CN109593552A - 将炼厂重质渣油提质为石化产品的方法 - Google Patents
将炼厂重质渣油提质为石化产品的方法 Download PDFInfo
- Publication number
- CN109593552A CN109593552A CN201811214036.4A CN201811214036A CN109593552A CN 109593552 A CN109593552 A CN 109593552A CN 201811214036 A CN201811214036 A CN 201811214036A CN 109593552 A CN109593552 A CN 109593552A
- Authority
- CN
- China
- Prior art keywords
- stream
- unit
- fraction
- oil
- aromatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/10—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/14—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
- C10G65/18—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only including only cracking steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/04—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
- C10G67/0409—Extraction of unsaturated hydrocarbons
- C10G67/0445—The hydrotreatment being a hydrocracking
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
- C10G69/06—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/14—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural parallel stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1044—Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1051—Kerosene having a boiling range of about 180 - 230 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1055—Diesel having a boiling range of about 230 - 330 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1059—Gasoil having a boiling range of about 330 - 427 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/107—Atmospheric residues having a boiling point of at least about 538 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1077—Vacuum residues
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/30—Aromatics
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
本发明涉及一种用于将炼厂重质渣油提质为石化产品的方法,其包括以下步骤:(a)在蒸馏单元中将烃原料分离成顶部料流和底部料流,(b)将所述底部料流进料到加氢裂化反应区,(c)将步骤(b)的所述反应区产生的反应产物分离成富含单芳族化合物的料流和富含多芳族化合物的料流,(d)将所述富含单芳族化合物的料流进料到汽油加氢裂化器(GHC)单元,(e)将所述富含多芳族化合物的料流进料到开环反应区。
Description
本申请为申请号201480033020.7、申请日为2014年6月30日、发明名称为“将炼厂重质渣油提质为石化产品的方法”的发明专利申请的分案申请。
技术领域
本发明涉及一种将炼厂重质渣油提质为石化产品的方法。
背景技术
通常,将原油经由蒸馏处理成多种馏分例如石脑油、粗柴油和渣油。这些馏分中的每种具有多种潜在的用途,例如用于生产运输燃料例如汽油、柴油和煤油,或者作为一些石化和其他工艺单元的进料。
轻质原油馏分例如石脑油和一些粗柴油可以用于经由方法例如蒸汽裂化来生产轻质烯烃和单环芳族化合物,其中烃进料流蒸发,并且用蒸汽稀释,然后在短的停留时间(<1秒)内暴露于非常高温度(800℃-860℃)的炉(反应器)管。在这种方法中,当与进料分子相比时,进料中的烃分子被转化成(平均)更短的分子和具有更低的氢与碳之比的分子(例如烯烃)。该方法也产生了氢作为有用的副产物和大量的较低价值副产物例如甲烷和C9+芳族化合物和缩合芳族物质(含有两个或更多个共边的芳环)。
典型地,较重质(或者更高沸点)的芳族物质例如渣油在原油炼厂中进一步处理,以使得来自于原油的较轻质(可蒸馏)产物的产率最大化。该处理可以通过工艺例如加氢裂化来进行(由此将加氢裂化器进料在一定条件下暴露于适合的催化剂,该条件使得进料分子的一些部分破裂成更短的烃分子,同时加氢)。重质炼厂料流加氢裂化典型地在高压和高温进行,因此具有高的资金成本。
原油蒸馏和轻质蒸馏馏分的蒸汽裂化的这种组合的一方面是资金和与原油分馏相关的其他成本。较重质原油馏分(即沸点超过~350℃)相对富含取代的芳族物质,特别是取代的缩合芳族物质(含有两个或更多个共边的芳环),并且在蒸汽裂化条件下,这些材料将产生大量的重质副产物例如C9+芳族化合物和缩合的芳族化合物。因此,原油蒸馏和蒸汽裂化的常规组合的结果是大部分原油没有经由蒸汽裂化器处理,因为与可选的炼厂燃料值相比,不认为来自于较重质馏分的有价值产物的裂化产率足够高。
上述技术的另一方面是甚至当仅轻质原油馏分(例如石脑油)经由蒸汽裂化处理时,大部分的进料流也被转化成低价值重质副产物例如C9+芳族化合物和缩合的芳族化合物。使用典型的石脑油和粗柴油,这些重质副产物会占总产物产率的2%-25%(表VI,第295页,Pyrolysis:Theory and Industrial Practice,Lyle F.Albright等人,AcademicPress,1983)。虽然这表示在常规蒸汽裂化器规模上低价值材料中昂贵的石脑油和/或粗柴油的明显财政降级,但是这些重质副产物的产率典型地不值得这样的资金投入,即将这些材料提质(例如通过加氢裂化)成可以产生大量更高价值的化学品的料流所需的资金投入。这部分是因为加氢裂化设备具有高的资金成本,并且当使用大部分的石化方法时,这些单元的资金成本典型地与增加到0.6或0.7升幂的产量成比例。因此,小规模加氢裂化单元的资金成本通常被认为过高,而不值得这样的投资来处理蒸汽裂化器重质副产物。
重质炼厂料流例如渣油的常规加氢裂化的另一方面是它们典型地在选择以实现所需的整体转化率的折中条件下进行。因为进料流包含一定范围内易于裂化的物质的混合物,所以这使得通过相对容易加氢裂化的物质的加氢裂化所形成的可蒸馏产物的一些部分在一定条件下进一步转化,该条件是对更难以加氢裂化的物质进行加氢裂化所必需的。这增加了与该方法有关的氢的消耗和热管理难度,以及在牺牲更有价值的物质的情况下,增加了轻质分子例如甲烷的产率。
原油蒸馏和较轻质蒸馏馏分蒸汽裂化的这种组合的结果是蒸汽裂化炉管典型地不适于处理包含显著量的沸点大于~350℃的材料的馏分,因为它难以确保在混合烃和蒸汽流暴露于促进热裂化所需的高温之前,这些馏分完全蒸发。如果液体烃的小滴存在于裂化管的热区中,则焦炭快速沉积到该管表面,这降低了传热和增加了压力降和最终减少了裂化管的运行,使得必须使该炉停机来进行脱焦。归因于这种难点,显著部分的初始原油不能经由蒸汽裂化器处理成轻质烯烃和芳族化合物物质。
US2009173665涉及一种催化剂和增加包含多核芳族化合物的烃原料的单芳族化合物含量的方法,其中单芳族化合物的增加可以通过增加汽油/柴油产率和同时减少不想要的化合物来实现,由此提供用于提质包含大量多核芳族化合物烃的路线。
国际申请WO2005/073349涉及一种低强度加氢裂化器,其初始时将重于馏出物燃料的蜡状进料处理成较低浊点和/或冷冻点的馏出物燃料以及重质异链烷烃料流(其适于通过催化或者通过溶剂萃取,以脱蜡成具有特别高的粘度指数和低挥发性的低倾点异链烷烃基油。WO2005073349所公开的方法包括步骤:(a)将原料分馏成第一馏出物(其包含C5-160℃的烃)和第二馏出物(其包含160℃-371℃的烃),和第三馏出物(其包含371℃+的烃);(b)在低强度加氢裂化器中,将第三馏出物加氢裂化来生产加氢裂化物;(c)将第二馏出物进料到第二分馏器;(c)将该加氢裂化物进料到第二分馏器;(d)从第二分馏器中回收第一馏出物燃料馏分、轻质润滑剂馏分和蜡状润滑剂馏分;(e)将该蜡状润滑剂馏分加氢脱蜡,以形成脱蜡的产物;(f)在第三分馏器中将该脱蜡产物进行分馏。
US3891539涉及重质烃油的加氢裂化,该重质烃油的约10-50体积%的沸点高于1000°F,并且含有可测出量的硫、氮,和含金属化合物以及环烷烃和其他成焦烃,其中重质烃油被转化成小部分的重质残留燃料油和大部分的低硫汽油。
US3660270涉及一种由石油馏出物生产石脑油的两级方法。
US4137147(对应于FR2364879)涉及一种选择性方法,用于生产轻质烯烃,主要是每分子分别具有2和3个碳原子的那些,特别是乙烯和丙烯,其通过氢解或者加氢裂化随后用蒸汽裂化来获得。
US3842138涉及一种氢存在下热裂化石油烃装料的方法,其中该加氢裂化方法在5-70巴的压力,在反应器的出口以0.01-0.5秒的非常短的停留时间和从625长至1000℃的反应器出口温度范围进行。UOP的LCO Unicracking方法使用部分转化加氢裂化,以简单的贯穿流(once-through flow)方案来生产高品质的汽油和柴油原料。将原料在预处理催化剂上处理,然后在同一级中加氢裂化。随后对产物进行分离,无需液体再循环。该LCOUnicracking方法可以经设计用于低压运行,其是压力要求将稍高于高强度加氢处理,但是明显低于常规的部分转化和完全转化加氢裂化单元设计。经提质的中间馏分产物制造了一种适合的超低硫柴油(ULSD)共混组分。来自于LCO的低压加氢裂化的石脑油产物具有超低硫和高辛烷,并且可以直接共混入超低硫汽油(ULSG)池。
US7,513,988涉及一种方法,用于处理包含两个或更多个稠合芳族环的化合物,以使至少一个环饱和,然后从该化合物的芳族级分上裂化所形成的饱和环,以生产C2-4烷烃料流和芳族化合物料流。这种方法可以与烃(例如乙烯)(蒸汽)裂化器整合,以使得来自于裂化器的氢可以用于饱和和裂化包含两个或更多个芳族环的化合物,并且C2-4烷烃料流可以进料到烃裂化器,或者可以与烃裂化器(例如蒸汽裂化器)和乙基苯单元整合,其处理来自于工艺油砂、含油砂、页岩油或者具有高含量稠环芳族化合物的任何油的重质渣油,以生产适于石化生产的料流。
US2005/0101814涉及一种提高蒸汽裂化单元的原料的链烷烃含量的方法,其包括:将包含C5-C9烃(包括C5-C9正链烷烃)的进料流送入开环反应器,该开环反应器包含在一定条件操作的催化剂以将芳烃转化成环烷烃,和在一定条件操作的催化剂以将环烷烃转化成链烷烃,并且产生了第二进料流;和将第二进料流的至少一部分送到蒸汽裂化单元。
