CN109581354A - 同时多波束共址mimo雷达多目标跟踪资源管理方法 - Google Patents

同时多波束共址mimo雷达多目标跟踪资源管理方法 Download PDF

Info

Publication number
CN109581354A
CN109581354A CN201811479952.0A CN201811479952A CN109581354A CN 109581354 A CN109581354 A CN 109581354A CN 201811479952 A CN201811479952 A CN 201811479952A CN 109581354 A CN109581354 A CN 109581354A
Authority
CN
China
Prior art keywords
target
indicate
operating mode
radar
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811479952.0A
Other languages
English (en)
Other versions
CN109581354B (zh
Inventor
程婷
魏雪娇
苏洋
彭瀚
李茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201811479952.0A priority Critical patent/CN109581354B/zh
Publication of CN109581354A publication Critical patent/CN109581354A/zh
Application granted granted Critical
Publication of CN109581354B publication Critical patent/CN109581354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/42Diversity systems specially adapted for radar

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明属于雷达目标跟踪领域,具体涉及一种同时多波束共址MIMO雷达多目标跟踪资源管理方法。本发明中共址MIMO雷达处于同时多波束工作模式,在该工作模式下,每个子阵可以发射不同指向的波束去跟踪不同的目标;在进行波束接收时,运用数字波束形成技术来得到多个窄接收波束,以覆盖发射波束的探测区域。在目标跟踪过程中,自适应调整子阵划分个数、波束指向、发射功率和工作模式,其中引入了虚拟目标的概念,将能够被同一波束所探测到的多个目标称为一个虚拟目标。本发明在保证目标跟踪精度的基础上,最大限度地节约系统功率资源的消耗量。

Description

同时多波束共址MIMO雷达多目标跟踪资源管理方法
技术领域
本发明属于雷达目标跟踪领域,具体涉及一种同时多波束共址MIMO雷达多目标跟踪资源管理方法。
背景技术
MIMO(Multiple-Input Multiple-Output)雷达作为一种新型雷达体制,在21世纪初正式被提出后,引起了国内外众多学者及研究机构的广泛关注和研究。总的说来,MIMO雷达可以分为分布式MIMO雷达和共址MIMO雷达。
在分布式MIMO雷达中,发射天线之间的距离很远,该结构使得分布式MIMO雷达在实际应用中存在多站同步、信道矩阵估计方面的困难。共址MIMO雷达是传统相控阵雷达的扩展,其系统结构是一种更具实际应用价值的系统结构。共址MIMO雷达中,各个子阵之间发射相互正交的波形,在空域形成更宽的低增益波束,并且各子阵波束可指向空域不同方向。在该同时多波束工作模式下,多目标跟踪的灵活性更大。分布在空域不同位置的多个目标可能被同时发射的不同指向多波束探测,而在空域位置接近的多个目标也可能被一个子阵的宽发射波束同时探测。故在共址MIMO雷达中,通过控制子阵划分个数,可实现系统发射能量在空域的有效分配。可见,相对于传统相控阵雷达,共址MIMO雷达资源管理的自由度更大。
在MIMO雷达资源管理方面,严俊坤等人在雷达系统资源量一定的情况下,提高跟踪效果最差的目标的跟踪精度,最终实现多目标整体跟踪精度最大程度的提高。针对非理想检测的情况,严俊坤提出了一种杂波环境下的共址MIMO雷达功率分配算法,在给定各个时刻发射总功率的情况下,自适应分配各个波束上的发射功率,来使得跟踪性能最差的目标的跟踪精度最好。此外,在组网雷达系统中,严俊坤等人在各个时刻总发射功率一定的情况下,最大程度地提高了多目标的总体跟踪精度。Godrich等人提出了MIMO雷达在提高目标定位能力时的系统功率资源分配算法,在给定总发射功率的前提下,设计了使得目标定位精度最高的功率分配方案。
目前,对于同时多波束模式的共址MIMO雷达的多目标跟踪资源管理方法中,并未考虑共址MIMO雷达一个宽波束可以照射多个目标的能力,并且是将有限的雷达资源消耗完,来获得目标跟踪精度的最大程度提高。然而在实际工程中,各目标均存在一个期望的跟踪精度,因此如何在保证各个目标不同期望跟踪精度的同时最小化系统资源消耗更具实际意义。
发明内容
针对上述存在问题或不足,为实现在保证各个目标不同期望跟踪精度的同时最小化系统资源消耗,本发明提供了同时多波束共址MIMO雷达多目标跟踪资源管理方法,在保证各个目标跟踪精度的前提下,实现了有限雷达资源的合理分配,减小了系统资源的消耗。
具体技术方案如下:
步骤1:设共址MIMO雷达总的阵元数为M,则其可能划分的子阵个数为Ki=2i-1,i=1,2,…,(log2M+1);发射功率库中的待选功率表示为pj,j=1,2,...,P,其中P为待选发射功率集合中的个数;雷达的工作模式为Ig;假设当前分析时刻为tk,当前跟踪目标个数为D,tk之前所有目标的状态为{tk(o),X(tk(o)),P(tk(o))},其中tk(o)为第o个目标的更新时刻,且tk(o)≤tk,o=1,2,…,D;X(tk(o))为第o个目标在tk(o)的状态向量,P(tk(o))为第o个目标的在tk(o)时刻的状态误差协方差矩阵。
针对各子阵划分的个数Ki=2i-1,i=1,2,…,(log2M+1),确定虚拟目标的个数VD(Ki);对于每一个可能的子阵划分个数,根据各个目标预测位置upre,o与对应的半功率波束宽度φ(Ki)之间的关系判断虚拟目标的个数。
首先,将各个目标的预测位置进行升序排序,形成向量upre_sort
然后,将向量upre_sort中的最大元素upre_sort(D)分别与upre_sort(m),m=1,2,...,D-1作差,得到的差值的绝对值记为|Δupre|Dm,并与对应的半功率波束宽度φ(Ki)进行比较,将第一个使得式(1)成立的upre_sort(m)与upre_sort(D)之间对应的所有目标抽象地看作一个虚拟目标,表示这些目标可以同时被一个波束所覆盖;对于剩下的upre_sort(1)~upre_sort(m-1)之间的m-1个目标利用类似的方法进行判断,直到将所有目标都进行了划分,记虚拟的目标个数为VD(Ki);
步骤2:对于每一个可能选取的发射功率pj,结合虚拟目标个数VD(Ki)与子阵划分个数,分别计算各工作模式下各目标的预测信噪比;
已知当前的虚拟目标的个数VD(Ki),将每个虚拟目标中实际的目标个数记为Nq,q=1,2,...,VD(Ki);根据虚拟目标的个数与子阵划分个数的关系,存在以下两种情况:
a)当子阵划分个数大于等于虚拟目标的个数时,每个目标的预测信噪比的计算公式为:
b)当子阵划分个数小于虚拟目标个数时,则会出现种工作模式,即需要从VD(Ki)个目标中选出Ki个虚拟目标进行跟踪;在每种可能的工作模式下,对于被探照到的目标的预测信噪比的计算公式为:
其中,其中表示tk+1时刻预测的量;pj表示阵元的发射功率,M代表阵元总数,Ki代表子阵划分个数,λ为信号波长,τ为波形脉宽,rpre,o为第o个目标距离雷达的径向距离,为目标的平均RCS估计值,N0表示高斯噪声功率谱密度,且满足 表示雷达的增益方向图,满足如下计算公式:
其中常数项c0=-2 ln 2,表示第o个目标的预测位置,φ(Ki)表示半功率波束宽度,表示在tk+1时刻探测相应虚拟目标的波束的预测指向,其计算公式为:
其中,uprei代表与第o个目标形成同一虚拟目标的实际目标的预测角度。
步骤3:计算各子阵划分个数下,相应的工作模式下取相应的发射功率pj时被探测目标的检测概率,计算公式如下:
步骤4:设检测概率门限为Pd_th,筛选出检测概率超过检测门限的参数组合vh={Ki,pj,Ig},将其构成可行参数组合集合;其中h=1,2,...Nx,Nx为可行参数组合的个数。
步骤5:针对每一组可行参数组合vh,计算目标实际跟踪精度与期望跟踪精度之间的差异度:
其中,Po表示第o个目标预测的估计误差协方差向量,表示第o个目标期望的误差协方差向量,函数f(A,B)用于衡量AB之间的差异程度,可以根据需要选取多种不同的具体表现形式。其计算公式如下:
其中,o∈Ig表示第o个目标在工作模式Ig下,表示第o个目标在工作模式Ig下;表示第o个目标的采样间隔。表示第o个目标的状态转移矩阵,Po(tk(o))表示第o个目标在tk(o)时刻的估计误差协方差,代表第o个目标的输入矩阵,Qo(tk(o))为噪声协方差矩阵。上式中K(νh)表示卡尔曼增益矩阵,其数学表达式如下:
其中,Ho表示量测矩阵,R(νh)表示量测噪声协方差矩阵,可由下式计算得到:
上式中σrh)为径向距离量测的标准差,σbh)为方位角量测的标准差,二者的计算表达式如下所示:
其中,Δr(νh)表示距离分辨力,表示双程波束宽度,c为常数,J为雅克比坐标转换矩阵,如下所示:
步骤6:针对每组可行参数组合vh计算:
上式中ψ{x}表示归一化函数,系数α和β分别表示系统对跟踪精度项以及功率资源消耗项的加权系数,且满足0≤α≤1,0≤β≤1,α+β=1。则最优的子阵划分个数、发射功率和工作模式所构成的参数组合表示为:
步骤7:确定下一个时刻为:
tk+1=tk+T(tk+1) (15)
则tk+1时刻的发射功率为popt,并将MIMO雷达划分为Kjopt个子阵,采样的工作模式为Iopt对目标进行跟踪;确定tk+1时刻的最优参数集合ν(tk+1)opt=(Kopt,popt,Iopt)。
步骤8:重复以上步骤1-7,直到达到跟踪时间为止。
本发明中共址MIMO雷达处于同时多波束工作模式,在该工作模式下,每个子阵可以发射不同指向的波束去跟踪不同的目标,如图9a所示。在进行波束接收时,运用数字波束形成技术来得到多个窄接收波束,以覆盖发射波束的探测区域,如图9b所示。
假设共址MIMO雷达发射天线增益为Gt,接收天线增益为Gr,目标雷达截面积表示为σ,信号波长为λ,目标到雷达的距离为r,从而接收阵列上的接收功率可以表示如下:
其中发射增益Gt满足Gt=πηAL,接收增益Gr满足Gr=πηAM,L表示每个子阵中的阵元个数,ηA表示天线口径效率。当接收端的有效接收带宽为Br时,则信噪比可表示为:
其中Gp是由匹配滤波和等效发射波束形成所带来的处理增益,其满足Gp=τBr。结合上述公式,可以进一步得到如下信噪比公式:
当空域中虚拟目标个数为VD时,子阵划分个数为Ki时,二者不一定相同。当子阵划分个数大于虚拟目标个数时,为使有限雷达资源得到更合理的分配,保证包含目标个数多的虚拟目标得到更多的资源,MIMO雷达在同时发射多波束时,根据虚拟目标中所含实际目标的个数,按比例分配子阵波束去探测该虚拟目标。即包含实际目标数目越多的虚拟目标将被分配到更多的波束,针对含有目标个数为SVD的虚拟目标而言,其信噪比计算公式为:
此外,考虑子阵划分个数Ki小于虚拟目标个数VD(Ki)的特殊情况,每个虚拟目标将分配到1个探测波束,即信噪比为:
共址MIMO雷达在对目标进行探测时,要求发射波束的半功率波束宽度能够覆盖到所要照射的目标,即被照射目标的预测方位角需满足下述不等式:
us-0.5φ<upre<us+0.5φ (21)
其中不等式(21)只是保证了发射波束能够覆盖到目标,为了能够检测到目标,还要求被照射目标的检测概率必须高于一定的检测门限,即需要满足下式:
Pd≥Pd_th (22)
上述不等式(21),(22)构成了本发明中优化模型的约束条件。因此,通过步骤1,步骤2和步骤3,将各个目标的预测波束指向和检测概率分别代入(21)式和(22)式,来获得可行参数集合。
本发明在保证目标跟踪精度的基础上,最大限度地节约系统功率资源的消耗量。在目标跟踪过程中,自适应调整子阵划分个数以形成不同的波束指向,并考虑到共址MIMO雷达一个宽波束可以照射多个目标的能力,故可将一个波束覆盖到的所有目标抽象的看作一个虚拟目标。由于虚拟目标个数的不同而形成不同的工作模式,最后,在相应的工作模式下,根据虚拟目标中的个数与子阵划分的个数之间的关系来分配发射功率,以实现最大限度地节约系统功率资源的消耗量的目标。
用Pt表示本系统资源消耗量,为了使得目标实际跟踪精度与期望跟踪精度接近,将精度偏差作为效果度量。同时考虑在目标函数中,系统资源消耗量和精度偏差的量纲不同,所以要用ψ{x}函数来对其做归一化处理,从而本优化模型的目标函数表达式为:
结合式(21)和式(22)的约束条件,本方法最终的优化模型如下所示:
综上所述,本发明在保证目标跟踪精度的基础上,最大限度地节约系统功率资源的消耗量。
附图说明
图1为各个目标的运动轨迹示意图;
图2为整个跟踪过程共址MIMO雷达工作模式变化曲线;
图3为整个跟踪过程虚拟目标个数的变化曲线;
图4为整个跟踪过程共址MIMO雷达子阵划分个数变化曲线;
图5为整个跟踪过程共址MIMO雷达的发射功率变化曲线;
图6为目标1在X方向位置上的实际滤波误差协方差变化曲线;
图7为目标1在Y方向位置上的实际滤波误差协方差变化曲线;其他各个目标的在X,Y方向位置上的实际滤波误差协方差变化曲线类似;
图8为共址MIMO雷达与相控阵雷达各自的综合代价变化曲线;
图9为同时多波束工作模式的方向图。
具体实施方式
基于本发明的详细技术方案,通过仿真的方式对所提方法进行验证和实施。
在本具体实施例中,考虑对四个在同一平面内做匀速运动的目标进行跟踪。已知目标1的起始位置为(122km,122km),速度为(100m/s,200m/s);目标2的起始位置为(123km,124km),速度为(70m/s,0m/s);目标3的起始位置为(124km,124km),速度为(-100m/s,100m/s);目标4的起始位置为(123km,123km),速度为(100m/s,-200m/s)。假设四个目标的RCS(雷达截面积)均服从Swerling I型分布,且平均值为1m2。仿真过程中,雷达系统参数如表1所示。
表1雷达参数
参数名 参数值 参数名 参数值
阵元总数 2048 天线效率 0.5
波形距离分辨率 22.5m 发射天线增益 45dB
接收天线增益 44dB 虚警概率 10<sup>-6</sup>
工作频率 10GHz 天线间距 1.5cm
约束条件中的检测概率门限值Pd_th=0.9,目标函数中目标跟踪精度和发射功率归一化后的加权系数分别为:α=0.9,β=0.1。
采用本发明提出的一种同时多波束的共址MIMO雷达多目标自适应跟踪算法,对仿真场景中的四个目标进行跟踪。以下是100次蒙特卡罗独立实验的统计结果(仿真结果图附在“说明书附图”部分):
图1表示仿真场景中四个目标的真实运动轨迹;图2表示整个跟踪过程共址MIMO雷达工作模式变化曲线,各个工作模式的具体含义如下表2所示:
表2各个工作模式说明
工作模式标号 具体含义 工作模式标号 具体含义
I=0 搜索 I=6 同时跟踪目标1和3
I=1 跟踪目标1 I=7 同时跟踪目标1和4
I=2 跟踪目标2 I=8 同时跟踪目标2和3
I=3 跟踪目标3 I=9 同时跟踪目标2和4
I=4 跟踪目标4 I=10 同时跟踪目标3和4
I=5 同时跟踪目标1和2 I=11 同时跟踪目标1,2,3和4
从图2中可以看出,前20s工作模式为1或者0,表明MIMO雷达在空域中探测到了目标1,并对其进行跟踪或继续工作在搜索模式;20s之后MIMO雷达在空域中同时探测到了四个目标并进行相应的工作模式的切换。
结合图3和图4可以明确知道在每个时刻具体跟踪哪些目标,并且是以何种方式对目标进行跟踪的;比如,在0s-20s这个区间中,大多数情况下是对目标1进行跟踪,子阵的变化个数有1,2,4,8,16,这主要是由代价函数控制的。在20s之后,工作模式的变化趋势比较丰富,但跟踪了两个目标的工作模式居多,如工作模式5,工作模式6,工作模式7,工作模式8,工作模式9,工作模式10;子阵划分为1个,2个,4个,其中子阵划分为个居多;而虚拟目标的个数主要是形成1个,2个,4个虚拟目标,以形成两个虚拟目标居多;故综合图2图3图4这三幅图说明雷达大多数情况下划分为两个子阵的形式,并以一个子阵照射一个目标,对其进行跟踪;也有将子阵划分四个,去跟踪两个虚拟目标的工作模式,这时就会按照我们提出的算法根据各虚拟目标中实际的目标个数对功率进行划分。
图5为整个跟踪过程共址MIMO雷达的发射功率变化曲线,从中可见,系统在20s到100s由于多个目标的加入,发射功率也相应的变大,从而使共址MIMO雷达在同时跟踪多目标时也能够保证各个目标的跟踪精度。
图6图7为目标1在X和Y方向位置上的实际滤波误差协方差变化曲线,可以看出在整个目标跟踪期间,目标1在X方向和Y方向位置上的跟踪误差协方差与期望值的差值都很小,二者的曲线贴合的很近,验证了本方法能够有效保证目标1的跟踪精度。其他几个目标也类似,其实际滤波误差协方差也与各自的期望误差协方差非常接近,说明本算法能够有效保证各目标的跟踪精度。
图8为共址MIMO雷达与相控阵雷达各自的综合代价变化曲线,从中可见,在整个目标跟踪期间,共址MIMO雷达的综合代价都要比相应相控阵雷达的综合代价小,体现了本方法在保证目标跟踪精度的同时,有效降低了共址MIMO雷达的能量资源消耗量。
综上所述,本发明提供了一种基于同时多波束模式的共址MIMO雷达多目标自适应跟踪算法。该方法在雷达系统所有可能的子阵划分个数和发射功率的组合下,借助跟踪误差偏差和雷达资源消耗的综合代价最小化原则,来选取共址MIMO雷达系统最优的子阵划分个数、各子阵波束指向、发射功率和工作模式。该方法能有效地实现共址MIMO雷达的自适应多目标跟踪,相对于传统的同波束指向方法,有效避免了在每个分析时刻各子阵波束指向单一的问题,从而在保证多目标跟踪精度的前提下,有效节约了共址MIMO雷达的功率资源。

Claims (1)

1.同时多波束共址MIMO雷达多目标跟踪资源管理方法,具体步骤如下:
步骤1:设共址MIMO雷达总的阵元数为M,则其可能划分的子阵个数为Ki=2i-1,i=1,2,…,(log2M+1);发射功率库中的待选功率表示为pj,j=1,2,...,P,其中P为待选发射功率集合中的个数;雷达的工作模式为Ig;假设当前分析时刻为tk,当前跟踪目标个数为D,tk之前所有目标的状态为{tk(o),X(tk(o)),P(tk(o))},其中tk(o)为第o个目标的更新时刻,且tk(o)≤tk,o=1,2,…,D;X(tk(o))为第o个目标在tk(o)的状态向量,P(tk(o))为第o个目标的在tk(o)时刻的状态误差协方差矩阵;
针对各子阵划分的个数Ki=2i-1,i=1,2,…,(log2M+1),确定虚拟目标的个数VD(Ki);对于每一个可能的子阵划分个数,根据各个目标预测位置upre,o与对应的半功率波束宽度φ(Ki)之间的关系判断虚拟目标的个数;
首先,将各个目标的预测位置进行升序排序,形成向量upre_sort
然后,将向量upre_sort中的最大元素upre_sort(D)分别与upre_sort(m),m=1,2,...,D-1作差,得到的差值的绝对值记为|Δupre|Dm,并与对应的半功率波束宽度φ(Ki)进行比较,将第一个使得式(1)成立的upre_sort(m)与upre_sort(D)之间对应的所有目标抽象地看作一个虚拟目标,表示这些目标可以同时被一个波束所覆盖;对于剩下的upre_sort(1)~upre_sort(m-1)之间的m-1个目标利用类似的方法进行判断,直到将所有目标都进行了划分,记虚拟的目标个数为VD(Ki);
步骤2:对于每一个可能选取的发射功率pj,结合虚拟目标个数VD(Ki)与子阵划分个数,分别计算各工作模式下各目标的预测信噪比;
已知当前的虚拟目标的个数VD(Ki),将每个虚拟目标中实际的目标个数记为Nq,q=1,2,...,VD(Ki);根据虚拟目标的个数与子阵划分个数的关系,存在以下两种情况:
a)当子阵划分个数大于等于虚拟目标的个数时,每个目标的预测信噪比的计算公式为:
b)当子阵划分个数小于虚拟目标个数时,则会出现种工作模式,即需要从VD(Ki)个目标中选出Ki个虚拟目标进行跟踪;在每种可能的工作模式下,对于被探照到的目标的预测信噪比的计算公式为:
其中,其中表示tk+1时刻预测的量;pj表示阵元的发射功率,M代表阵元总数,Ki代表子阵划分个数,λ为信号波长,τ为波形脉宽,rpre,o为第o个目标距离雷达的径向距离,为目标的平均RCS估计值,N0表示高斯噪声功率谱密度,且满足N0=kT0F0表示雷达的增益方向图,满足如下计算公式:
其中常数项c0=-2ln 2,表示第o个目标的预测位置,φ(Ki)表示半功率波束宽度,表示在tk+1时刻探测相应虚拟目标的波束的预测指向,其计算公式为:
其中,uprei代表与第o个目标形成同一虚拟目标的实际目标的预测角度;
步骤3:计算各子阵划分个数下,相应的工作模式下取相应的发射功率pj时被探测目标的检测概率,计算公式如下:
步骤4:设检测概率门限为Pd_th,筛选出检测概率超过检测门限的参数组合vh={Ki,pj,Ig},将其构成可行参数组合集合;其中h=1,2,...Nx,Nx为可行参数组合的个数;
步骤5:针对每一组可行参数组合vh,计算目标实际跟踪精度与期望跟踪精度之间的差异度:
其中,Po表示第o个目标预测的估计误差协方差向量,表示第o个目标期望的误差协方差向量,函数f(A,B)用于衡量AB之间的差异程度,计算公式如下:
其中,o∈Ig表示第o个目标在工作模式Ig下,表示第o个目标在工作模式Ig下;表示第o个目标的采样间隔,表示第o个目标的状态转移矩阵,Po(tk(o))表示第o个目标在tk(o)时刻的估计误差协方差,代表第o个目标的输入矩阵,Qo(tk(o))为噪声协方差矩阵;上式中K(νh)表示卡尔曼增益矩阵,其数学表达式如下:
其中,Ho表示量测矩阵,R(νh)表示量测噪声协方差矩阵,可由下式计算得到:
上式中σrh)为径向距离量测的标准差,σbh)为方位角量测的标准差,二者的计算表达式如下所示:
其中,Δr(νh)表示距离分辨力,表示双程波束宽度,c为常数,J为雅克比坐标转换矩阵,如下所示:
步骤6:针对每组可行参数组合vh计算:
上式中ψ{x}表示归一化函数,系数α和β分别表示系统对跟踪精度项以及功率资源消耗项的加权系数,且满足0≤α≤1,0≤β≤1,α+β=1;则最优的子阵划分个数、发射功率和工作模式所构成的参数组合表示为:
步骤7:确定下一个时刻为:
tk+1=tk+T(tk+1) (15)
则tk+1时刻的发射功率为popt,并将MIMO雷达划分为Kjopt个子阵,采样的工作模式为Iopt对目标进行跟踪;确定tk+1时刻的最优参数集合ν(tk+1)opt=(Kopt,popt,Iopt);
步骤8:重复以上步骤1-7,直到达到跟踪时间为止。
CN201811479952.0A 2018-12-05 2018-12-05 同时多波束共址mimo雷达多目标跟踪资源管理方法 Active CN109581354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811479952.0A CN109581354B (zh) 2018-12-05 2018-12-05 同时多波束共址mimo雷达多目标跟踪资源管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811479952.0A CN109581354B (zh) 2018-12-05 2018-12-05 同时多波束共址mimo雷达多目标跟踪资源管理方法

Publications (2)

Publication Number Publication Date
CN109581354A true CN109581354A (zh) 2019-04-05
CN109581354B CN109581354B (zh) 2022-11-08

Family

ID=65927216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811479952.0A Active CN109581354B (zh) 2018-12-05 2018-12-05 同时多波束共址mimo雷达多目标跟踪资源管理方法

Country Status (1)

Country Link
CN (1) CN109581354B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673131A (zh) * 2019-11-25 2020-01-10 电子科技大学 多波束集中式mimo雷达时空资源-波形选择管理方法
CN110865330A (zh) * 2019-12-02 2020-03-06 中国科学院上海微系统与信息技术研究所 一种无线虚拟现实系统中波束方位角的快速跟踪方法
CN111190176A (zh) * 2020-01-14 2020-05-22 电子科技大学 共址mimo雷达组网系统的自适应资源管理方法
RU2722224C1 (ru) * 2019-11-05 2020-05-28 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ определения координат наземной цели радиолокационной системой, состоящей из двух многолучевых радиопередатчиков и приемника
RU2752795C1 (ru) * 2020-11-16 2021-08-06 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ определения координат наземной цели радиолокационной системой, состоящей из приемника-пеленгатора и многолучевого передатчика
CN113466825A (zh) * 2021-06-17 2021-10-01 西安电子科技大学 基于互信息最大化的组网雷达资源分配方法
CN114662331A (zh) * 2022-04-07 2022-06-24 电子科技大学 具有自适应波束个数和宽度的cmimo实时雷达资源管理方法
CN114779232A (zh) * 2022-04-27 2022-07-22 电子科技大学 一种实时的同时多波束cmimo雷达组网资源管理算法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158756A (zh) * 2015-08-27 2015-12-16 电子科技大学 集中式mimo雷达射频隐身时多目标跟踪波束指向方法
CN105182317A (zh) * 2015-08-20 2015-12-23 电子科技大学 一种基于集中式mimo雷达搜索模式下的资源管理方法
US20160223643A1 (en) * 2015-01-28 2016-08-04 Wenhua Li Deep Fusion of Polystatic MIMO Radars with The Internet of Vehicles for Interference-free Environmental Perception
CN106066473A (zh) * 2016-05-23 2016-11-02 西安电子科技大学 正交波形下mimo雷达目标的多波束联合测角和点迹融合方法
JP2016217976A (ja) * 2015-05-25 2016-12-22 株式会社東芝 レーダシステム及びレーダ信号処理方法
CN106405536A (zh) * 2016-08-30 2017-02-15 电子科技大学 一种mimo雷达多目标跟踪资源管理方法
CN107728139A (zh) * 2017-09-12 2018-02-23 电子科技大学 一种基于多目标跟踪的相控阵雷达组网系统资源管理方法
CN108107415A (zh) * 2017-11-20 2018-06-01 西安电子科技大学 基于机会约束的集中式mimo雷达多波束功率分配方法
CN108398678A (zh) * 2018-02-08 2018-08-14 电子科技大学 一种集中式mimo雷达快速自适应目标跟踪方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160223643A1 (en) * 2015-01-28 2016-08-04 Wenhua Li Deep Fusion of Polystatic MIMO Radars with The Internet of Vehicles for Interference-free Environmental Perception
JP2016217976A (ja) * 2015-05-25 2016-12-22 株式会社東芝 レーダシステム及びレーダ信号処理方法
CN105182317A (zh) * 2015-08-20 2015-12-23 电子科技大学 一种基于集中式mimo雷达搜索模式下的资源管理方法
CN105158756A (zh) * 2015-08-27 2015-12-16 电子科技大学 集中式mimo雷达射频隐身时多目标跟踪波束指向方法
CN106066473A (zh) * 2016-05-23 2016-11-02 西安电子科技大学 正交波形下mimo雷达目标的多波束联合测角和点迹融合方法
CN106405536A (zh) * 2016-08-30 2017-02-15 电子科技大学 一种mimo雷达多目标跟踪资源管理方法
CN107728139A (zh) * 2017-09-12 2018-02-23 电子科技大学 一种基于多目标跟踪的相控阵雷达组网系统资源管理方法
CN108107415A (zh) * 2017-11-20 2018-06-01 西安电子科技大学 基于机会约束的集中式mimo雷达多波束功率分配方法
CN108398678A (zh) * 2018-02-08 2018-08-14 电子科技大学 一种集中式mimo雷达快速自适应目标跟踪方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JUNKUN YAN: "Simultaneous Multibeam Resource Allocation Scheme for Multiple Target Tracking", 《TRANSACTIONS ON SIGNAL PROCESSING》 *
YANG SU: "Adaptive resource management for co-located MIMO radar in multi-target tracking", 《IET RADAR SONAR AND NAVIGATION》 *
武俊青: "阵列雷达资源管理算法与实现研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
王旭: "一种MIMO雷达多模式波形优化设计方法", 《电子与信息学报》 *
王祥丽等: "基于多目标跟踪的相控阵雷达波束和驻留时间联合分配方法", 《雷达学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2722224C1 (ru) * 2019-11-05 2020-05-28 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ определения координат наземной цели радиолокационной системой, состоящей из двух многолучевых радиопередатчиков и приемника
CN110673131B (zh) * 2019-11-25 2022-04-26 电子科技大学 多波束集中式mimo雷达时空资源-波形选择管理方法
CN110673131A (zh) * 2019-11-25 2020-01-10 电子科技大学 多波束集中式mimo雷达时空资源-波形选择管理方法
CN110865330A (zh) * 2019-12-02 2020-03-06 中国科学院上海微系统与信息技术研究所 一种无线虚拟现实系统中波束方位角的快速跟踪方法
CN110865330B (zh) * 2019-12-02 2023-06-09 中国科学院上海微系统与信息技术研究所 一种无线虚拟现实系统中波束方位角的快速跟踪方法
CN111190176A (zh) * 2020-01-14 2020-05-22 电子科技大学 共址mimo雷达组网系统的自适应资源管理方法
CN111190176B (zh) * 2020-01-14 2023-05-05 电子科技大学 共址mimo雷达组网系统的自适应资源管理方法
RU2752795C1 (ru) * 2020-11-16 2021-08-06 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ определения координат наземной цели радиолокационной системой, состоящей из приемника-пеленгатора и многолучевого передатчика
CN113466825A (zh) * 2021-06-17 2021-10-01 西安电子科技大学 基于互信息最大化的组网雷达资源分配方法
CN113466825B (zh) * 2021-06-17 2024-03-29 西安电子科技大学 基于互信息最大化的组网雷达资源分配方法
CN114662331A (zh) * 2022-04-07 2022-06-24 电子科技大学 具有自适应波束个数和宽度的cmimo实时雷达资源管理方法
CN114779232A (zh) * 2022-04-27 2022-07-22 电子科技大学 一种实时的同时多波束cmimo雷达组网资源管理算法
CN114779232B (zh) * 2022-04-27 2023-06-06 电子科技大学 一种实时的同时多波束cmimo雷达组网资源管理算法

Also Published As

Publication number Publication date
CN109581354B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN109581354A (zh) 同时多波束共址mimo雷达多目标跟踪资源管理方法
Yan et al. Collaborative detection and power allocation framework for target tracking in multiple radar system
CN109581355B (zh) 目标跟踪的集中式mimo雷达自适应资源管理方法
CN101349742B (zh) 用于宽带相控阵阵元间距优化和频域多目标测频测向方法
CN105158756B (zh) 集中式mimo雷达射频隐身时多目标跟踪波束指向方法
CN106990391B (zh) 基于俯仰mimo的低空目标探测宽带雷达系统及阵列优化方法
CN106066473B (zh) 正交波形下mimo雷达目标的多波束联合测角和点迹融合方法
CN106021697B (zh) 一种快速相控阵雷达时间-能量资源联合管理方法
CN111323773A (zh) 基于射频隐身的组网雷达功率与带宽联合优化分配方法
CN110673131B (zh) 多波束集中式mimo雷达时空资源-波形选择管理方法
CN107329136B (zh) 基于可变分析时刻的mimo雷达多目标自适应跟踪方法
CN108398678A (zh) 一种集中式mimo雷达快速自适应目标跟踪方法
CN108896985B (zh) 基于射频隐身的组网雷达多目标跟踪采样间隔控制方法
CN108363054A (zh) 用于单频网络和多路径传播的被动雷达多目标跟踪方法
CN108562894B (zh) 雷达波束指向与发射功率的分配方法
CN111190176A (zh) 共址mimo雷达组网系统的自适应资源管理方法
Shi et al. Adaptive resource management algorithm for target tracking in radar network based on low probability of intercept
Ram et al. Optimization of radar parameters for maximum detection probability under generalized discrete clutter conditions using stochastic geometry
CN110109093A (zh) 多目标跟踪的集中式mimo雷达自适应资源管理方法
KR102665123B1 (ko) 저피탐지를 위한 통합망 레이더 체류 시간과 방사 전력의 공동 최적화 방법
Yang et al. Adaptive resource management for multi-target tracking in co-located MIMO radar based on time-space joint allocation
Ding et al. Collaborative route optimization and resource management strategy for multi-target tracking in airborne radar system
CN108333583B (zh) 基于相控阵雷达搜索和跟踪双目标优化的资源分配方法
Inggs et al. Passive coherent location system planning tool
Chen et al. Space-time adaptive monopulse based on space-time uniform constraint

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant