯折烟道。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例提供了一种火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,包括:将各层催化剂失活方程、脱硝效率方程、反应器脱硝效率方程及第2、3层催化剂入口氨氮比方程建立成数学模型,根据所述数学模型对催化剂寿命进行预测。
该方法具体包括如下步骤:
步骤1,利用催化剂活性中试装置并以实际电厂的烟气参数作为测试条件,对SCR反应器内各层催化剂活性进行检测;
步骤2,确定边界条件;所述边界条件包括各层催化剂的出厂活性、SCR反应器出口氨逃逸率、反应器入口氨氮比及SCR脱硝催化剂活性检测过程中所采集的各层催化剂的失活速率、面速度;
步骤3,对第1、2、3层催化剂失活方程、脱硝效率方程,反应器脱硝效率方程,第2、3层催化剂入口氨氮比方程进行数学建模,构建成存在唯一解的非线性方程组,所述建立的非线性方程组中存在第1、2、3层催化剂剩余活性、脱硝效率,催化剂的运行时间,第2、3层催化剂入口氨氮比共9个未知变量;
步骤4,利用数学软件基于迭代法对步骤4中非线性方程组进行求解,可得到反应器出口氨逃逸达到3ppm时催化剂的运行时间、各层催化剂的剩余活性、脱硝效率等;
步骤5,将步骤3所建数学模型应用于可能的催化剂层加装、更换、换位方案中,对所有可能方案进行步骤4计算,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案;
步骤6,根据步骤5的计算结果,绘制催化剂寿命管理曲线。
该火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,利用催化剂活性中试装置并以电厂实际烟气参数作为测试条件,对SCR反应器内各层催化剂活性进行检测。将各层催化剂的出厂活性、SCR反应器出口氨逃逸率、反应器入口氨氮比及SCR脱硝催化剂活性检测过程中所采集的各层催化剂的失活速率、面速度作为边界条件。选用各层催化剂失活方程、脱硝效率方程,反应器脱硝效率方程,第2、3层催化剂入口氨氮比方程建立成数学模型。以反应器内装设三层催化剂为例,该数学模型为一9阶非线性方程组,且该非线性方程组满足存在唯一解的充要条件。利用数学软件基于迭代法对该模型进行求解,可得到反应器出口氨逃逸达到3ppm时催化剂的运行时间、各层催化剂的剩余活性、脱硝效率等。再将该数学模型应用于可能的催化剂层加装、更换、换位方案中,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案。采用的数学建模方法能够更好的对催化剂寿命进行预测,并改变了传统的始终更换活性最低层催化剂的思路,延长了反应器整体催化剂寿命。
在本实施例中,步骤1包括:
以氨氮摩尔比小于1的真实工况为建模条件,并综合考虑反应器入口氨氮摩尔比以及反应器内部各层催化剂入口氨氮摩尔比变化,使模型准确度更高。
在本实施例中,步骤3中数学建模过程包括:
利用中试装置并以实际电厂的烟气参数作为测试条件对催化剂进行测量,活性计算式为:
式中:k为催化剂的活性,m/h;MR为氨氮摩尔比;η为脱硝效率;Av为催化剂的面速度,m/h;
将上式变形后,可得每层催化剂脱硝效率和催化剂活性的关系为:
根据催化剂的整体失活特性,其失活方程一般具有指数型特征,方程描述为:
上式微分方程的特定解为:
k=k0exp(-Qt);
式中,K0为初始活性,m/h;Q为失活速率,m/h;t为催化剂的服役时间,h;
SCR反应器内通常装有3层催化剂,各层催化剂失活方程如下:
k1=k0exp(-Q1t) (4)
k2=k0exp(-Q2t) (5)
k3=k0exp(-Q3t) (6)
SCR脱硝催化剂反应器出口的NOx浓度计算为:
式中:为反应器入口NOx浓度,mg/m3为反应器出口NOx浓度,mg/m3
将上式带入到反应器脱硝效率计算公式:
可得:
第2、3层催化剂的氨氮摩尔比MR,2、MR,3的值可以利用上一层催化剂的脱硝效率和氨氮摩尔比表示,计算公式为
由方程(1)~(9)构成非线性方程组,利用数学软件基于迭代法对该模型进行求解,可得到反应器出口氨逃逸达到3ppm时催化剂的运行时间、各层催化剂的剩余活性、脱硝效率等。
在本实施例中,步骤5中催化剂层加装、更换、换位策略优化最优方案包括:
反应器内催化剂层自上向下定义为A、B、C,更换催化剂位置时字母不变而字母顺序相应改变,更换催化剂时则在字母后添加“’”表示;
反应器内初装两层催化剂,即为AB方案,当2层催化剂由于失活不能满足电厂脱硝要求时,一般采用进一步加装第3层(备用层)催化剂的方法提高反应器脱硝效率,当不允许催化剂到层换位时仅有1种ABC方案;当允许催化剂到层换位时,则有CAB、ACB、BCA、BAC、CBA方案,对6种方案进行步骤4计算,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案。
在本实施例中,步骤5中催化剂层加装、更换、换位策略优化最优方案还包括;
而当备用层催化剂投入使用后再次不满足脱硝要求时,必须更换其中某一层催化剂,以后继续更换不同的催化剂层以确保脱硝性能;
该过程中存在着多种可能的催化剂管理方案,包括AB→ABC→A’BC;
由于催化剂更换时,不会更换最新一层的催化剂,所以当不允许催化剂到层换位时仅有2种方案,即AB→ABC→A’BC、AB→ABC→AB’C;当允许催化剂到层换位时有10种方案,即AB→CAB→CA’B、AB→CAB→CAB’、AB→ACB→A’CB、AB→ACB→ACB’、AB→BCA→BCA’、AB→BCA→B’CA、AB→BAC→B’AC、AB→BAC→BA’C、AB→CBA→CB’A、AB→CBA→CBA’;
对12种方案进行步骤4计算,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案。
参图1至图3所示,下面针对某300MW机组选择性催化还原脱硝装置,对本发明作进一步详细说明,具体步骤如下:
1)利用催化剂活性中试装置并以实际电厂的烟气参数作为测试条件,对SCR反应器内各层催化剂活性进行检测,催化剂失活速率分别为Q1=–0.0000224m/h、Q2=–0.0000141m/h、Q3=–0.0000072m/h,面速度Av=19.25m/h。
2)将各层催化剂的出厂活性K0=48.74m/h、SCR反应器出口氨逃逸率3ppm、反应器入口氨氮比MR1=0.8503,反应器入口NOx质量浓度为300mg/m3及SCR脱硝催化剂活性检测过程中所采集的各层催化剂的失活速率、面速度作为边界条件;
3)以反应器内三层催化剂为例,建立的非线性方程组中存在第1、2、3层催化剂剩余活性、脱硝效率,催化剂的运行时间,第2、3层催化剂入口氨氮比共9个未知变量;
4)将第1、2、3层催化剂失活方程、脱硝效率方程,反应器脱硝效率方程,第2、3层催化剂入口氨氮比方程对上述9个方程进行数学建模,构建成存在唯一解的非线性方程组;
5)利用数学软件matlab对步骤4)中非线性方程组进行求解,可得到反应器出口氨逃逸达到3ppm时催化剂的运行时间、各层催化剂的剩余活性、脱硝效率等;
6)再将该数学模型应用于可能的催化剂层加装、更换、换位方案中,对所有可能方案进行步骤5)计算,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案结果如表1所示。
表1
7)根据步骤6的计算结果,利用数学软件结果绘制方案1、方案2催化剂寿命与脱硝效率、氨逃逸率之间关系曲线如图2、3所示。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (6)

1.一种火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,其特征在于,包括:将各层催化剂失活方程、脱硝效率方程、反应器脱硝效率方程及第2、3层催化剂入口氨氮比方程建立成数学模型,根据所述数学模型对催化剂寿命进行预测。
2.根据权利要求1所述的火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,其特征在于,所述方法包括如下步骤:
步骤1,利用催化剂活性中试装置并以实际电厂的烟气参数作为测试条件,对SCR反应器内各层催化剂活性进行检测;
步骤2,确定边界条件;所述边界条件包括各层催化剂的出厂活性、SCR反应器出口氨逃逸率、反应器入口氨氮比及SCR脱硝催化剂活性检测过程中所采集的各层催化剂的失活速率、面速度;
步骤3,对第1、2、3层催化剂失活方程、脱硝效率方程,反应器脱硝效率方程,第2、3层催化剂入口氨氮比方程进行数学建模,构建成存在唯一解的非线性方程组,所述建立的非线性方程组中存在第1、2、3层催化剂剩余活性、脱硝效率,催化剂的运行时间,第2、3层催化剂入口氨氮比共9个未知变量;
步骤4,基于迭代法对步骤3中非线性方程组进行求解,得到反应器出口氨逃逸达到3ppm时催化剂的运行时间、各层催化剂的剩余活性、脱硝效率;
步骤5,将步骤3所建数学模型应用于可能的催化剂层加装、更换、换位方案中,对所有可能方案进行步骤4计算,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案;
步骤6,根据步骤5的计算结果,绘制催化剂寿命管理曲线。
3.根据权利要求2所述的火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,其特征在于,所述步骤1包括:
以氨氮摩尔比小于1的真实工况为建模条件,并综合考虑反应器入口氨氮摩尔比以及反应器内部各层催化剂入口氨氮摩尔比变化。
4.根据权利要求2所述的火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,其特征在于,所述步骤3中数学建模过程包括:
利用中试装置并以实际电厂的烟气参数作为测试条件对催化剂进行测量,活性计算式为:
式中:k为催化剂的活性,m/h;MR为氨氮摩尔比;η为脱硝效率;Av为催化剂的面速度,m/h;
将上式变形后,得到每层催化剂脱硝效率和催化剂活性的关系为:
根据催化剂的整体失活特性,其失活方程具有指数型特征,方程描述为:
上式微分方程的特定解为:
k=k0exp(-Qt);
式中,K0为初始活性,m/h;Q为失活速率,m/h;t为催化剂的服役时间,h;
装有3层催化剂的SCR反应器,各层催化剂失活方程如下:
k1=k0exp(-Q1t) (4)
k2=k0exp(-Q2t) (5)
k3=k0exp(-Q3t) (6)
SCR脱硝催化剂反应器出口的NOx浓度计算为:
式中:为反应器入口NOx浓度,mg/m3为反应器出口NOx浓度,mg/m3
将上式带入到反应器脱硝效率计算公式:
可得:
第2、3层催化剂的氨氮摩尔比MR,2、MR,3的值利用上一层催化剂的脱硝效率和氨氮摩尔比表示,计算公式为:
由方程(1)~(9)构成非线性方程组,基于迭代法对该模型进行求解,得到反应器出口氨逃逸达到3ppm时催化剂的运行时间、各层催化剂的剩余活性、脱硝效率。
5.根据权利要求2所述的火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,其特征在于,所述步骤5中催化剂层加装、更换、换位策略优化最优方案包括:
反应器内催化剂层自上向下定义为A、B、C,更换催化剂位置时字母不变而字母顺序相应改变,更换催化剂时则在字母后添加“’”表示;
反应器内初装两层催化剂,即为AB方案,当2层催化剂由于失活不能满足电厂脱硝要求时,采用进一步加装第3层催化剂的方法提高反应器脱硝效率,当不允许催化剂到层换位时仅有1种ABC方案;当允许催化剂到层换位时,则有CAB、ACB、BCA、BAC、CBA方案,对6种方案进行步骤4计算,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案。
6.根据权利要求5所述的火电厂SCR脱硝催化剂寿命预测及更换策略优化方法,其特征在于,所述步骤5中催化剂层加装、更换、换位策略优化最优方案还包括;
当备用层催化剂投入使用后再次不满足脱硝要求时,更换其中某一层催化剂,以后继续更换不同的催化剂层以确保脱硝性能;
该过程中存在着多种可能的催化剂管理方案,包括AB→ABC→A’BC;
基于催化剂更换时,不会更换最新一层的催化剂,当不允许催化剂到层换位时仅有2种方案,即AB→ABC→A’BC、AB→ABC→AB’C;当允许催化剂到层换位时有10种方案,即AB→CAB→CA’B、AB→CAB→CAB’、AB→ACB→A’CB、AB→ACB→ACB’、AB→BCA→BCA’、AB→BCA→B’CA、AB→BAC→B’AC、AB→BAC→BA’C、AB→CBA→CB’A、AB→CBA→CBA’;
对12种方案进行步骤4计算,以反应器总的催化剂使用寿命为评价标准,从中获得最优方案。
CN201811344030.9A 2018-11-13 2018-11-13 一种火电厂scr脱硝催化剂寿命预测及更换策略优化方法 Pending CN109603517A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811344030.9A CN109603517A (zh) 2018-11-13 2018-11-13 一种火电厂scr脱硝催化剂寿命预测及更换策略优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811344030.9A CN109603517A (zh) 2018-11-13 2018-11-13 一种火电厂scr脱硝催化剂寿命预测及更换策略优化方法

Publications (1)

Publication Number Publication Date
CN109603517A true CN109603517A (zh) 2019-04-12

Family

ID=66003281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811344030.9A Pending CN109603517A (zh) 2018-11-13 2018-11-13 一种火电厂scr脱硝催化剂寿命预测及更换策略优化方法

Country Status (1)

Country Link
CN (1) CN109603517A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554135A (zh) * 2019-07-16 2019-12-10 华电电力科学研究院有限公司 一种基于检测活性的scr脱硝催化剂更换体积量核算方法
CN113657683A (zh) * 2021-08-24 2021-11-16 湛江电力有限公司 一种燃煤电厂火电机组脱硝系统管理优化平台

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798143A1 (en) * 1996-03-22 1997-10-01 Kabushiki Kaisha Equos Research Method and apparatus for purifying air including adsorbent reactivation
CN106248864A (zh) * 2016-07-13 2016-12-21 大唐南京环保科技有限责任公司 一种基于海量运行数据的scr脱硝催化剂寿命预测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798143A1 (en) * 1996-03-22 1997-10-01 Kabushiki Kaisha Equos Research Method and apparatus for purifying air including adsorbent reactivation
CN106248864A (zh) * 2016-07-13 2016-12-21 大唐南京环保科技有限责任公司 一种基于海量运行数据的scr脱硝催化剂寿命预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
傅玉等: "SCR脱硝催化剂寿命预测与管理", 《中国电力》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554135A (zh) * 2019-07-16 2019-12-10 华电电力科学研究院有限公司 一种基于检测活性的scr脱硝催化剂更换体积量核算方法
CN113657683A (zh) * 2021-08-24 2021-11-16 湛江电力有限公司 一种燃煤电厂火电机组脱硝系统管理优化平台

Similar Documents

Publication Publication Date Title
CN109603517A (zh) 一种火电厂scr脱硝催化剂寿命预测及更换策略优化方法
CN109493250B (zh) 一种scr反应器的脱硝能力的评估方法
CN105024398B (zh) 一种基于最优风电置信度的优化调度方法
CN109078483B (zh) 一种基于两级潜能折算的scr催化剂提效预测方法
CN103592407B (zh) 一种电厂scr脱硝系统催化剂活性在线监测方法
CN103605877B (zh) Scr脱硝系统的催化剂更新筛选方法及其系统
CN107158946B (zh) 一种氨逃逸浓度实时在线预测与控制方法
CN103023065B (zh) 一种基于相对误差熵值法的风电短期功率预测方法
CN106503380B (zh) 炼焦烟气中氮氧化物浓度预测方法及预测系统
CN103599699A (zh) Scr脱硝系统的催化剂更新方法及其系统
CN104297008A (zh) 基于现场性能测试的脱硝装置潜能评估与预测方法
CN105893768B (zh) 对燃煤锅炉脱硝装置中的催化剂活性估计的方法
CN104935017B (zh) 基于改进轻鲁棒优化模型的风电与火电机组组合方法
CN107679359A (zh) 一种预测电厂scr脱硝催化剂寿命的方法
CN108734419B (zh) 一种基于知识迁移的高炉煤气调度系统建模方法
Xu et al. A discrete time optimal control model with uncertainty for dynamic machine allocation problem and its application to manufacturing and construction industries
CN107193273A (zh) 一种火电厂scr脱硝系统优化管理和故障诊断平台
CN106022594A (zh) 基于极值理论的电力系统在线运行安全风险评估方法
JP2013181138A (ja) 炉内温度分布の推定方法および推定装置
CN110554135B (zh) 一种基于检测活性的scr脱硝催化剂更换体积量核算方法
CN106226408A (zh) 一种汽油吸附脱硫装置的吸附剂的循环速率计算方法
CN103106326A (zh) 一种用于核电设备可靠性Gamma-Poisson模型分布参数的估算方法
CN111142481B (zh) 一种环保设备状态智能监测平台系统
CN114069692A (zh) 用于求解电力调度问题的联合机会约束优化方法及装置
CN116312869A (zh) 催化裂化再生烟气氮氧化物预测方法、装置及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190412