US7,067,448涉及一种由矿物油馏分和来自于热转化或催化转化装置的馏分(含有环烷烃、链烯烃、环烯烃和/或芳族化合物)制造正烷烃的方法。更详细地,该公开文献涉及一种处理富含芳族化合物的矿物油馏分的方法,其中将芳族化合物氢化后获得的环烷烃转化成一定链长的正烷烃,该炼厂尽可能小于装入的碳。
US2009/173665涉及一种催化剂和增加包含多核芳族化合物的烃原料的单芳族化合物含量的方法,其中单芳族化合物的增加可以通过增加汽油/柴油产率和同时减少不想要的化合物来实现,由此提供用于提质包含大量多核芳族化合物烃的路线。
上述的LCO方法涉及LCO完全转化加氢裂化成石脑油,其中LCO是含有单芳族化合物和二芳族化合物的料流。完全转化加氢裂化的结果是获得了高环烷烃、低辛烷的石脑油,其必须重整来生产产物共混所需的辛烷。
WO2006/122275涉及一种将重质烃原油原料提质为不太稠密或者较轻质的油的方法,该油包含比初始重质烃原油原料更低的硫,同时制造了增值材料例如烯烃和芳族化合物,该方法包括以下步骤等:将一部分重质烃原油与油溶性催化剂合并以形成反应物混合物,将经预处理的原料在相对低的氢压力下反应以形成产物料流,其中产物料流的第一部分包含轻质油和产物料流的第二部分包含重质原油渣油,和产物料流的第三部分包含轻质烃气体,和将一部分轻质烃气体料流注入裂化单元以生产含有氢和至少一种烯烃的料流。
WO2011005476涉及一种处理重质油的方法,该重质油包括原油、减压渣油、焦油砂、沥青和减压粗柴油,该方法使用催化加氢处理预处理方法,特别是使用串联的加氢脱金属(HDM)和加氢脱硫(HDS)催化剂,以改进随后的焦化器炼制的效率。
US2008/194900涉及一种烯烃方法,用于蒸汽裂化含芳族化合物的石脑油流,其包括:回收来自于蒸汽裂化炉流出物的烯烃和热解汽油流,氢化该热解汽油流和从中回收C6-C8流,加氢处理含芳族化合物的石脑油流以获得石脑油进料,在共用的芳族化合物萃取单元中用石脑油进料流对该C6-C8流进行脱芳构化,以获得萃取液流;和将该萃余液流进料到蒸汽裂化炉。
WO2008092232涉及一种方法,用于从原料例如石油、天然气冷凝物或者石化原料、全馏程石脑油原料中萃取化学组分,其包括步骤:使全馏程石脑油原料经过脱硫方法,从经脱硫的全馏程石脑油原料中分离C6-C11烃级分,在芳族化合物萃取单元中从C6-C11烃级分中回收芳族化合物级分、芳族化合物前体级分和萃余物级分,将芳族化合物前体级分中的芳族化合物前体转化成芳族化合物,和从芳族化合物萃取单元中的步骤回收芳族化合物。
发明内容
本发明的一个目标是提供一种将石脑油、气体冷凝物和重质尾部进料(tailfeed)提质为芳族化合物和LPG裂化器进料的方法。
本发明的另一目标是提供一种由烃原料生产轻质烯烃和芳族化合物的方法,其中可以获得乙烯和丙烯的高产率。
本发明的另一目标是提供一种由烃原料来生产轻质烯烃和芳族化合物的方法,其中可以处理宽范围的烃原料,即高进料灵活性。
本发明是另一目标是提供一种由烃原料来生产轻质烯烃和芳族化合物的方法,其中可以获得芳族化合物的高产率。
本发明的另一目标是提供一种将原油原料提质成石化产品的方法,更具体地提质为轻质烯烃和BTX/单芳族化合物。
本发明的另一目标是提供一种将原油原料提质成石化产品的方法,其具有高的碳效率和氢整合性。
本发明涉及一种将炼厂重质渣油提质为石化产品的方法,其包括以下步骤:
(a)在蒸馏单元中将烃原料分离成顶部料流和底部料流,
(b)将所述底部料流进料到加氢裂化反应区,
(c)将从步骤(b)的所述反应区中产生的反应产物分离成富含单芳族化合物的料流和富含多芳族化合物的料流,
(d)将所述富含单芳族化合物的料流进料到汽油加氢裂化器(GHC)单元,
(e)将所述富含多芳族化合物的料流进料到开环反应区,
其中所述汽油加氢裂化器(GHC)单元的操作温度高于所述开环反应区,和其中所述汽油加氢裂化器(GHC)单元的操作压力低于所述开环反应区。
基于这些步骤(a)-(e),可以实现一个或多个目标。本发明人发现,与炼厂相比,氢与蒸汽裂化器或脱氢的整合取得了明显更低的氢生产成本,因为石化产品(轻质烯烃和BTX)包含的氢少于汽油和柴油,所以该组合方法在氢管理方面明显更具经济性。
根据本发明,使用渣油加氢裂化技术以将以上述方式不可能处理的减压渣油类型的材料转化成几个产物料流,其大致对应于LPG、主要单芳族化合物料流、主要二/三芳族化合物料流和主要含有更高的聚芳烃化合物的料流。不同于通常在炼厂运行中的应用(其中最重要的目标是提质成具体的石脑油、汽油或柴油馏分和使得这些物质中的一种或多种的产率最大化),本发明人优化了渣油加氢裂化单元以使得焦炭/沥青形成和甲烷产生最小化。形成的料流出物然后进一步提质(考虑了单个化合物中的分子环数目)和由此将它们分离(仅经由沸点范围或者还通过使用例如脱芳构化技术(可能仅分离出正链烷烃组分))。这些料流然后根据它们在以下中的“环数”最有效地提质:在GHC单元(单芳族化合物)中,使得BTX生产最大化和氢消耗最小化;在开环加氢裂化单元(二/三芳族化合物)中,因为汽油/柴油的生产不是生产石化产品的关键;在非常重质产物到可能具有放出流的三/四+环组分的渣油加氢裂化器本身的再循环中。可选地,渣油FCC单元可以以类似方式使用,代替渣油加氢裂化器(或者甚至渣油加氢裂化器和VDU),但是这可能产生与渣油加氢裂化器相比,损失到甲烷和焦炭的碳更高,但是投资收益更低。
开环方法的料流出物是高单芳族化合物的,然后进料到GHC单元以进一步提质成LPG(用于蒸汽裂化器和/或PDH/BDH的高价值料流)和BTX(高纯度)。如果在不同的加氢裂化步骤之间不包括脱芳构化(或类似的),则该方法变成依次加氢裂化级联反应器(或单个/组合的反应器概念),并且可以通过仅降低每个区所需的压力,而非必须每次闪蒸流出物和重新压缩,来获得另外的益处。这将具有明显的能量优势,但是由于较高的气体负荷,为后面的工艺步骤增加了一些另外的体积。
优选将来源于不同单元操作的料流再循环到具有类似进料组成的单元,即LCO类材料经由开环方法可能在脱芳构化或类似操作之后进行;单芳族化合物料流如所生产的高芳族石脑油将进入GHC单元等。具体地,较重质(低价值)料流如来自于蒸汽裂化器操作的C9馏分、CD和CBO也将优选再循环到渣油加氢裂化器(主要用于炭黑油CBO)和开环方法(主要用于C9+馏分和裂化的馏出物CD),以使得高价值化学品产率最大化。
本发明人发现,使用用于开环的“标准”加氢裂化,环烷烃物质被转化成链烷烃,代价是产生BTX和增加氢消耗。为了经由蒸汽裂化生产最大化的乙烯(可能在逆异构化之后)或者经由PDH生产丙烯,这会是期望的,但是另一方面在将富含环烷烃的料流经由GHC单元输送中实现了不同的优点。这种方式将环烷烃转化成BTX(最大化),并且氢加入最小化。
对于这里所述的方法,没有明确需要分离例如LPG、汽油和柴油馏分。单芳族化合物和LPG可以例如一起送到GHC单元。这避免了必须冷凝和分离(部分)该流,并且LPG将不对GHC性质产生不利影响,或者甚至将帮助进料蒸发。开环方法与GHC反应器的组合产生了另外的益处,并且可以总体上避免中间分离步骤(代价是稍大的GHC单元)。该整合的最终形式是依次加氢裂化概念或者整合的反应器概念。
进一步的优化包括使用脱芳构化、脱正烷烃化、脱链烷烃化等;使用逆异构化来增加乙烯产率,使用PDH和BDH来增加整体碳效率。在具体的实施方案中,取消VDU,包括DCU作为重质/VR提质的替代,类似于常规炼制优化的FCC及其组合可以代替渣油加氢裂化器。
如果仅气体裂化和/或PDH/BDH是最期望的,则整个石脑油和较轻质馏分(单芳族化合物或更低)可以送到FHC单元(或者在脱芳构化之后送到GHC)。在一个优选的实施方案中,中间馏分必须送过开环方法和流出物然后加入到FHC或GHC单元的单芳族化合物进料中(在实践中可能是两个单独的单元)。
基于本发明,其是渣油加氢裂化器(或者完全转化加氢裂化器)、开环反应器和GHC方法的组合,现在可以使用适当的转化方法,基于各自沸点范围内的单、二、三和更高的环化结构的浓度,可能借助于其他分离技术如脱芳构化/萃取,将整个粗进料完全提质成仅轻质烯烃和BTX。
上述方法进一步包括将步骤(c)的所述GHC的反应产物分离成顶部料流(其含有氢、甲烷、乙烷和液化石油气)和底部料流(其含有芳烃化合物和少量的氢和非芳烃化合物)。
根据另一实施方案,进一步优选的是将来自于汽油加氢裂化器(GHC)单元的顶部料流进料到蒸汽裂化器单元,优选在分离后进行,即没有氢和甲烷,该组分通常不送到炉,而是送到下游。
根据一个优选的实施方案,进行步骤(c)的分离,从而将所述包含沸点范围为70℃-217℃的单芳族化合物的富含单芳族化合物的料流进料到所述汽油加氢裂化器(GHC)单元,和将所述包含沸点范围217℃和更高的多芳族化合物的富含多芳族化合物的料流进料到所述开环反应区。
如上所述,步骤(b)的所述富含多芳族化合物的料流在芳族化合物萃取单元中预处理,从该芳族化合物萃取单元将它的底部料流进料到所述开环反应区,和将它的顶部料流进料到所述蒸汽裂化器单元。
这种芳族化合物萃取单元优选是蒸馏单元类型,或者溶剂萃取单元类型,或者其组合。根据另一实施方案,芳族化合物萃取单元用分子筛操作。
在溶剂萃取单元的情况中,将它的顶部料流清洗以除去溶剂,其中将由此回收的溶剂返回到所述溶剂萃取单元,和将由此清洗的顶部料流进料到所述蒸汽裂化器单元。
在一个优选的实施方案中,来自于所述蒸馏单元的所述底部料流在减压蒸馏单元(VDU)中预处理,在该减压蒸馏单元中所述进料分离成顶部料流和底部料流,并且将所述底部料流进料到步骤(b)的所述加氢裂化区,其进一步包括将所述顶部料流进料到所述芳族化合物萃取单元。
本发明的方法进一步包括将步骤(a)的所述蒸馏单元的所述顶部料流进料到分离区,在该分离区中所述顶部料流分离成富含芳族化合物的料流和富含链烷烃的料流,其中优选将所述富含链烷烃的料流进料到所述蒸汽裂化器单元,和将所述富含芳族化合物的料流进料到所述汽油加氢裂化器(GHC)。
根据一个优选的实施方案,本发明进一步包括将所述蒸汽裂化单元的反应产物分离成顶部料流(其包含C2-C6烷烃)、中间流(其包含C2=、C3=和C4=)和底部料流(其包含芳烃化合物、非芳烃化合物和C9+),特别是进一步包括将所述顶部料流返回到所述蒸汽裂化单元,和进一步包括将所述底部料流分离成重质裂解汽油(pygas)和含有C9+、炭黑油(CBO)和裂化的馏出物(CD)的料流。中间流主要指的是高价值产物。氢和甲烷主要存在于中间流中,并且这些组分可以从中间流中分离,并且可以用于本发明方法的其他目的。
含有CBO和CD的料流可以送到开环反应区和/或送到步骤(b)的加氢裂化反应区。
优选将所述重质裂解汽油送入步骤(c)的所述汽油加氢裂化器(GHC)单元。
优选将来自于所述汽油加氢裂化器(GHC)单元的反应产物的底部料流分离成富BTX级分和重质级分,其中优选将来自于汽油加氢裂化器(GHC)单元的所述顶部料流送到脱氢单元。优选仅将C3-C4级分送到脱氢单元。
如上就氢经济性所述,优选从所述蒸汽裂化单元的反应产物中回收氢,并且将由此回收的氢进料到所述汽油加氢裂化器(GHC)单元和/或所述开环反应区和/或进料到渣油加氢裂化单元。另外,优选从所述的脱氢单元回收氢和将由此回收的氢进料到所述汽油加氢裂化器(GHC)单元和/或所述开环反应区和/或进料到渣油加氢裂化单元。
在所述开环反应区中占优的工艺条件是温度100℃-500℃和压力2-10MPa,同时在芳族氢化催化剂上具有50-300kg氢/1,000kg原料,并且将形成的料流送到温度200℃-600℃和压力1-12MPa的环裂化单元,同时在环裂化催化剂上具有50-200kg氢/1,000kg所述形成的料流。
根据一个优选的实施方案,除了将来自于开环反应区的高含量单芳族化合物料流进料到步骤(c)的所述汽油加氢裂化器(GHC)单元之外,本发明方法进一步包括将来自于开环反应区的高含量多芳族化合物料流返回到所述加氢裂化区。
在所述汽油加氢裂化器(GHC)单元中占优的工艺条件是反应温度300-580℃,优选450-580℃,更优选470-550℃,压力0.3-5MPa表压,优选压力是0.6-3MPa表压,特别优选压力是1000-2000kPa MPa表压,最优选压力是1-2MPa表压,最优选压力是1.2-16MPa表压,重时空速(WHSV)是0.1-10h-1,优选0.2-6h-1,更优选0.4-2h-1。
在所述蒸汽裂化单元中占优的工艺条件是反应温度约750-900℃,停留时间50-1000毫秒和压力选择从大气压高至175kPa表压。
在步骤(b)的所述加氢裂化区中占优的工艺条件是温度300-580℃,压力300-5000kPa表压和重时空速0.1-10h-1,优选温度300-450℃,压力300-5000kPa表压和重时空速0.1-10h-1,更优选温度300-400℃,压力600-3000kPa表压和重时空速0.2-2h-1。
步骤(a)的烃原料选自原油、煤油、柴油、常压粗柴油(AGO)、气体冷凝物、蜡、原油污染的石脑油、减压粗柴油(VGO)、减压渣油、常压渣油、石脑油和经预处理的石脑油或者其组合。
本发明进一步涉及经多级开环加氢裂化的烃原料的气态轻质级分的用途,其作为原料用于蒸汽裂化单元。
具体实施方式
作为这里使用的,术语“原油”指的是从地质地层中提取的未炼制形式的石油。任何原油适于作为本发明方法的原材料,包括阿拉伯重质油、阿拉伯轻质油、其他海湾原油、布兰特原油(Brent)、北海原油、北非和西非原油、印尼原油、中国原油及其混合物,但是还可以是页岩油、沥青砂和生物基油。原油优选是API重力大于20°API的常规石油,其通过ASTM D287标准来测量。更优选所用原油是API重力大于30°API的轻质原油。最优选原油包括阿拉伯轻质原油。阿拉伯轻质原油典型地API重力是32-36°API和硫含量是1.5-4.5重量%。
作为这里使用的,术语“石化品”或“石化产品”涉及来源于原油的化学产品,其不用作燃料。石化产品包括烯烃和芳族化合物,其被用作生产化学品和聚合物的基本原料。高价值石化品包括烯烃和芳族化合物。典型的高价值烯烃包括但不限于乙烯、丙烯、丁二烯、丁烯-1、异丁烯、异戊二烯、环戊二烯和苯乙烯。典型的高价值芳族化合物包括但不限于苯、甲苯、二甲苯和乙基苯。
作为这里使用的,术语“燃料”涉及用作能量载体的原油来源的产品。不同于石化品(其是明确的化合物的集合),燃料典型地是不同烃化合物的复杂混合物。通过炼油厂通常生产的燃料包括但不限于汽油、喷气机燃料、柴油燃料、重质燃料油和石油焦。
作为这里使用的,术语“通过原油蒸馏单元产生的气体”或“气体馏分”指的是在原油蒸馏方法中获得的馏分,其在环境压力是气态。因此,来源于原油蒸馏的“气体馏分”主要包含C1-C4烃,并且可以进一步包含杂质例如硫化氢和二氧化碳。在本说明书中,通过原油蒸馏获得的其他石油馏分被称作“石脑油”、“煤油”、“粗柴油”和“渣油”。在此使用的术语石脑油、煤油、粗柴油和渣油具有它们在石油炼制工艺领域中通常公知的含义;参见Alfke等人(2007)Oil Refining,Ullmann’s Encyclopedia of Industrial Chemistry andSpeight(2005)Petroleum Refinery Processes,Kirk-Othmer Encyclopedia ofChemical Technology。在这方面,要注意的是在不同的原油蒸馏馏分之间会存在重叠,这归因于原油中所含的烃化合物的复杂混合物和原油蒸馏方法的技术限制。优选作为这里使用的,术语“石脑油”涉及通过原油蒸馏获得的石油馏分,其沸点范围是约20-200℃,更优选约30-190℃。优选轻质石脑油是沸点范围为约20-100℃,更优选约30-90℃的馏分。重质石脑油优选的沸点范围是约80-200℃,更优选约90-190℃。优选作为这里使用的,术语“煤油”涉及通过原油蒸馏获得的石油馏分,其沸点范围是约180-270℃,更优选约190-260℃。优选作为这里使用的,术语“粗柴油”涉及通过原油蒸馏获得的石油馏分,其沸点范围是约250-360℃,更优选约260-350℃。优选作为这里使用的,术语“渣油”涉及通过原油蒸馏获得的石油馏分,其沸点大于约340℃,更优选大于约350℃。
作为这里使用的,术语“炼制单元”涉及石化设备联合体的工段,用于将原油转化成石化品和燃料。在这方面,要注意的是用于烯烃合成的单元例如蒸汽裂化器也被认为代表了“炼制单元”。在本说明书中,通过炼制单元生产的或者在炼制单元操作中生产的不同烃料流被称作:炼制单元来源的气体,炼制单元来源的轻质馏分,炼制单元来源的中间馏分,和炼制单元来源的重质馏分。术语“炼制单元来源的气体”涉及在炼制单元中产生的部分产物,其在环境温度是气态的。因此,炼制单元来源的气体料流可以包含气态化合物例如LPG和甲烷。炼制单元来源的气体料流中所含的其他组分可以是氢和硫化氢。这里使用的术语轻质馏分、中间馏分和重质馏分具有它们在石油炼制工艺领域中通常公知的含义;参见Speight,J.G.(2005)同前文献。在这方面,要注意的是在不同的蒸馏馏分之间会存在重叠,这归因于通过炼制单元操作产生的产物料流中所含的烃化合物的复杂混合物和用于分离不同部分的蒸馏方法的技术限制。优选炼制单元来源的轻质馏分是在炼制单元工艺中获得的烃馏出物,其沸点范围是约20-200℃,更优选约30-190℃。“轻质馏分”经常相对富含具有一个芳环的芳族化合物。优选炼制单元来源的中间馏分是在炼制单元工艺中获得的烃馏出物,其沸点范围是约180-360℃,更优选约190-350℃。“中间馏分”相对富含具有两个芳环的芳族化合物。优选炼制单元来源的重质馏分是在炼制单元工艺中获得的烃馏出物,其沸点大于约340℃,更优选大于约350℃。“重质馏分”相对富含具有稠合芳族环的烃。
术语“芳烃”或“芳族化合物”是本领域公知的。因此,术语“芳族化合物”涉及环状共轭的烃,其具有稳定性(归因于离位),其明显大于假设的局部化结构(例如Kekulé结构)的稳定性。测定给定烃的芳香性最常用的方法是观察1H NMR光谱中的横向性(diatropicity),例如在用于苯环质子的7.2-7.3ppm范围内存在化学位移。
术语“环烷的烃”或“环烷烃”或“环烷”在这里具有它公知的含义,因此涉及在它们分子的化学结构中具有一个或多个碳原子环的烷烃类型。
术语“烯烃”在这里具有它公知的含义。因此,烯烃涉及含有至少一个碳-碳双键的不饱和的烃化合物。优选术语“烯烃”涉及包含以下两种或更多种的混合物:乙烯、丙烯、丁二烯、丁烯-1、异丁烯、异戊二烯和环戊二烯。
作为这里使用的,术语“LPG”指的是术语“液化石油气”的公知的首字母缩写。LPG通常由C2-C4烃的共混物组成,即C2、C3和C4烃的混合物。
作为这里使用的,术语“BTX”涉及苯、甲苯和二甲苯的混合物。
作为这里使用的,术语“C#烃”(其中“#”是正整数)用来描述具有#个碳原子的全部烃。此外,术语“C#+烃”用来描述具有#个或更多个碳原子的全部烃分子。因此,术语“C5+烃”用来描述具有5个或更多个碳原子的烃的混合物。术语“C5+烷烃”因此涉及具有5个或更多个碳原子的烷烃。
作为这里使用的,术语“原油蒸馏单元”涉及分馏塔,其用于通过分馏将原油分离成馏分;参见Alfke等人(2007)同前文献。优选原油在常压蒸馏单元中处理,以将粗柴油和较轻质馏分与较高沸点组分(常压渣油或“渣油”)进行分离。不需要将渣油送到减压蒸馏单元来进一步分馏渣油,并且可以将渣油作为单个馏分来处理。但是在相对重质原油进料的情况中,可以有利地使用减压蒸馏单元进一步将渣油分离成减压粗柴油馏分和减压渣油馏分。在使用减压蒸馏的情况中,减压粗柴油馏分和减压渣油馏分可以在随后的炼制单元中分别处理。例如,减压渣油馏分可以在进一步处理之前,具体地进行溶剂脱沥青。
作为这里使用的,术语“加氢裂化器单元”或“加氢裂化器”涉及进行加氢裂化方法的炼制单元,即通过升高的氢分压存在来辅助的催化裂化方法;参见例如Alfke等人(2007)同前文献。该方法的产物是饱和烃和包括BTX的芳烃(取决于反应条件例如温度、压力和空速和催化剂活性)。用于加氢裂化的工艺条件通常包括工艺温度200-600℃,升高的压力0.2-20MPa,空速0.1-10h-1。
加氢裂化反应通过双功能机理来进行,其需要酸功能,其用来裂化和异构化并且其提供了进料中所含的烃化合物中所含的碳-碳键的断裂和/或重排,和氢化功能。用于加氢裂化方法的许多催化剂通过将多种过渡金属或金属硫化物与固体载体例如氧化铝、二氧化硅、氧化铝-二氧化硅、氧化镁和沸石复合来形成。
作为这里使用的,术语“汽油加氢裂化单元”或“GHC”指的是用于进行加氢裂化方法的炼制单元,其适于将复杂烃进料(其相对富含芳烃化合物,例如炼制单元来源的轻质馏分,其包括但不限于重整器汽油、FCC汽油和热解汽油(重质裂解汽油))转化成LPG和BTX,其中所述方法经优化来保持GHC进料流中所含的芳族化合物的一个芳环完好,但是从所述芳环上除去大部分侧链。因此,通过汽油加氢裂化生产的主产物是BTX,并且该方法可以经优化来提供化学品级的BTX。优选经过汽油加氢裂化的烃进料包含炼制单元来源的轻质馏分。更优选经过汽油加氢裂化的烃进料优选不包含大于1重量%的具有多于1个芳环的烃。优选汽油加氢裂化条件包括温度300-580℃,更优选450-580℃和甚至更优选470-550℃。必须避免较低的温度,因为芳环的氢化会变得有利。但是,在催化剂包含降低催化剂氢化活性的另一元素例如锡、铅或铋的情况中,可以选择较低的温度用于汽油加氢裂化;参见例如WO02/44306A1和WO2007/055488。在反应温度过高的情况中,LPG(特别是丙烷和丁烷)的产率降低,甲烷的产率升高。因为催化剂活性会随着催化剂寿命降低,所以有利的是在催化剂寿命期内逐步增加反应器温度,以保持加氢裂化转化率。这意味着在操作周期开始时的最佳温度优选处于加氢裂化温度范围的低端。最佳反应器温度将随着催化剂失活而上升,从而在周期结束时(在即将更换或再生催化剂之前),温度优选选择为处于加氢裂化温度范围的高端。
优选烃进料流的汽油加氢裂化在压力0.3-5MPa表压,更优选在压力0.6-3MPa表压,特别优选在压力1-2MPa表压,和最优选在压力1.2-1.6MPa表压进行。通过增加反应器压力,可以增加C5+非芳族化合物的转化率,但是这也增加了甲烷的产率和芳环氢化为环己烷物质(其可以裂化成LPG物质)。这导致芳族化合物产率随着压力增加而降低,因为一些环己烷和它的异构体甲基环戊烷没有完全加氢裂化,在1.2-1.6MPa的压力形成的苯的纯度存在最佳值。
优选烃进料流的汽油加氢裂化在重时空速(WHSV)0.1-10h-1,更优选重时空速0.2-6h-1和最优选重时空速0.4-2h-1进行的。当空速过高时,并非全部的BTX共沸链烷烃组分被加氢裂化,因此通过简单蒸馏反应器产物不可能实现BTX规格。在过低的空速时,甲烷的产率增加,牺牲了丙烷和丁烷的产率。通过选择最佳的重时空速,令人惊讶地发现实现了苯共沸器足够完全的反应,以冒险地生产BTX,而无需液体再循环。
因此,优选的汽油加氢裂化条件因此包括温度450-580℃,压力0.3-5MPa表压,和重时空速0.1-10h-1。更优选的汽油加氢裂化条件包括温度470-550℃,压力0.6-3MPa表压,和重时空速0.2-6h-1。特别优选的汽油加氢裂化条件包括温度470-550℃,压力1-2MPa表压,和重时空速0.4-2h-1。
“芳族化合物开环单元”指的是进行芳族化合物开环方法的炼制单元。芳族化合物开环是一种特殊的加氢裂化方法,其特别适于将进料(其相对富含沸点处于煤油和汽油沸点范围的芳族化合物)转化以生产LPG,和取决于工艺条件的轻质馏分(ARO来源的汽油)。这种芳族化合物开环方法(ARO方法)例如描述在US3,256,176和US4,789,457中。这种方法可以包括单一固定床催化反应器或者串联的两个这种反应器以及一个或多个分馏单元,以期望的产物与未转化的材料分离,并且还可以引入将未转化的材料再循环到反应器之一或二者的能力。反应器可以在温度200-600℃,优选300-400℃,压力3-35MPa,优选5-20MPa以及5-20重量%的氢(相对于烃原料)进行,其中所述氢可以与烃原料同向流动或者与烃原料的料流动方向逆流流动,并且存在着对于氢化-脱氢和环裂化二者有活性的双功能催化剂,其中可以进行所述芳环饱和和环裂化。用于这种方法中的催化剂包括选自以下的一种或多种元素:Pd、Rh、Ru、Ir、Os、Cu、Co、Ni、Pt、Fe、Zn、Ga、In、Mo、W和V,其为金属或金属硫化物的形式,并且负载于酸性固体例如氧化铝、二氧化硅、氧化铝-二氧化硅和沸石上。在这方面,要注意的是作为这里使用的,术语“负载于……上”包括提供催化剂的任何常规方式,其将一种或多种元素与催化载体相组合。另一芳族化合物开环方法(ARO方法)描述在US7,513,988中。因此,ARO方法可以包括在芳族化合物氢化催化剂存在下,在100-500℃,优选200-500℃和更优选300-500℃的温度,2-10MPa的压力和5-30重量%,优选10-30重量%的氢(相对于烃原料)进行芳环饱和,和在环裂化催化剂存在下,在200-600℃,优选300-400℃的温度,1-12MPa的压力,和5-20重量%的氢(相对于烃原料)进行环裂化,其中所述芳环饱和和环裂化可以在一个反应器或者在两个连续的反应器中进行。芳族化合物氢化催化剂可以是常规的氢化/加氢处理催化剂例如包含负载于难熔载体(典型地是氧化铝)上的Ni、W和Mo的混合物的催化剂。环裂化催化剂包含过渡金属或金属硫化物组分和载体。优选催化剂包含选自以下的一种或多种元素:Pd、Rh、Ru、Ir、Os、Cu、Co、Ni、Pt、Fe、Zn、Ga、In、Mo、W和V,其为金属或金属硫化物的形式,负载于酸性固体例如氧化铝、二氧化硅、氧化铝-二氧化硅和沸石上。通过单一或组合地采用催化剂组合物、操作温度、操作空速和/或氢分压,该方法可以经引导朝向完全饱和和随后裂化全部的环,或者朝向保持一个芳环不饱和和随后裂化除一个之外的全部环。在后者的情况中,ARO方法产生了轻质馏分(“ARO汽油”),其相对富含具有一个芳环的烃化合物。
作为这里使用的,术语“渣油提质单元”涉及一种适于渣油提质工艺的炼制单元,其是一种将渣油和/或炼制单元来源的重质馏分中所含的烃裂化成较低沸点烃的方法;参见Alfke等人(2007)同前文献。市售技术包括延迟焦化器、流体焦化器,渣油FCC、灵活焦化器(Flexicoker)、减粘裂化器或者催化加氢减粘裂化器。优选渣油提质单元可以是焦化单元或者渣油加氢裂化器。“焦化单元”是一种油炼制工艺单元,其将渣油转化成LPG、轻质馏分、中间馏分、重质馏分和石油焦。该方法将渣油进料中的长链烃分子热裂化成短链分子。
“渣油加氢裂化器”是一种适于渣油加氢裂化工艺的油炼制工艺单元,其是一种将渣油转化成LPG、轻质馏分、中间馏分和重质馏分的方法。渣油加氢裂化方法是本领域公知的;参见例如Alfke等人(2007)同前文献。因此,在商业加氢裂化中使用三种基本反应器类型,其是固定床(滴流床)反应器类型、沸腾床反应器类型和浆料(夹带流)反应器类型。固定床渣油加氢裂化工艺是公知的,能够处理污染的料流例如常压渣油和减压渣油以生产轻质和中间馏分,其可以进一步处理以生产烯烃和芳族化合物。固定床渣油加氢裂化方法中所用的催化剂通常包含选自在难熔载体(通常是氧化铝)上的Co、Mo和Ni中的一种或多种元素。在高污染的进料的情况中,固定床渣油加氢裂化方法中的催化剂也可以补充到一定程度(移动床)。工艺条件通常包括温度350-450℃和压力2-20MPa表压。沸腾床渣油加氢裂化工艺也是公知的,并且尤其是特征在于连续置换该催化剂,以处理高污染的进料。沸腾床渣油加氢裂化工艺中所用的催化剂通常包含选自在难熔载体(通常是氧化铝)上的Co、Mo和Ni中的一种或多种元素。使用小粒度催化剂有效地增加了它们的活性(即适于固定床应用的形式的类似配制物)。这两个因素使得与固定床加氢裂化单元相比,沸腾加氢裂化工艺能够实现轻质产物明显更高的产率和更高的加氢水平。工艺条件通常包括温度350-450℃和压力5-25MPa表压。浆料渣油加氢裂化工艺代表了热裂化和催化氢化的组合,以实现由高污染的渣油进料到可蒸馏产物的高产率。在第一液体阶段中,热裂化和加氢裂化反应在流化床中,在包括温度400-500℃和压力15-25MPa表压的工艺条件同时进行。渣油、氢和催化剂在反应器底部引入,并且形成流化床,其高度取决于流速和所需转化率。在这些方法中,连续置换催化剂以实现整个操作周期中一致的转化率水平。催化剂可以是在反应器中原位产生的未负载的金属硫化物。在实践中,当需要高污染的重质料流例如减压粗柴油的高转化率时,与沸腾床和浆料相反应器有关的额外成本才是合理的。在这些情况下,非常大的分子的有限转化率和与催化剂失活有关的困难使得固定床工艺相对不优选。因此,沸腾床和浆料反应器类型是优选的,这归因于它们与固定床加氢裂化相比,提高了轻质和中间馏分的产率。作为这里使用的,术语“渣油提质液体料流出物”涉及通过渣油提质生产的产物,不包括气态产物例如甲烷和LPG,和通过渣油提质生产的重质馏分。优选将通过渣油提质生产的重质馏分再循环到渣油提质单元,直到结束。但是,会需要清除相对小的沥青料流。从碳效率的观点,渣油加氢裂化器优于焦化单元,因为后者产生了相当大量的石油焦,其无法提质成高价值石化产物。从整合方法的氢平衡的观点,优选可以选择焦化单元,而非渣油加氢裂化器,因为后者消耗了相当大量的氢。同样,鉴于资金支出和/或操作成本,可以有利地选择焦化单元,而非渣油加氢裂化器。
作为这里使用的,术语“脱芳构化单元”涉及用于从混合烃进料中分离芳烃例如BTX的炼制单元。这种脱芳构化工艺描述在Folkins(2000)Benzene,Ullmann’sEncyclopedia of Industrial Chemistry中。因此,存在用于将混合烃料流分离成第一流(其富含芳族化合物)和第二流(其富含链烷烃和环烷烃)的方法。从芳烃和脂肪烃的混合物中分离芳烃的优选方法是溶剂萃取;参见例如WO2012135111A2。用于芳族溶剂萃取中的优选溶剂是环丁砜、四甘醇和N-甲基吡咯烷酮,其是商业芳族化合物萃取工艺中常用的溶剂。这些物质经常与其他溶剂或其他化学品(有时候称作助溶剂)例如水和/或醇组合使用。特别优选不含氮的溶剂例如环丁砜。对于沸点超过250℃,优选200℃的烃混合物的脱芳构化,不太优选商业应用的脱芳构化工艺,因为这种溶剂萃取中所用的溶剂的沸点需要低于待萃取的芳族化合物的沸点。重质芳族化合物的溶剂萃取在本领域中有描述;参见例如US5,880,325。可选地,除了溶剂萃取,其他已知的方法例如分子筛分离或者基于沸点的分离,可以用于在脱芳构化工艺中分离重质芳族化合物。
将混合烃料流分离成主要包含链烷烃的料流和包含主要为芳族化合物和环烷烃的第二流的方法,包括在溶剂萃取单元中处理所述混合烃料流,该溶剂萃取单元包括三个主要的烃处理塔:溶剂萃取塔、汽提塔和萃取物塔。对萃取芳族化合物具有选择性的常规溶剂也对溶解轻质环烷烃和较少程度的轻质链烷烃物质具有选择性,因此离开溶剂萃取塔底部的料流包含溶剂以及溶解的芳族化合物、环烷烃和轻质链烷烃物质。离开溶剂萃取塔顶部的料流(经常称作萃余物料流)包含相对不溶性的(相对于所选的溶剂而言)链烷烃物质。离开溶剂萃取塔底部的料流然后在蒸馏塔中进行蒸发汽提,其中物质基于它们在溶剂存在下的相对挥发性来分离。在溶剂存在下,轻质链烷烃物质具有与具有相同数目碳原子的环烷烃物质和特别是芳族物质相比更高的相对挥发性,因此大部分轻质链烷烃物质会在来自于蒸发汽提塔的顶部料流中浓缩。该料流可以与来自于溶剂萃取塔的萃余物料流合并,或者作为单独的轻质烃料流收集。由于它们相对低的挥发性,大部分环烷烃和特别是芳族物质保留在合并的溶剂和离开该塔底部的溶解的烃料流中。在萃取单元最后的烃处理塔中,通过蒸馏将溶剂与溶解的烃物质分离。在该步骤中,具有相对高沸点的溶剂作为来自于该塔的底部料流回收,而溶解的烃(包含主要为芳族化合物和环烷烃物质)作为离开该塔顶部的蒸气料流回收。该后者料流经常称作萃取物。
作为这里使用的,术语“逆异构化单元”涉及操作以将石脑油和/或炼制单元来源的轻质馏分中所含的异链烷烃转化成正链烷烃的炼制单元。这种逆异构化工艺与增加汽油燃料的辛烷等级的更常规的异构化方法密切相关,并且描述在EP2243814A1等中。逆异构化单元的进料流优选相对富含链烷烃,优选异链烷烃,例如通过脱芳构化来除去芳族化合物和环烷烃,和/或使用开环工艺将芳族化合物和环烷烃转化成链烷烃。在逆异构化单元中处理高链烷烃石脑油的效果是通过将异链烷烃转化成正链烷烃,增加蒸汽裂化工艺中乙烯的产率,同时降低甲烷、C4烃和热解汽油的产率。用于逆异构化的工艺条件优选包括温度50-350℃,优选150-250℃,压力0.1-10MPa表压,优选0.5-4MPa表压和液时空速0.2-15体积的逆可异构化烃进料/小时/催化剂体积,优选是0.5-5h-1。本领域已知的适于富含链烷烃的烃料流异构化的任何催化剂可以用作逆异构化催化剂。优选逆异构化催化剂包含第10族元素,其负载在沸石和/或难熔载体例如氧化铝上。
本发明的方法会需要从某些原油馏分中除硫,以防止在下游炼制工艺例如催化重整或流体催化裂化中催化剂失活。这种加氢脱硫工艺在“HDS单元”或“加氢处理器”中进行;参见Alfke(2007)同前文献。通常,加氢脱硫反应在固定反应器中,在200-425℃,优选300-400℃的升高的温度和1-20MPa表压,优选1-13MPa表压的升高的压力,在催化剂存在下进行,催化剂包含选自Ni、Mo、Co、W和Pt的元素,具有或不具有助催化剂,负载于氧化铝上,其中催化剂为硫化物的形式。
在另一实施方案中,该方法进一步包括加氢脱烷基化步骤,其中将BTX(或者仅所生产的所述BTX的甲苯和二甲苯级分)在适合的条件下与氢接触,以生产包含苯和燃料气体的加氢脱烷基化产物料流。
由BTX生产苯的工艺步骤可以包括在加氢脱烷基化之前,将加氢裂化产物料流中所含的苯与甲苯和二甲苯进行分离的步骤。该分离步骤的优点是增加加氢脱烷基化反应器的能力。苯可以通过常规蒸馏来与BTX流分离。
用于包含C6-C9芳烃的烃混合物的加氢脱烷基化方法是本领域公知的,并且包括热加氢脱烷基化和催化加氢脱烷基化;参见例如WO2010/102712A2。优选催化加氢脱烷基化,因为该加氢脱烷基化方法通常与热加氢脱烷基化相比具有对于苯更高的选择性。优选使用催化加氢脱烷基化,其中加氢脱烷基化催化剂选自负载的氧化铬催化剂,负载的氧化钼催化剂,负载在二氧化硅或氧化铝上的铂,和负载在二氧化硅或氧化铝上的氧化铂。
用于加氢脱烷基化的工艺条件(在此也称作“加氢脱烷基化条件”)可以由本领域技术人员容易地确定。用于热加氢脱烷基化的工艺条件例如描述在DE1668719A1中,并且包括温度600-800℃,压力3-10MPa表压和反应时间15-45秒。用于优选的催化加氢脱烷基化的工艺条件描述在WO2010/102712A2中,并且优选包括温度500-650℃,压力3.5-8MPa表压,优选3.5-7MPa表压和重时空速0.5-2h-1。加氢脱烷基化产物料流典型地通过冷却和蒸馏的组合,分离成液体料流(包含苯和其他芳族物质)和气体料流(包含氢、H2S、甲烷和其他低沸点烃)。液体料流可以通过蒸馏进一步分离成苯料流、C7-C9芳族化合物料流和任选的中间馏分料流,其相对富含芳族化合物。C7-C9芳族化合物料流可以经由再循环进料回到反应器工段,以增加整体转化率和苯产率。芳族化合物料流(其包含聚芳族物质例如联苯)优选不再循环到反应器,而是可以作为单独的产物料流输出和作为中间馏分(“通过加氢脱烷基化生产的中间馏分”)再循环到整合的方法。气体料流包含大量氢,其可以经由再循环气体压缩机再循环回到加氢脱烷基化单元,或者再循环到任何其他使用氢作为进料的炼厂。可以使用再循环气体净化来控制反应器进料中甲烷和H2S的浓度。
作为这里使用的,术语“气体分离单元”涉及分离通过粗蒸馏单元生产的气体中所含的不同化合物,和/或来源于炼制单元的气体的炼制单元。可以在气体分离单元中分离成单独料流的化合物包括乙烷、丙烷、丁烷、氢和主要包含甲烷的燃料气体。可以使用任何适用于分离所述气体的常规方法。因此,该气体可以经历多个压缩阶段,其中在压缩阶段之间可以除去酸性气体例如CO2和H2S。在随后的步骤中,产生的气体可以在级联的冷冻系统的阶段中部分冷凝为大致气相中仅保留氢。不同的烃化合物可以随后通过蒸馏进行分离。
用于将烷烃转化成烯烃的方法包括“蒸汽裂化”或“热解”。作为这里使用的,术语“蒸汽裂化”涉及饱和烃裂化成较小的、经常不饱和的烃例如乙烯和丙烯的石化工艺。在蒸汽裂化气态烃进料如乙烷、丙烷和丁烷或其混合物中,(气体裂化)或液体烃进料如石脑油或汽油(液体裂化)用蒸汽稀释和在炉中短暂加热,并且不存在氧。典型地,反应温度是750-900℃,但是该反应仅允许非常短暂地进行,通常停留时间是50-1000毫秒。优选相对低的工艺压力是选择大气压高至175kPa表压。优选烃化合物乙烷、丙烷和丁烷在相应专用的炉中分别裂化,以确保在最佳条件裂化。在达到裂化温度后,使用冷却油将该气体快速冷却以停止传输管线热交换器中或者冷却集管内的反应。蒸汽裂化使得焦炭(碳的一种形式)缓慢沉积到反应器壁上。脱焦需要将炉与该工艺隔离,然后将蒸汽或者蒸汽/空气混合物的料流送过该炉盘管。这将硬固体碳层转化成一氧化碳和二氧化碳。一旦该反应完成,则将该炉返回投入使用。通过蒸汽裂化产生的产物取决于进料的组成,烃与蒸汽之比和裂化温度和炉停留时间。轻质烃进料例如乙烷、丙烷、丁烷或轻质石脑油产生了富含较轻质聚合物等级烯烃(包括乙烯、丙烯和丁二烯)的产物料流。较重质烃(全馏程和重质石脑油和粗柴油馏分)也产生了富含芳烃的产物。
为了分离蒸汽裂化产生的不同烃化合物,将裂化的气体经历分馏单元。这种分馏单元是本领域公知的,并且可以包括所谓的汽油分馏器,其中重质馏分(“炭黑油”)和中间馏分(“裂化的馏出物”)与轻质馏分和气体是分开的。在随后任选的冷却塔中,蒸汽裂化产生的大部分轻质馏分(“热解汽油”或“重质裂解汽油”)可以通过冷凝轻质馏分而与气体分离。随后,该气体可以经历多个压缩阶段,其中在压缩阶段之间其余的轻质馏分可以与气体分离。同样,酸性气体(CO2和H2S)可以在压缩阶段之间除去。在随后的步骤中,热解产生的气体可以在级联冷冻系统的阶段中部分地冷凝为大致气相中仅保留氢。不同烃化合物可以随后通过简单蒸馏进行分离,其中乙烯、丙烯和C4烯烃是蒸汽裂化产生的最重要的高价值化学品。蒸汽裂化产生的甲烷通常用作燃料气体,氢可以分离和再循环到消耗氢的工艺,例如加氢裂化工艺。优选蒸汽裂化产生的乙炔选择性氢化成乙烯。裂化气体中所含的烷烃可以再循环到烯烃合成工艺。
作为这里使用的,术语“丙烷脱氢单元”涉及将丙烷进料流转化成包含丙烯和氢的产物的石化工艺单元。因此,术语“丁烷脱氢单元”涉及用于将丁烷进料流转化成C4烯烃的工艺单元。总之,用于对低级烷烃例如丙烷和丁烷进行脱氢的工艺被称作低级烷烃脱氢工艺。用于对低级烷烃脱氢的工艺是本领域公知的,并且包括氧化性脱氢工艺和非氧化性脱氢滚出。在氧化性脱氢工艺中,工艺热通过进料中低级烷烃的部分氧化来提供。在非氧化性脱氢工艺中(其在本发明上下文中是优选的),用于吸热性脱氢反应的工艺热通过外部热源提供,例如通过燃料气体燃烧获得的热烟道气或者蒸汽。在非氧化性脱氢工艺中,工艺条件通常包括温度540-700℃和绝对压力25-500kPa。例如,UOP Oleflex工艺能够在移动床反应器中,在负载于氧化铝上的含铂催化剂存在下,使丙烷脱氢以形成丙烯和使(异)丁烷脱氢以形成(异)丁烯(或其混合物);参见例如US4,827,072。Uhde STAR工艺能够在负载于锌-氧化铝尖晶石上的经助催化的铂催化剂存在下,使丙烷脱氢以形成丙烯,或者使丁烷脱氢以形成丁烯;参见例如US4,926,005。STAR工艺最近已经通过应用氧脱氢的原理而得以改进。在反应器中的第二绝热区,来自于中间产物的部分氢用添加的氧选择性转化以形成水。这将热力学平衡转移到更高转化率并实现了更高的产率。同样,吸热性脱氢反应所需的外部热通过放热性氢转化来部分提供。Lummus Catofin工艺使用了多个基于循环来操作的固定床反应器。催化剂是用18-20重量%铬浸渍的活性氧化铝;参见例如EP0192059A1和GB2162082A。Catofin工艺具有优点,即它是强烈的和能够处置将使得铂催化剂中毒的杂质。通过丁烷脱氢工艺生产的产物取决于丁烷进料的性质和所用的丁烷脱氢工艺。同样,Catofin工艺能够使丁烷脱氢以形成丁烯;参见例如US7,622,623。
本发明将在以下实施例中讨论,该实施例不应当解释为限定保护范围。
实施例
工艺方案可以在唯一的图中找到。将烃原料38在蒸馏单元2中分离成顶部料流15、13,底部料流25和侧线料流8。底部料流25经由料流19送入加氢裂化反应区9,并且它的反应产物18在分离器22中分离成富含单芳族化合物的料流29和富含多芳族化合物的料流30。来自于加氢裂化反应区9或者分离器22的气体料流(未示出)可以直接送到蒸汽裂化器单元12,可能经由料流13。非加氢裂化的或者不完全加氢裂化的部分料流7可以作为料流40再循环到加氢裂化反应区9的入口。将富含单芳族化合物的料流29进料到汽油加氢裂化器(GHC)单元10,和将富含多芳族化合物的料流30经由料流43进料到开环反应区11。在另一实施方案中,料流29送到分离工段3。来自于蒸馏单元2的侧线料流8可以经由料流51也送到开环反应区11。另一选项是将侧线料流8从蒸馏单元2送到芳族化合物萃取单元4。
将GHC单元10的反应产物分离为顶部气体料流24(其包含C2-C4链烷烃、氢和甲烷)和底部料流17(其包含芳烃化合物和非芳烃化合物),该底部料流17在需要时可以进一步提质成高BTX的料流。该顶部气体料流24可以进一步在分别包含C2-C4链烷烃、氢和甲烷的单独的料流中提质。
将来自于汽油加氢裂化器(GHC)单元10的顶部料流24送到蒸汽裂化器单元12。该料流24可以进一步分离成氢、甲烷和C2/LPG,其中该最后级分进一步分离成单独的C2、C3和C4料流,或者一方面分离成C2,另一方面分离成合并的C3-C4料流。
富含多芳族化合物的料流30优选在芳族化合物萃取单元4中进一步处理,从该芳族化合物萃取单元4将它的底部料流28进料到所述开环反应区11,和将它的顶部料流36进料到所述蒸汽裂化器单元12。顶部料流36还可以首先送到异构化/逆异构化单元6。将在开环反应区11中形成的反应产物的重质级分37送到汽油加氢裂化器(GHC)单元10,而将在开环反应区11中形成的反应产物的轻质级分41送到所述蒸汽裂化器单元12。芳族化合物萃取单元4的一个例子是蒸馏单元、溶剂萃取单元或者分子筛类型。在溶剂萃取单元的情况中,将它的顶部料流清洗以除去溶剂,其中将由此回收的溶剂返回到所述溶剂萃取单元中,和将由此清洗的顶部料流进料到所述蒸汽裂化器单元12。
在一个优选的实施方案中,将来自于所述蒸馏单元2的底部料流25进一步在减压蒸馏单元5中分馏,在该减压蒸馏单元5中,将所述进料分离成顶部料流27和底部料流35,其中将底部料流35进料到所述加氢裂化区9。在另一实施方案中,底部料流25可以绕过减压蒸馏单元5并直接送到加氢裂化区9。
将顶部料流27送到芳族化合物萃取单元4或者经由料流44送到开环反应区11。如图所示,减压蒸馏单元5的顶部料流27可以绕过芳族化合物萃取单元4,由此料流27经由附图标记44直接与开环反应区11相连。开环反应区11的进料28因此可以包含料流43和44,其中分别地,料流43来自于分离器22和料流44来自于减压蒸馏单元5,和芳族化合物萃取单元4的出口流。这意味着芳族化合物萃取单元4涉及本发明的一个优选的实施方案。
从图中清楚地看到,本发明的方法提供完全绕过芳族化合物萃取单元4的选项,即料流8可以直接送到开环反应区11,并且料流27和料流30都可以经由料流28也直接送到开环反应区11。这提供了关于灵活性和产物产率的非常有益的可能性。
优选将蒸馏单元2的顶部料流15送到分离区3,在该分离区3中,将顶部料流15分离成富含芳族化合物的料流16和富含链烷烃的料流14,其中将该富含链烷烃的料流14送到蒸汽裂化器单元12。蒸馏单元2的轻质级分13可以直接送到蒸汽裂化器单元12。如果需要,来自于蒸馏单元2的顶部料流15可以分成三个不同的料流,即作为分离单元3的进料的料流32,作为蒸汽裂化器单元12的进料的料流23和作为汽油加氢裂化器(GHC)单元10的进料的料流50。从图中清楚地看到,料流50和料流23都绕过了分离单元3。可以将料流13称作“气体顶流(header)”和将料流14称作“液体顶流”。
在分离单元3中,料流32分离成富含芳族化合物的料流16和富含链烷烃的料流14,其中将料流16送到汽油加氢裂化器(GHC)单元10,和将料流14送到异构化/逆异构化单元6。将异构化/逆异构化单元6的输出物39送到分离器45,或者直接(未示出)送到蒸汽裂化单元12。在一个优选的实施方案中,将料流14直接送到蒸汽裂化单元12,或者将料流14的一部分经由料流26送到脱氢单元60。优选将仅C3-C4级分送到脱氢单元60,其作为单独的料流或者作为合并的C3和C4料流。
从图中清楚地看到,本发明的方法提供完全绕过分离单元3的选项,即如果合适,料流15可以经由料流23和单元6直接送到料流裂化器单元12,并且料流15可以经由料流50直接送到汽油加氢裂化器(GHC)单元10。这提供了关于灵活性和产物产率的非常有益的可能性。
在本发明方法的一个实施方案中,特别是当使用分离器45时,优选从气态料流39和13中分离C2-C4链烷烃,然后将这些料流送到蒸汽裂化器单元12。在这种情况中,将由此从气态料流中分离的C2-C4链烷烃送到蒸汽裂化器单元12的炉工段。在这种实施方案中,优选将C2-C4链烷烃分离成单个料流,每个料流分别主要包含C2链烷烃、C3链烷烃和C4链烷烃,并且将每个单个料流进料到所述蒸汽裂化器单元12的具体炉工段。在分离器45中,氢和甲烷将分开。例如,氢将送到汽油加氢裂化器(GHC)单元10,或者加氢裂化区9。甲烷可以用作燃料,例如用于蒸汽裂化器单元12的炉工段。
如关于分离器45所示意的,气态料流39、13可以再分为料流31和料流26,其中将料流26送到脱氢单元60。优选将仅C3-C4级分送到脱氢单元60。将料流31送到蒸汽裂化器单元12。该料流31可以进一步分离成单个料流,每个料流分别主要包含C2链烷烃、C3链烷烃和C4链烷烃,其中将每个单个料流进料到所述蒸汽裂化器单元12的具体炉工段。
在蒸汽裂化器分离工段(未示出)中,将所述蒸汽裂化单元12的反应产物分离成顶部料流(其主要包含C2-C6烷烃)、中间料流21(其包含C2烯烃、C3烯烃和C4烯烃)和第一底部料流33和34(其包含炭黑油(CBO)、裂化的馏出物(CD)和C9+烃)和第二底部料流42(其包含芳烃化合物和非芳烃化合物)。优选将顶部料流再循环到蒸汽裂化单元12。将料流33再循环到所述开环反应区11,和将料流34再循环到加氢裂化反应区9。优选将第二底部料流42(也称作含重质裂解汽油的料流)进料到汽油加氢裂化器(GHC)单元10中。汽油加氢裂化器(GHC)单元10的反应产物17可以分离成富BTX级分和重质级分。
在优选的实施方案中,从蒸汽裂化单元12的反应产物中回收氢,并且进料到汽油加氢裂化器(GHC)单元10和/或开环反应区11。此外,氢可以如前所述从脱氢单元60回收,并且进料到加氢裂化器(GHC)单元10和/或开环反应区11。加氢裂化反应区9可以认为是氢消耗器,由此从蒸汽裂化单元12和/或脱氢单元60的反应产物回收的氢也可以送到这些单元。
从该工艺方案清楚地看到,含有LPG的料流可以送到脱氢单元60或者送到蒸汽裂化单元。优选将仅C3-C4级分送到脱氢单元60。C2-C4级分可以与含LPG料流分离,并且由此获得的C2-C4级分可以进一步在单个料流中分离,每个料流分别主要包含C2链烷烃、C3链烷烃和C4链烷烃,并且将每个单个料流进料到所述蒸汽裂化器单元的具体炉工段。到单个料流的该分离也适用于脱氢单元60.
本发明现在通过以下非限定性实施例来更充分地描述。
实施例1
这里提供的实验数据通过在Aspen Plus中模拟的流程图来获得。严格考虑了蒸汽裂化动力学(用于蒸汽裂化器产物组成计算的软件)。使用的蒸汽裂化器炉条件:
乙烷和丙烷炉:COT(盘管出口温度)=845℃,蒸汽与油之比=0.37,C4-炉和液体炉:盘管出口温度=820℃,蒸汽与油之比=0.37。
对于进料加氢裂化,使用了基于实验数据的反应方案。对于芳族化合物开环随后汽油加氢裂化,使用了这样的反应方案,其中将全部的多芳族化合物转化成BTX和LPG,和将全部的环烷烃和链烷烃化合物转化成LPG。渣油加氢裂化器基于文献数据模拟。对于脱芳构化单元,使用了将正链烷烃和异链烷烃与环烷烃和芳族化合物分离的分离方案。
表1显示了阿拉伯轻质原油的一些物理化学性质,表2汇总了在常压蒸馏之后获得的相应常压渣油的性质。
表1阿拉伯轻质原油的物理化学性质
表2阿拉伯轻质常压渣油的物理化学性质
性质 | 单位 | 值 |
正链烷烃 | 重量% | 22.1 |
异链烷烃 | 重量% | 16.7 |
环烷烃 | 重量% | 27.6 |
芳族化合物 | 重量% | 33.6 |
密度60°F | kg/L | 0.9571 |
IBP | ℃ | 342.7 |
BP10 | ℃ | 364.9 |
BP30 | ℃ | 405.4 |
BP50 | ℃ | 481.5 |
BP70 | ℃ | 573.5 |
BP90 | ℃ | 646.6 |
FBP | ℃ | 688.9 |
在实施例1中,将阿拉伯轻质原油(1)在常压蒸馏单元(2)中蒸馏。从该单元获得的馏分包含LPG(13)、石脑油(15)、粗柴油(8)和渣油(25)馏分。将LPG分离成甲烷、乙烷、丙烷和丁烷,并且将乙烷、丙烷和丁烷在上述它们各自的最佳裂化条件时进料到蒸汽裂化器单元(12)。将石脑油送到脱芳构化单元(3),在这里将富含芳族化合物和环烷烃物质的料流(16)与富含链烷烃的料流(14)分离。在该实施例中,将富含芳族化合物和环烷烃物质的料流送到汽油加氢裂化单元(10),和将富含链烷烃的料流(14)送到蒸汽裂化单元(12)。汽油加氢裂化单元产生了两种料流:一种富含BTX(10),和一种富含LPG(24),后者将以与常压蒸馏单元所产生的LPG馏分相同的方式处理。粗柴油也送到脱芳构化单元(4),在这里产生富含芳族化合物和环烷烃化合物的料流(28)和富含链烷烃的料流(36)。将后者料流送到蒸汽裂化器(12)和将富含芳族化合物和环烷烃物质的料流送到开环工艺(11)。后者单元产生富含BTX的料流(37),将其送到汽油加氢裂化单元(10),和富含LPG的料流(41),将其作为在流程图的其他部分中产生的其他LPG馏分来处理。最后,将渣油(25)送到减压蒸馏单元(5),在这里产生两种不同的馏分:减压渣油(35)和减压粗柴油(27)。将后者料流送到脱芳构化单元(4),并且将它作为前述粗柴油馏分来进一步处理。将减压渣油送到加氢裂化反应区(9),在这里将该材料再循环,直到用完,并且产生一种粗柴油馏分,将它送到脱芳构化单元(4)并以与前述粗柴油相同的方式处理。将蒸汽裂化单元的产物分离,并且将较重质馏分(C9树脂进料、裂化的馏出物和炭黑油)再循环返回。更具体地,将C9树脂进料流再循环到汽油加氢裂化单元(10),将裂化的馏出物送到芳族开环工艺(11),和最后,将炭黑油料流送到加氢裂化反应区(9)。原油的产物产率以重量%计的结果提供在下面所提供的表3中。将来源于原油的产物分成石化产品(烯烃和BTXE,其是BTX+乙基苯首字母)和其他产物(氢和甲烷)。从原油的产物组成,碳效率确定为:(石化产品中的总碳重量)/(原油中的总碳重量)。
实施例2
实施例2与实施例1相同,区别如下:
石脑油和粗柴油馏分没有脱芳构化,而是将它们分别直接送到进料加氢裂化单元(10)和芳族开环工艺(11)。
实施例3
实施例3与实施例1相同,区别如下:
将流程图中不同的单元产生的链烷烃和LPG分离成甲烷、乙烷、丙烷、丁烷和其他富含链烷烃的料流。乙烷和富含链烷烃的料流(31)在用于每个料流的最佳裂化条件下在料流裂化单元(12)中进一步处理。此外,将丙烷和丁烷(26)脱氢成丙烯和丁烯(并且最终丙烷到丙烯的选择性是90%,和正丁烷到正丁烯的选择性是90%,和异丁烷到异丁烯的选择性是90%)。
实施例4
实施例4与实施例2相同,区别如下:
将流程图中不同的单元产生的LPG分离成甲烷、乙烷、丙烷和丁烷。将乙烷(31)在它的最佳裂化条件下在料流裂化单元(12)中进一步处理。此外,将丙烷和丁烷(26)脱氢成丙烯和丁烯(并且最终丙烷到丙烯的选择性是90%,和正丁烷到正丁烯的选择性是90%,和异丁烷到异丁烯的选择性是90%)。
实施例5
实施例5与实施例1相同,区别如下:
将从脱芳构化单元(14)获得的富含链烷烃的料流在逆异构化单元(6)中进一步处理,在这里将异链烷烃转化成正链烷烃。将后者料流在蒸汽裂化单元(12)中进一步处理。
实施例6
实施例6与实施例1相同,区别如下:
仅将常压蒸馏阿拉伯轻质馏分后获得的常压渣油(25)在该系统中进一步处理。该料流(它的性质可以在表2中找到)不能在没有预处理步骤的蒸汽裂化器单元(其在实施例1中提及)中有效地处理。表3显示了整个处理的相应产物产率。在该情况中,产物产率不是指原油的初始量,而仅指由原油产生的常压渣油。
表3
*)不包括来自于PDH和BDH单元的氢
本发明人发现,当将实施例3与实施例1比较时,促进了丙烯的生产,同时避免了依靠CH4生产的“损失碳和氢”。
在实施例3和5中,虽然气体裂化器被用于处理乙烷,但是BTXE生产保持得与使用液体蒸汽裂化器时几乎一样高。该效应归因于使用了FHC和部分开环来保存原油中已经存在的单芳族分子。
另外,本发明人发现,使用脱芳构化与蒸汽裂化器的组合(实施例1相对于实施例2)没有增加乙烯生产。本发明人预期,当粗柴油类材料没有脱芳构化时,它直接到部分ARO。在那里生产了许多乙烷和丙烷(以及甲烷),其是产生了比链烷烃液体进料(其可以通过脱芳构化来获得)甚至更多乙烯的进料。当不考虑脱芳构化时,脱芳构化与PDH/BDH的组合产生了更多乙烯。这伴随的不利之处是甲烷生产。本发明人假定,当使用脱芳构化时,蒸汽裂化器的装料量几乎是2倍高。另外,当使用进料加氢裂化单元(FHC)时,苯与甲苯与二甲苯之比从富含苯的料流(蒸汽裂化器,没有FHC)变成富含甲苯的料流(具有FHC)。
该结果还表明,逆异构化(实施例5与实施例3相比)增加了乙烯生产,同时保持丙烯大致恒定。
虽然数据中没有明确显示,但是来自于蒸汽裂化器的重质材料(C9树脂进料、裂化的馏出物和炭黑油)可以使用这种构造来提质。
Claims (10)
1.一种用于从原油进料生产石化产品和燃料产品的综合方法,其包括:
在常压蒸馏单元(ADU)中从原油进料中至少分离出:
第一ADU馏分,其包含直馏石脑油,
第二ADU馏分,其包含至少一部分来自原油进料的中间馏出物,和
第三ADU馏分,其包含常压渣油;
在减压蒸馏单元(VDU)中从第三ADU馏分至少分离出:
第一VDU馏分,其包含减压瓦斯油;
在馏出物加氢处理(DHP)区中加氢处理来自第二ADU馏分的中间馏出物并至少回收第一DHP馏分和第二DHP馏分,其中第一DHP馏分包含石脑油且第二DHP馏分用于柴油燃料生产;
在瓦斯油加氢处理(GOHP)区中加氢处理来自第一VDU馏分的减压瓦斯油并回收第一GOHP馏分和第二GOHP馏分;第一GOHP馏分含有沸点等于或低于常压渣油终点沸点的组分并包括LPG、石脑油和中间馏出物范围组分,第二GOHP馏分含有重油,其是在减压瓦斯油范围内加氢处理的瓦斯油或未转化的油;
在混合进料蒸汽裂化(MFSC)区中蒸汽裂化来自第一ADU馏分的石脑油;
其中蒸汽裂化在至少有效回收混合产物流H2、甲烷、乙烷、乙烯、混合C3和混合C4、热解气和热解油的条件下进行;
从混合产物流中回收H2、甲烷、非烯烃C2-C4和石化产品乙烯、丙烯和丁烯;
在石脑油加氢处理区中加氢处理来自蒸汽裂化的热解气,并回收加氢处理的热解气;和
在芳烃提取区中从加氢处理的热解气中分离芳烃,用于回收石化芳烃产物和芳烃提取区提余液;
在基础油生产中心处理来自GOHP区的减压瓦斯油范围内的重油,包括催化脱蜡和加氢精制操作,以及
回收基础油。
2.根据权利要求1所述的方法,其中在所述开环反应区中占优的工艺条件是温度100℃和压力2MPa。
3.根据权利要求1所述的方法,其进一步将来自于汽油加氢裂化器单元的顶部料流进料到蒸汽裂化器单元中。
4.根据权利要求1所述的方法,其进一步包括在芳族化合物萃取单元中预处理步骤(b)的所述富含多芳族化合物的料流的步骤,从该芳族化合物萃取单元将它的底部料流进料到所述开环反应区中,和将它的顶部料流进料到所述蒸汽裂化器单元中。
5.根据权利要求1所述的方法,其进一步包括将在开环反应区中形成的反应产物的重质级分进料到汽油加氢裂化器单元中。
6.根据权利要求1所述的方法,其进一步包括将在开环反应区中形成的反应产物的轻质级分进料到所述蒸汽裂化器单元中的步骤。
7.根据权利要求4所述的方法,其中所述芳族化合物萃取单元是蒸馏单元类型的。
8.根据权利要求4所述的方法,其中所述芳族化合物萃取单元是溶剂萃取单元类型的,其中在所述溶剂萃取单元中,将它的顶部料流清洗以除去溶剂,其中将由此回收的溶剂返回到所述溶剂萃取单元中,和将由此清洗的顶部料流进料到所述蒸汽裂化器单元中。
9.根据权利要求4所述的方法,其中所述芳族化合物萃取单元是分子筛类型的。
10.一种将炼厂重质渣油提质为石化产品的方法,其包括以下步骤:
在蒸馏单元中将烃原料分离成顶部料流和底部料流;
将所述底部料流进料到加氢裂化反应区;
将从所述反应区中产生的反应产物至少分离成富含多芳族化合物的料流,以及
将所述富含多芳族化合物的料流进料到开环反应区。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13174770.1 | 2013-07-02 | ||
EP13174770 | 2013-07-02 | ||
CN201480033020.7A CN105378037B (zh) | 2013-07-02 | 2014-06-30 | 将炼厂重质渣油提质为石化产品的方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480033020.7A Division CN105378037B (zh) | 2013-07-02 | 2014-06-30 | 将炼厂重质渣油提质为石化产品的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109593552A true CN109593552A (zh) | 2019-04-09 |
CN109593552B CN109593552B (zh) | 2021-09-10 |
Family
ID=48700463
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480033020.7A Active CN105378037B (zh) | 2013-07-02 | 2014-06-30 | 将炼厂重质渣油提质为石化产品的方法 |
CN201811214036.4A Active CN109593552B (zh) | 2013-07-02 | 2014-06-30 | 将炼厂重质渣油提质为石化产品的方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480033020.7A Active CN105378037B (zh) | 2013-07-02 | 2014-06-30 | 将炼厂重质渣油提质为石化产品的方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US11046900B2 (zh) |
EP (1) | EP3017024B1 (zh) |
JP (2) | JP6427180B2 (zh) |
KR (2) | KR102325584B1 (zh) |
CN (2) | CN105378037B (zh) |
ES (1) | ES2663145T3 (zh) |
SG (2) | SG10201807497VA (zh) |
WO (1) | WO2015000841A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020247515A1 (en) * | 2019-06-03 | 2020-12-10 | Ewo Solutions Llc | Additives for enhancement of oil flow |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11046900B2 (en) | 2013-07-02 | 2021-06-29 | Saudi Basic Industries Corporation | Process for upgrading refinery heavy residues to petrochemicals |
CN105308159B (zh) * | 2013-07-02 | 2018-06-22 | 沙特基础工业公司 | 用于将原油转化成具有改进的乙烯产率的石化品的方法和设施 |
EA033012B1 (ru) * | 2014-02-25 | 2019-08-30 | Сауди Бейсик Индастриз Корпорейшн | Способ и устройство для превращения сырой нефти в продукты нефтехимического синтеза, характеризующегося улучшенным выходом по этилену и бтк |
CN106062146B (zh) * | 2014-02-25 | 2019-07-02 | 沙特基础工业公司 | 使用焦化由混合烃源生产btx的方法 |
WO2017093056A1 (en) | 2015-11-30 | 2017-06-08 | Sabic Global Technologies B.V. | Process for producing lpg and btx from a heavy aromatic feed |
SG11201806319YA (en) | 2016-02-05 | 2018-08-30 | Sabic Global Technologies Bv | Process and installation for the conversion of crude oil to petrochemicals having an improved product yield |
CN109790475B (zh) * | 2016-06-21 | 2021-05-14 | 环球油品有限责任公司 | 用于由原油生产化学原料的系统和方法 |
MX2018014994A (es) | 2016-10-18 | 2019-05-13 | Mawetal Llc | Combustible de turbina pulido. |
MA51768B1 (fr) | 2016-10-18 | 2023-12-29 | Mawetal Llc | Méthode de réduction des émissions au port |
CN114437810B (zh) | 2016-10-18 | 2024-02-13 | 马威特尔有限责任公司 | 配制的燃料 |
US10619112B2 (en) * | 2016-11-21 | 2020-04-14 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrotreating and steam cracking |
US10472579B2 (en) * | 2016-11-21 | 2019-11-12 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrocracking and steam cracking |
US20180142167A1 (en) | 2016-11-21 | 2018-05-24 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to chemicals and fuel products integrating steam cracking and fluid catalytic cracking |
US10472580B2 (en) * | 2016-11-21 | 2019-11-12 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to petrochemicals and fuel products integrating steam cracking and conversion of naphtha into chemical rich reformate |
US10870807B2 (en) | 2016-11-21 | 2020-12-22 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to petrochemicals and fuel products integrating steam cracking, fluid catalytic cracking, and conversion of naphtha into chemical rich reformate |
US10472574B2 (en) * | 2016-11-21 | 2019-11-12 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to petrochemicals and fuel products integrating delayed coking of vacuum residue |
US11066611B2 (en) | 2016-11-21 | 2021-07-20 | Saudi Arabian Oil Company | System for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrotreating and steam cracking |
WO2018094353A1 (en) * | 2016-11-21 | 2018-05-24 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to petrochemicals and fuel products integrating steam cracking, fluid catalytic cracking, and conversion of naphtha into chemical rich reformate |
US10407630B2 (en) * | 2016-11-21 | 2019-09-10 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to petrochemicals and fuel products integrating solvent deasphalting of vacuum residue |
US10487275B2 (en) * | 2016-11-21 | 2019-11-26 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum residue conditioning and base oil production |
US10487276B2 (en) * | 2016-11-21 | 2019-11-26 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum residue hydroprocessing |
US10844296B2 (en) * | 2017-01-04 | 2020-11-24 | Saudi Arabian Oil Company | Conversion of crude oil to aromatic and olefinic petrochemicals |
US10851316B2 (en) * | 2017-01-04 | 2020-12-01 | Saudi Arabian Oil Company | Conversion of crude oil to aromatic and olefinic petrochemicals |
CN107286989A (zh) * | 2017-06-19 | 2017-10-24 | 中国海洋石油总公司 | 一种由重芳烃生产富含btx的高辛烷值汽油的方法 |
US10711208B2 (en) * | 2017-06-20 | 2020-07-14 | Saudi Arabian Oil Company | Process scheme for the production of optimal quality distillate for olefin production |
CN110997875A (zh) * | 2017-08-15 | 2020-04-10 | 沙特基础工业全球技术有限公司 | 裂解烃进料的方法和系统 |
CN111032599B (zh) * | 2017-08-15 | 2022-12-27 | 沙特基础工业全球技术公司 | 页岩气和冷凝物转化为化学品 |
CN107541291B (zh) * | 2017-09-04 | 2019-11-15 | 吴江华威特种油有限公司 | 一种功能润滑油的制备方法 |
CN109694739B (zh) * | 2017-10-24 | 2021-05-11 | 中国石油化工股份有限公司 | 一种原油裂解制备低碳烯烃的方法及装置 |
RU2671640C1 (ru) * | 2017-12-28 | 2018-11-06 | Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") | Способ переработки нефтяных остатков |
CN111836875B (zh) | 2017-12-29 | 2022-09-20 | 鲁姆斯科技有限责任公司 | 重质燃料油到化学产品的转化 |
CA3024814C (en) * | 2018-01-20 | 2023-04-25 | Indian Oil Corporation Limited | A process for conversion of high acidic crude oils |
WO2020065522A1 (en) * | 2018-09-25 | 2020-04-02 | Eni S.P.A. | Process for the hydroconversion of heavy oil products with recycling |
KR20220049489A (ko) * | 2019-03-15 | 2022-04-21 | 루머스 테크놀로지 엘엘씨 | 올레핀 제조를 위한 구성 |
CA3146793A1 (en) * | 2019-07-15 | 2021-01-21 | Sabic Global Technologies B.V. | System and method for producing un-hydrogenated and hydrogenated c9+ compounds |
US11261387B2 (en) * | 2019-07-23 | 2022-03-01 | Saudi Arabian Oil Company | Fuel oil conversion |
US11046899B2 (en) | 2019-10-03 | 2021-06-29 | Saudi Arabian Oil Company | Two stage hydrodearylation systems and processes to convert heavy aromatics into gasoline blending components and chemical grade aromatics |
RU2734309C1 (ru) * | 2019-10-07 | 2020-10-15 | Маветал Ллс | Экологичное судовое топливо |
US11072748B2 (en) * | 2019-12-09 | 2021-07-27 | Saudi Arabian Oil Company | Selective reforming process to produce gasoline blending components and aromatics |
RU2747259C1 (ru) * | 2019-12-30 | 2021-04-29 | Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") | Способ переработки нефтяных остатков |
US20230145086A1 (en) | 2020-03-30 | 2023-05-11 | Hindustan Petroleum Corporation Limited | Simultaneous production of high value de-aromatized kerosene and btx from refinery hydrocarbons |
JP7002590B2 (ja) * | 2020-04-01 | 2022-01-20 | マウェタール エルエルシー | 燃料 |
US11046898B1 (en) * | 2020-05-15 | 2021-06-29 | Saudi Arabian Oil Company | Systems and processes for separating and upgrading hydrocarbons integrating a refinery system with steam cracking of an aromatic bottoms stream |
US11162039B1 (en) * | 2020-06-03 | 2021-11-02 | Saudi Arabian Oil Company | Systems and processes integrating hydroprocessing and an aromatics recovery complex for separating and upgrading hydrocarbons |
KR102583535B1 (ko) | 2020-06-16 | 2023-09-27 | 주식회사 엘지화학 | 방향족 탄화수소의 제조방법 |
KR20230000263A (ko) * | 2021-06-24 | 2023-01-02 | 주식회사 엘지화학 | 합성가스의 제조방법 |
RU2767243C1 (ru) * | 2021-07-29 | 2022-03-17 | Общество с ограниченной ответственностью "РусЭнергоПроект" | Энергоэффективная линия нагрева сырья на технологической установке ЭЛОУ-АВТ |
US20240228895A9 (en) * | 2022-10-20 | 2024-07-11 | Uop Llc | Process for producing jet fuel with heat integration |
WO2024105496A1 (en) * | 2022-11-15 | 2024-05-23 | Sabic Global Technologies B.V. | Methods and systems to improve light olefin yield and feedstock utilization from c5 raffinate streams |
US11920093B1 (en) * | 2022-11-18 | 2024-03-05 | Saudi Arabian Oil Company | Systems and processes for producing ethylene from naphtha and butanes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3132087A (en) * | 1961-08-30 | 1964-05-05 | Union Oil Co | Manufacture of gasoline and jet fuel by hydrocracking |
US3331766A (en) * | 1965-01-18 | 1967-07-18 | Union Oil Co | Selective hydrocracking process |
US3726789A (en) * | 1971-04-05 | 1973-04-10 | Ashland Oil Inc | Hydrocarbon conversion process for the production of olefins and aromatics |
US3842138A (en) * | 1971-12-21 | 1974-10-15 | Pierrefitte Auby Sa | Method of cracking hydrocarbons under hydrogen pressure for the production of olefins |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3080311A (en) * | 1960-09-15 | 1963-03-05 | Sun Oil Co | Gas oil hydrocracking process to produce a high octane gasoline |
US3159567A (en) * | 1962-03-26 | 1964-12-01 | Union Oil Co | Selective hydrocracking process |
GB1020595A (en) * | 1963-02-08 | 1966-02-23 | Sun Oil Co | Production of naphthalene and benzene |
US3256176A (en) | 1964-10-21 | 1966-06-14 | Phillips Petroleum Co | Hydrocracking heavy hydrocarbons to gasoline and distillate |
US3433848A (en) | 1966-08-10 | 1969-03-18 | Texaco Inc | Method of controlling selectivity in an aromatic hydrocarbon dealkylation process |
CA925452A (en) * | 1969-06-20 | 1973-05-01 | P. Masologites George | Catalytic reforming of gasoline hydrocarbons |
US3660270A (en) | 1970-01-15 | 1972-05-02 | Chevron Res | Two-stage process for producing naphtha from petroleum distillates |
BE793384A (fr) * | 1971-12-27 | 1973-06-27 | Texaco Development Corp | Procede d'hydrocracking pour la conversion des hydrocarbures lourds en essence a faible teneur en soufre |
US3816294A (en) * | 1972-12-29 | 1974-06-11 | Texaco Inc | Production of alkylate |
US4137147A (en) | 1976-09-16 | 1979-01-30 | Institut Francais Du Petrole | Process for manufacturing olefinic hydrocarbons with respectively two and three carbon atoms per molecule |
FR2364879A1 (fr) | 1976-09-16 | 1978-04-14 | Inst Francais Du Petrole | Procede de fabrication d'hydrocarbures olefiniques a deux et trois atomes de carbone par molecule |
US4192734A (en) | 1978-07-10 | 1980-03-11 | Mobil Oil Corporation | Production of high quality fuel oils |
FI852865L (fi) | 1984-07-25 | 1986-01-26 | Air Prod & Chem | Foerbaettrad katalysator foer dehydrering av kolvaeten. |
FI860203A (fi) | 1985-01-22 | 1986-07-23 | Air Prod & Chem | Dehydroisomerisering av kolvaeten. |
US4789457A (en) | 1985-06-03 | 1988-12-06 | Mobil Oil Corporation | Production of high octane gasoline by hydrocracking catalytic cracking products |
US4827072A (en) | 1986-06-06 | 1989-05-02 | Uop Inc. | Dehydrogenation catalyst composition and hydrocarbon dehydrogenation process |
JPH06104628B2 (ja) | 1989-05-15 | 1994-12-21 | 丸善石油化学株式会社 | 炭化水素溶剤の製造方法 |
US4926005A (en) | 1989-05-17 | 1990-05-15 | Phillips Petroleum Company | Dehydrogenation process |
JPH05239472A (ja) * | 1992-03-03 | 1993-09-17 | Idemitsu Kosan Co Ltd | 重質炭化水素油の処理方法 |
US6270654B1 (en) | 1993-08-18 | 2001-08-07 | Ifp North America, Inc. | Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors |
US5880325A (en) | 1993-09-07 | 1999-03-09 | Exxon Research And Engineering Company | Aromatics extraction from hydrocarbon oil using tetramethylene sulfoxide |
FR2764902B1 (fr) | 1997-06-24 | 1999-07-16 | Inst Francais Du Petrole | Procede de conversion de fractions lourdes petrolieres comprenant une etape de conversion en lit bouillonnant et une etape d'hydrocraquage |
JP2000198990A (ja) | 1999-01-05 | 2000-07-18 | Idemitsu Kosan Co Ltd | 軽油留分の水素化処理方法 |
DE19949211A1 (de) | 1999-10-13 | 2001-05-31 | Veba Oel Ag | Verfahren zur Herstellung von n-Alkanen aus Mineralölfraktionen und Katalysator zur Durchführung des Verfahrens |
KR100557558B1 (ko) | 2000-11-30 | 2006-03-03 | 에스케이 주식회사 | 탄화수소 혼합물로부터 방향족 탄화수소 및 액화석유가스를 제조하는 방법 |
US6841062B2 (en) | 2001-06-28 | 2005-01-11 | Chevron U.S.A. Inc. | Crude oil desulfurization |
US7214308B2 (en) | 2003-02-21 | 2007-05-08 | Institut Francais Du Petrole | Effective integration of solvent deasphalting and ebullated-bed processing |
US20050101814A1 (en) | 2003-11-07 | 2005-05-12 | Foley Timothy D. | Ring opening for increased olefin production |
EP1720960A1 (en) | 2004-01-16 | 2006-11-15 | Syntroleum Corporation | Process to produce synthetic fuels and lubricants |
US20080194900A1 (en) | 2004-12-10 | 2008-08-14 | Bhirud Vasant L | Steam Cracking with Naphtha Dearomatization |
US7790018B2 (en) | 2005-05-11 | 2010-09-07 | Saudia Arabian Oil Company | Methods for making higher value products from sulfur containing crude oil |
US7622623B2 (en) | 2005-09-02 | 2009-11-24 | Sud-Chemie Inc. | Catalytically inactive heat generator and improved dehydrogenation process |
CA2541051C (en) | 2005-09-20 | 2013-04-02 | Nova Chemicals Corporation | Aromatic saturation and ring opening process |
KR101234448B1 (ko) | 2005-11-14 | 2013-02-18 | 에스케이이노베이션 주식회사 | 탄화수소 혼합물로부터 방향족 탄화수소 및 액화석유가스를제조하는 공정 |
US7704377B2 (en) | 2006-03-08 | 2010-04-27 | Institut Francais Du Petrole | Process and installation for conversion of heavy petroleum fractions in a boiling bed with integrated production of middle distillates with a very low sulfur content |
US20080093262A1 (en) | 2006-10-24 | 2008-04-24 | Andrea Gragnani | Process and installation for conversion of heavy petroleum fractions in a fixed bed with integrated production of middle distillates with a very low sulfur content |
AU2007345527B2 (en) | 2007-02-02 | 2012-04-19 | William George Rhodey | Method and system for recovering aromatics from a naphtha feedstock |
US7951745B2 (en) | 2008-01-03 | 2011-05-31 | Wilmington Trust Fsb | Catalyst for hydrocracking hydrocarbons containing polynuclear aromatic compounds |
US7938952B2 (en) | 2008-05-20 | 2011-05-10 | Institute Francais Du Petrole | Process for multistage residue hydroconversion integrated with straight-run and conversion gasoils hydroconversion steps |
DE102009012265A1 (de) | 2009-03-11 | 2010-09-23 | Uhde Gmbh | Verfahren zur Gewinnung von Reinaromaten aus aromatenhaltigen Kohlenwasserstofffraktionen |
EP2243814A1 (en) | 2009-04-23 | 2010-10-27 | Total Petrochemicals Research Feluy | Upgrading light naphtas for increased olefins production |
EP2445997B1 (en) | 2009-06-22 | 2021-03-24 | Saudi Arabian Oil Company | Demetalizing and desulfurizing virgin crude oil for delayed coking |
WO2011001914A1 (ja) | 2009-07-03 | 2011-01-06 | 新日本石油株式会社 | 潤滑油基油の製造方法及び潤滑油基油 |
FR2951735B1 (fr) | 2009-10-23 | 2012-08-03 | Inst Francais Du Petrole | Procede de conversion de residu integrant une technologie lit mobile et une technologie lit bouillonnant |
US9005430B2 (en) | 2009-12-10 | 2015-04-14 | IFP Energies Nouvelles | Process and apparatus for integration of a high-pressure hydroconversion process and a medium-pressure middle distillate hydrotreatment process, whereby the two processes are independent |
WO2012135111A2 (en) | 2011-03-31 | 2012-10-04 | Uop Llc | Aromatics recovery by extractive distillation |
US9920263B2 (en) | 2011-04-14 | 2018-03-20 | Bechtel Hydrocarbon Technology Solutions, Inc. | Systems and methods for refining corrosive crudes |
FR2981659B1 (fr) | 2011-10-20 | 2013-11-01 | Ifp Energies Now | Procede de conversion de charges petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement en lit fixe pour la production de fiouls a basse teneur en soufre |
CN103121897B (zh) * | 2011-11-18 | 2015-08-12 | 中国石油化工股份有限公司 | 由含有稠环烃的混合物制取芳烃的方法 |
ES2689099T3 (es) | 2013-07-02 | 2018-11-08 | Saudi Basic Industries Corporation | Proceso e instalación para la conversión de crudo en productos petroquímicos que tienen un rendimiento de propileno mejorado |
US11046900B2 (en) | 2013-07-02 | 2021-06-29 | Saudi Basic Industries Corporation | Process for upgrading refinery heavy residues to petrochemicals |
FR3027912B1 (fr) | 2014-11-04 | 2018-04-27 | IFP Energies Nouvelles | Procede de production de combustibles de type fuel lourd a partir d'une charge hydrocarbonee lourde utilisant une separation entre l'etape d'hydrotraitement et l'etape d'hydrocraquage |
FR3027911B1 (fr) | 2014-11-04 | 2018-04-27 | IFP Energies Nouvelles | Procede de conversion de charges petrolieres comprenant une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments |
FR3033797B1 (fr) | 2015-03-16 | 2018-12-07 | IFP Energies Nouvelles | Procede ameliore de conversion de charges hydrocarbonees lourdes |
-
2014
- 2014-06-30 US US14/901,947 patent/US11046900B2/en active Active
- 2014-06-30 ES ES14735909.5T patent/ES2663145T3/es active Active
- 2014-06-30 JP JP2016522559A patent/JP6427180B2/ja not_active Expired - Fee Related
- 2014-06-30 SG SG10201807497VA patent/SG10201807497VA/en unknown
- 2014-06-30 CN CN201480033020.7A patent/CN105378037B/zh active Active
- 2014-06-30 KR KR1020157036206A patent/KR102325584B1/ko active IP Right Grant
- 2014-06-30 SG SG11201508916TA patent/SG11201508916TA/en unknown
- 2014-06-30 KR KR1020197011221A patent/KR102432492B1/ko active IP Right Grant
- 2014-06-30 EP EP14735909.5A patent/EP3017024B1/en active Active
- 2014-06-30 CN CN201811214036.4A patent/CN109593552B/zh active Active
- 2014-06-30 WO PCT/EP2014/063849 patent/WO2015000841A1/en active Application Filing
-
2018
- 2018-08-29 US US16/115,982 patent/US11072750B2/en active Active
- 2018-10-26 JP JP2018201614A patent/JP2019039008A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3132087A (en) * | 1961-08-30 | 1964-05-05 | Union Oil Co | Manufacture of gasoline and jet fuel by hydrocracking |
US3331766A (en) * | 1965-01-18 | 1967-07-18 | Union Oil Co | Selective hydrocracking process |
US3726789A (en) * | 1971-04-05 | 1973-04-10 | Ashland Oil Inc | Hydrocarbon conversion process for the production of olefins and aromatics |
US3842138A (en) * | 1971-12-21 | 1974-10-15 | Pierrefitte Auby Sa | Method of cracking hydrocarbons under hydrogen pressure for the production of olefins |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020247515A1 (en) * | 2019-06-03 | 2020-12-10 | Ewo Solutions Llc | Additives for enhancement of oil flow |
Also Published As
Publication number | Publication date |
---|---|
US20160369188A1 (en) | 2016-12-22 |
US11072750B2 (en) | 2021-07-27 |
CN105378037B (zh) | 2018-11-16 |
SG10201807497VA (en) | 2018-09-27 |
JP6427180B2 (ja) | 2018-11-21 |
ES2663145T3 (es) | 2018-04-11 |
EP3017024A1 (en) | 2016-05-11 |
US11046900B2 (en) | 2021-06-29 |
SG11201508916TA (en) | 2016-01-28 |
US20190062655A1 (en) | 2019-02-28 |
WO2015000841A1 (en) | 2015-01-08 |
KR102432492B1 (ko) | 2022-08-12 |
EP3017024B1 (en) | 2017-12-27 |
KR102325584B1 (ko) | 2021-11-15 |
JP2016526592A (ja) | 2016-09-05 |
KR20190042778A (ko) | 2019-04-24 |
JP2019039008A (ja) | 2019-03-14 |
CN105378037A (zh) | 2016-03-02 |
CN109593552B (zh) | 2021-09-10 |
KR20160025512A (ko) | 2016-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105378037B (zh) | 将炼厂重质渣油提质为石化产品的方法 | |
US9856425B2 (en) | Method of producing aromatics and light olefins from a hydrocarbon feedstock | |
CN110066686B (zh) | 在蒸汽裂解器单元中裂解烃原料的方法 | |
US10260011B2 (en) | Process and installation for the conversion of crude oil to petrochemicals having an improved ethylene yield | |
CN105308156B (zh) | 用于将原油转化成具有改进的btx产率的石化品的方法和设施 | |
CN105358660B (zh) | 用于在蒸汽裂化器单元中裂化烃原料的方法 | |
EP3017028B1 (en) | Process for the production of light olefins and aromatics from a hydrocarbon feedstock. | |
EP3411459A1 (en) | Process and installation for the conversion of crude oil to petrochemicals having an improved product yield | |
CN106103663B (zh) | 用于将炼油厂重质烃改质成石油化学产品的方法 | |
CN105473690B (zh) | 用于将原油转化成具有改进的碳效率的石化品的方法和设施 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |