CN109575987A - 焦油加氢制燃料油的方法 - Google Patents

焦油加氢制燃料油的方法 Download PDF

Info

Publication number
CN109575987A
CN109575987A CN201710895329.2A CN201710895329A CN109575987A CN 109575987 A CN109575987 A CN 109575987A CN 201710895329 A CN201710895329 A CN 201710895329A CN 109575987 A CN109575987 A CN 109575987A
Authority
CN
China
Prior art keywords
catalyst
weight
parts
coal tar
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710895329.2A
Other languages
English (en)
Other versions
CN109575987B (zh
Inventor
钱斌
刘仲能
韩亚梅
刘师前
王燕波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201710895329.2A priority Critical patent/CN109575987B/zh
Publication of CN109575987A publication Critical patent/CN109575987A/zh
Application granted granted Critical
Publication of CN109575987B publication Critical patent/CN109575987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及焦油加氢制燃料油的方法,主要解决现有技术中的脱硫率、脱氮率和燃油产率低的问题。本发明通过采用焦油加氢制燃料油的方法,包括在催化剂存在下,以焦油和氢气为反应原料,反应制取燃料油;所述催化剂包括活性组分、助剂和载体;所述活性组分包括Rh,助剂包括碱金属的技术方案取得了较好的效果,可用于煤焦油和/或乙烯焦油的加氢制燃料油中。

Description

焦油加氢制燃料油的方法
技术领域
本发明涉及焦油加氢制燃料油的方法。
背景技术
能源供应问题已经成为我国经济发展和安全面临的突出问题。在石油资源有限的情况下,拓展能源燃料来源途径,开发深加工技术和产品具有重案的显示和战略意义。煤焦油,是煤炼焦、干馏和气化过程的副产物,其国内产量超过1000万吨。目前国内煤焦油的加工利用一部分用于提取萘酚等化学品。另一部分简单处理后作为劣质燃料油烧掉,产生大量的污水或NOx、SOx等大气污染物。采用加氢工艺可完成煤焦油原料的硫氮氧等杂原子的深度脱除、不饱烯烃和芳烃饱和,以提高煤焦油H/C比,改善其安定性,获得优质燃料油,并减少环境污染。乙烯焦油是乙烯生产过程中的副产物,主要成分是芳香化合物,碳氢比高,灰分含量很低。乙烯焦油除了少量被用作碳黑原料外,大部分被当作劣质燃料烧掉,然而它不易燃烧,热值低,且燃烧时易产生黑烟及结焦,造成环境污染。因此,以焦油为原料,通过加氢工艺生产燃料油可产生明显的经济和社会效益,有效缓解我国能源紧张的现状。
煤焦油加氢生产汽柴油技术的研发在国内已有展开并迅速发展,例如文献“煤焦油加氢制燃料油的试验研究”(田小藏.工业安全与环保,2007,33(7):56-57)及文献“高温煤焦油加氢制取汽油和柴油”(燕京,吕才山,刘爱华,达建文.石油化工,2006,35(1):33-36)分别进行了煤焦油加氢的试验研究,但所得的汽油辛烷值和柴油十六烷值偏低,未达到国标要求。国内外关于煤焦油加氢的报道较少,只有很少的量的报道(例如专利US3253202)进行了相关介绍。乙烯焦油加氢生产汽柴油技术方面的研究较少,目前只有很少量的报道(例如专利CN200810228387.0)进行了相关介绍。
焦油加氢技术的目标是生产优质的汽柴油燃料并尽可能提高油品收率,其核心在于催化剂。焦油加氢制取燃料油的最终效果取决于催化剂性能,而催化剂的成分(活性组分、助剂和载体)、制备方法及条件(成型条件、焙烧温度和焙烧介质等)决定了催化剂的性能。化学组成相同的催化剂,如果制备方法和条件不同,则催化剂的微观性质(如活性物质晶粒大小、催化剂孔径分布及活性组分在催化剂表明的分散均匀性等)不同,从而导致催化剂的性能有很大差异。
现有技术催化剂用于煤焦油和/或乙烯焦油加氢制燃油时,燃油产率低,而且燃油中含硫率和含氮率偏高。
发明内容
本发明所要解决的技术问题现有技术中的脱硫率、脱氮率和燃油产收率低的问题,提供焦油制燃料油的方法,该方法具有脱硫率、脱氮率和燃油收率高的优点。
为解决上述技术问题,本发明的技术方案如下:
焦油加氢制燃料油的方法,包括在催化剂存在下,以焦油和氢气为反应原料,反应制取燃料油;所述催化剂包括活性组分、助剂和载体;所述活性组分包括Rh,助剂包括碱金属。
所述助剂增加了脱硫率、脱氮率、汽柴油收率。
上述技术方案中,反应的温度优选250~400℃,更优选300~400℃
上述技术方案中,焦油液体体积空速优选0.1~3.0h-1,更优选0.3~2.0h-1
上述技术方案中,反应压力优选3~15MPa,例如但不限于3.5MPa、4.0MPa、4.5MPa、5.0MPa、6.0MPa、7.0MPa、8.0MPa、9.0MPa、10.0MPa等等。
上述技术方案中,氢气与焦油的体积比优选为500~1800,更优选800~1500。
上述技术方案中,所述活性组分含量优选为0.5~20g/L。
上述技术方案中,所述助剂的含量优选为0.5~10g/L。
上述技术方案中,所述碱金属优选包括K和Cs中的至少一种。
上述技术方案中,所述助剂还包括碱土金属。
上述技术方案中,所述碱土金属优选包括Ca和Mg中的至少一种。
碱金属和碱土金属之间在提高脱硫率、脱氮率、汽柴油收率方面具有协同作用。碱金属与碱土金属之间重量比没有特别限制,例如但不限于0.1~10,更具体的比值例子可以是0.201、0.301、0.401、0.501、0.801、0.901、1.01、1.501、2.001、2.501、3.001、3.501、4.001、4.501、5.001、5.501、6.001、6.501、7.001、7.501、8.001、8.501、9.001、9.501等等。
上述技术方案中,作为更优选的技术方案之一,所述碱金属包括K和Cs,两元素在提高脱硫率、脱氮率和燃油收率方面具有协同作用。此时K与Cs的重量比没有特别限制,例如但不限于0.1~10,更具体的比值例子可以是0.201、0.301、0.401、0.501、0.801、0.901、1.01、1.501、2.001、2.501、3.001、3.501、4.001、4.501、5.001、5.501、6.001、6.501、7.001、7.501、8.001、8.501、9.001、9.501等等。
上述技术方案中,作为更优选的技术方案之二,所述碱土金属包括Mg和Ca,两元素在提高脱硫率、脱氮率和燃油收率方面具有协同作用。此时Mg与Ca的重量比没有特别限制,例如但不限于0.1~10,更具体的比值例子可以是0.201、0.301、0.401、0.501、0.801、0.901、1.01、1.501、2.001、2.501、3.001、3.501、4.001、4.501、5.001、5.501、6.001、6.501、7.001、7.501、8.001、8.501、9.001、9.501等等。
上述技术方案中,所述载体没有特别限制,本领域技术人员可以合理选择且不必付出创造性劳动,但优选自氧化铝和Beta沸石中的至少一种。
上述技术方案中,所述载体更优选包括氧化铝和Beta沸石。
上述技术方案中,氧化铝与Beta沸石的重量份数比优选为0.5~10。例如但不限于1.01、1.51、2.01、2.51、3.01、3.51、4.01、4.51、5.01、5.51、6.01、7.01、8.01、9.01等等。
上述技术方案中,所述催化剂可以采用包括如下步骤的方法制备:
(1)将所述载体与活性组分溶液和助剂溶液混合;
(2)干燥
(3)焙烧。
上述技术方案中,干燥的工艺条件没有特别限制,例如但不限于干燥的温度60~120℃,在此范围内非限制性举例80℃、90℃、100℃、110℃等等。
上述技术方案中,干燥的时间例如但不限于至少4个小时,例如4~18小时,在此范围内非限制性举例5、6、7、8、9、10、11、12等等。
上述技术方案中,焙烧的温度优选为300~700℃,例如但不限于350℃、400℃、450℃、500℃、550℃、600℃、650℃等等。
上述技术方案中,焙烧的时间优选1~8小时,例如但不限于2.0小时、2.5小时、3.0小时、3.5小时、4.0小时、4.5小时、5.0小时、5.5小时、6.0小时、6.5小时、7.0小时、7.5小时等等。
上述技术方案中,焙烧的气氛优选含氧气的气氛,例如但不限于空气。
上述技术方案中,加氢催化剂的外形没有特别限制,例如可以是球形,条形,环形,车轮形,圆柱,三叶草,四叶草或片状。
上述技术方案中,用于催化剂制备的干燥设备,可以是常用的真空干燥箱、鼓风干燥箱、回转干燥器、喷雾干燥器、履带式干燥器或薄膜干燥器等。
上述技术方案中,用于催化剂制备的焙烧设备,可以是常用的立式连续焙烧炉、转筒焙烧炉或窑式焙烧炉等。
本发明的技术关键是催化剂的选择,对应用的具体方法,本领域技术人员可以合理选择且不必付出创造性劳动。例如:
上述技术方案中,在加氢催化剂床层之上可以填装占加氢催化剂3-25%质量的天然蒙脱石或其他酸性的具有浅度裂化功能的天然矿石,或用石英砂等耐热惰性材料稀释过的天然矿石,也可不装填。
上述技术方案中,焦油进料前,加氢催化剂可以用硫化剂(例如:二硫化碳或二甲基二硫醚等)进行预硫化,对于预硫化的具体工艺条件本领域技术人员可以合理选择且不必付出创造性劳动。例如,预硫化条件可以为:硫化温度250~300℃,硫化油液体体积空速0.5~2.0h-1,硫化反应压力3~10MPa,氢气与硫化油的体积比(500~2000):1,硫化时间为12~48小时。
本发明催化剂对焦油的来源和性质没有特别限制,例如可以是煤焦油,可以是乙烯焦油。当采用煤焦油时,通常的煤焦油均可以采用本发明的催化剂加氢处理,例如但不限于煤焦油的性质如下:
N含量5000~15000ppm,S含量1000~10000ppm,馏程180℃-500℃。为了同比,本发明具体实施方式部分采用的煤焦油N含量8100ppm,S含量4200ppm,煤焦油馏程180℃-500℃。
硫含量按GB/T6324.4—86《有机液体产品微量硫的测定法》测定,氮含量按ZD/B15-56-1999《油品中氮的分析方法》测定。
脱硫率%=((煤焦油中硫含量-液相产物中硫含量)/煤焦油中硫含量)×100%
脱氮率%=((煤焦油中氮含量-液相产物中氮含量)/煤焦油中氮含量)×100%
汽柴油收率%=(汽柴油重量/煤焦油进料重量)×100%
上述计算公式中,本领域技术人员理解,液相产物,是指分离汽柴油之前的加氢产物,而且现有技术中通过简单方法均容易将加氢之后生成的H2S或NH3脱除,例如碱洗可以除H2S,酸洗可以除NH3等等,因此液相产物中硫含量不计H2S,液相产物中氮含量不计NH3
本发明催化剂所应用的反应器类型没有特别限制,例如但不限于固定床反应器,也可以是其他类型的反应器,例如流化床,移动床等。
采用本发明,脱硫率高达93%,脱氮率高达92%,汽柴油收率高达90%,取得了有益的技术效果,可用于煤焦油和/或乙烯焦油加氢制燃油生产中。
具体实施方式
【实施例1】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑-醋酸钙混合水溶液(其中含5克Rh,含4克Ca)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;Ca,4g/L。
3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
【实施例2】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑-醋酸镁混合水溶液(其中含5克Rh,含4克Mg)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;Mg,4g/L。
3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
【实施例3】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑-醋酸钾混合水溶液(其中含5克Rh,含4克K)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;K,4g/L。
3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
【实施例4】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑-醋酸铯混合水溶液(其中含5克Rh,含4克Cs)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;Cs,4g/L。
3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
【实施例5】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑-醋酸钙-醋酸钾混合水溶液(其中含5克Rh,含2克Ca,含2克K)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;Ca,2g/L;K,2g/L。
3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
【实施例6】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑-醋酸钙-醋酸锶混合水溶液(其中含5克Rh,含2克Ca,含2克Cs)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;Ca,2g/L;Cs,2g/L。
3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
【实施例7】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑-醋酸镁-醋酸钾混合水溶液(其中含5克Rh,含2克Mg,含2克K)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;Mg,2g/L;K,2g/L。
3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
【实施例8】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑-醋酸镁-醋酸锶混合水溶液(其中含5克Rh,含2克Mg,含2克CS)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;Mg,2g/L;Cs,2g/L。
3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
【实施例9】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑-醋酸钙-醋酸镁混合水溶液(其中含5克Rh,含2克Ca,含2克Mg)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;Ca,2g/L;Mg,2g/L。
3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
【实施例10】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑-醋酸钾-醋酸锶混合水溶液(其中含5克Rh,含2克K,含2克Cs)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;K,2g/L;Cs,2g/L。
3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
【实施例11】
1、载体制备
将市售活性氢氧化铝干胶粉100重量份、Beta沸石分子筛原粉9重量份、1:1硝酸5重量份,柠檬酸1.8重量份,田菁粉4重量份和蒸馏水40重量份,混合均匀,挤出,110℃干燥10h,480℃空气气氛中焙烧5h,得到直径为1.3mm长为3mm的圆柱形载体。
2、催化剂制备
(i)将1L圆柱形载体与900ml硝酸铑--醋酸钙-醋酸镁-醋酸钾-醋酸锶混合水溶液(其中含5克Rh,含1克Ca,含1克Mg,含1克K,含1克Cs)混合;
(ii)110℃干燥10h;
(iii)空气气氛中500℃焙烧3小时得催化剂。
经ICP分析,催化剂组成为:Rh,5g/L;Ca,1g/L;Mg,1g/L K,1g/L;Cs,1g/L。3、催化剂评价
在固定床反应器中装填50ml催化剂,采用含3%(质量浓度)二甲基二硫醚的航空煤油作为硫化油对催化剂进行预硫化。硫化条件为:硫化温度280℃,硫化油液体体积空速1.5h-1,氢气压力5MPa,氢气与硫化油的体积比1000:1,硫化时间为24小时。
硫化后的催化剂进行煤焦油加氢反应。反应条件为:反应温度390℃,煤焦油液体体积空速0.6h-1,反应压力10MPa,氢气与煤焦油的体积比1200:1。
为便于说明和比较,将催化剂的组成和催化剂评价结果列于表1。
表1催化剂的组成和催化剂评价结果

Claims (10)

1.焦油加氢制燃料油的方法,包括在催化剂存在下,以焦油和氢气为反应原料,反应制取燃料油;所述催化剂包括活性组分、助剂和载体;所述活性组分包括Rh,助剂包括碱金属。
2.根据权利要求1所述的方法,其特征是反应的温度为250~400℃。
3.根据权利要求1所述的方法,其特征是煤焦油液体体积空速0.1~3.0h-1
4.根据权利要求1所述的方法,其特征是反应压力为5~15MPa。
5.根据权利要求1所述的方法,其特征是氢气与煤焦油的体积比500~1800。
6.根据权利要求1所述的方法,其特征是活性组分含量为0.5~20g/L。
7.根据权利要求1所述的方法,其特征是所述载体选自氧化铝和Beta沸石中的至少一种。
8.根据权利要求1所述的方法,其特征是所述载体包括氧化铝和Beta沸石。
9.根据权利要求1所述的方法,其特征是氧化铝与Beta沸石的重量比为0.5~10。
10.根据权利要求1所述的方法,其特征是所述催化剂采用包括如下步骤的方法制备:
(1)将所述载体与活性组分溶液和助剂溶液混合;
(2)干燥;
(3)焙烧。
CN201710895329.2A 2017-09-28 2017-09-28 焦油加氢制燃料油的方法 Active CN109575987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710895329.2A CN109575987B (zh) 2017-09-28 2017-09-28 焦油加氢制燃料油的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710895329.2A CN109575987B (zh) 2017-09-28 2017-09-28 焦油加氢制燃料油的方法

Publications (2)

Publication Number Publication Date
CN109575987A true CN109575987A (zh) 2019-04-05
CN109575987B CN109575987B (zh) 2020-12-29

Family

ID=65912916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710895329.2A Active CN109575987B (zh) 2017-09-28 2017-09-28 焦油加氢制燃料油的方法

Country Status (1)

Country Link
CN (1) CN109575987B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146036B2 (zh) * 1979-03-30 1986-10-11 Mitsubishi Kasei Kogyo Kk
CN1609171A (zh) * 2003-10-24 2005-04-27 中国石油化工股份有限公司 一种加氢处理催化剂及其制备方法
CN101037614A (zh) * 2006-03-17 2007-09-19 中国石油天然气股份有限公司 一种加氢精制催化剂、制备方法及应用
CN102069004A (zh) * 2011-01-06 2011-05-25 中国科学院过程工程研究所 一种煤焦油制燃料油加氢裂化催化剂及其制备和应用方法
CN102688770A (zh) * 2012-04-28 2012-09-26 中国科学院青岛生物能源与过程研究所 一种芳烃加氢催化剂及制备方法和应用
CN103120939A (zh) * 2011-11-18 2013-05-29 中国科学院兰州化学物理研究所 生物质重油加氢提质催化剂及其制备方法和应用
CN103289740A (zh) * 2013-01-23 2013-09-11 大连理工大学 一种煤焦油制清洁燃料油的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146036B2 (zh) * 1979-03-30 1986-10-11 Mitsubishi Kasei Kogyo Kk
CN1609171A (zh) * 2003-10-24 2005-04-27 中国石油化工股份有限公司 一种加氢处理催化剂及其制备方法
CN101037614A (zh) * 2006-03-17 2007-09-19 中国石油天然气股份有限公司 一种加氢精制催化剂、制备方法及应用
CN102069004A (zh) * 2011-01-06 2011-05-25 中国科学院过程工程研究所 一种煤焦油制燃料油加氢裂化催化剂及其制备和应用方法
CN103120939A (zh) * 2011-11-18 2013-05-29 中国科学院兰州化学物理研究所 生物质重油加氢提质催化剂及其制备方法和应用
CN102688770A (zh) * 2012-04-28 2012-09-26 中国科学院青岛生物能源与过程研究所 一种芳烃加氢催化剂及制备方法和应用
CN103289740A (zh) * 2013-01-23 2013-09-11 大连理工大学 一种煤焦油制清洁燃料油的方法

Also Published As

Publication number Publication date
CN109575987B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
CN104907078B (zh) 一种加氢催化剂及其制备方法和用途
RU2668423C1 (ru) Катализатор для гидротермального сжижения биомассы растительного происхождения
CN108753378A (zh) 一种量子纳米低碳燃料油及其制备方法
CN105779076A (zh) 一种高效燃煤脱硫剂及其制备方法
CN109569700A (zh) 用于焦油制燃料油加氢催化剂
CN109569635A (zh) 用于焦油生产燃料油加氢催化剂
CN109575987A (zh) 焦油加氢制燃料油的方法
CN109575988A (zh) 焦油制燃料油的方法
CN109569707A (zh) 焦油加氢制燃料油的催化剂
CN109569708A (zh) 焦油制燃料油加氢催化剂
CN102319571B (zh) 催化生物质油加氢裂化的催化剂及其制备方法与应用
CN109575986A (zh) 用于焦油生产燃料油的方法
CN109575989A (zh) 用于焦油制燃料油的方法
CN109575985A (zh) 用于焦油制取燃料油的方法
CN109569578A (zh) 用于焦油制取燃料油加氢催化剂
CN110538676B (zh) 裂解焦油加氢精制的催化剂
CN110540864B (zh) 用于裂解焦油精制的方法
CN107418608A (zh) 半焦的应用、烃类化合物或烃类衍生物的制备方法
CN109248688B (zh) 一种原位制备煤-生物质制碳基NOx吸附还原催化剂的方法
CN110538658B (zh) 用于裂解焦油加氢精制的方法
CN112111292A (zh) 一种配用废弃活性炭的焦炭及炼焦方法
CN108126710A (zh) 一种抗硫除萘催化剂的制备及应用
CN110538659B (zh) 用于裂解焦油精制的催化剂
CN110540865B (zh) 裂解焦油加氢精制的方法
CN110538660B (zh) 用于裂解焦油加氢精制的催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant