CN109570508A - 双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法 - Google Patents

双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法 Download PDF

Info

Publication number
CN109570508A
CN109570508A CN201811527046.3A CN201811527046A CN109570508A CN 109570508 A CN109570508 A CN 109570508A CN 201811527046 A CN201811527046 A CN 201811527046A CN 109570508 A CN109570508 A CN 109570508A
Authority
CN
China
Prior art keywords
ball
steel
grain size
dispersion strengthening
size distributions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811527046.3A
Other languages
English (en)
Other versions
CN109570508B (zh
Inventor
周张健
徐帅
贾皓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201811527046.3A priority Critical patent/CN109570508B/zh
Publication of CN109570508A publication Critical patent/CN109570508A/zh
Application granted granted Critical
Publication of CN109570508B publication Critical patent/CN109570508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法,属于金属材料领域。成分包括(5‑10)wt.%Cr,(1.5‑2)wt.%W,(6‑10.5)wt.%Al,(0.1‑0.4)wt.%V,(0.25‑0.5)wt.%Y2O3,C、N含量在0.01wt.%以下。雾化粉含氧量在0.05wt.%以下,粒度为200‑400目雾化粉与400目Al粉和20‑50纳米Y2O3粉末机械合金化,使用低碳钢包套封装粉末,热等静压烧结,升温,800℃开始加压,采用两段烧结方式。得到的强化钢在室温的抗拉强度超过820MPa,总延伸率大于16%,在650℃的抗拉强度不低于500MPa,总延伸率不小于15%。

Description

双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法
技术领域
本发明涉及到第四代核反应堆包壳及聚变堆包层结构材料的制备技术,特别涉及了一种具有双晶粒尺寸分布和优异抗腐蚀氧化能力的含铝氧化物弥散强化铁素体钢及其制备方法。
背景技术
社会发展对能源不断增长的需求和降低对化石燃料依赖之间的矛盾,使得先进的核能系统引起了越来越多的关注。先进的核能系统需要结构材料具备包括高温强度、抗辐照、抗腐蚀等多方面的优异性能,铁素体/马氏体氧化物弥散强化钢因为具有较高的蠕变强度和优异的抗辐照能力被作为先进核能系统的候选材料之一。
对于铁素体/马氏体氧化物弥散强化钢,制约其发展的一大问题就是抗腐蚀能力相对较差。通常方法增加铬含量改善其抗氧化性能,增加铬含量可以提高抗氧化性,但是材料在长期服役的环境中出现铬元素的富集区,严重恶化材料的力学性能。
铝的加入虽然能提高材料的抗氧化性能,但是也能软化基体,降低材料的强度,本实验采用特殊的Al添加方式和球磨工艺,得到具有富Al相和富铁相双相分布的机械合金化粉末,并通过热等静压烧结得到具有双晶粒尺寸分布和优异抗氧化性能的含铝氧化物弥散强化铁素体钢。
双晶粒尺寸分布的钢可以通过背应力强化提高材料的强度而不损失材料的塑性。
发明内容
本发明的第一目的在于提供一种包括几百纳米到几微米的细晶粒和20到30微米的粗晶粒的双晶粒尺寸分布和优秀的强度及塑性的纳米氧化物弥散强化钢的成分设计和高效的制备方法。
本发明的第二目的在于提供一种具有优异抗氧化性能的双晶粒尺寸分布的纳米氧化物弥散强化钢。
本发明的第三目的在于提供一种具有双晶粒尺寸分布和优秀强塑性及优异抗氧化性能的纳米氧化物弥散强化钢在第四代核反应堆包壳材料及聚变堆第一壁材料上的应用。
一种双晶粒尺寸分布的铝氧化物弥散强化铁素体钢的制备方法,其特征在于:
(1)成分为(5-10)%Cr,(1.5-2)%W,(6-10.5)%Al,(0.1-0.4)%V,(0.25-0.5)%Y2O3,C、N含量严格控制在0.01%以下,其余为Fe,以上均为质量百分数;
(2)将除Y2O3、Al之外的全部元素按照步骤(1)中的质量百分数采用氩气雾化法制备机械合金化的备用粉;
(3)将上述机械合金化的备用粉与步骤(1)中的Y2O3、Al在手套箱中全程氩气保护下装球磨罐,机械合金化参数为:球料比,即球磨介质与物料的质量比为8-10:1,球磨介质为不锈钢球,转速设定为280-400r/min,按照球磨2-4小时冷却一小时的方式进行多次球磨,球磨时间为30-60h,得到具有富铝相和富铁相双相分布的机械合金化粉末;
(4)采用热等静压工艺进行烧结,采用低碳钢包套压制成型,从800℃开始逐渐加压,烧结制度为先升温至800-850℃保温两小时,再升温至1100-1150℃保温两小时,烧结压力为120-180MPa,制得具有纳米弥散相为YAlO3(六方结构),YAlO3(正交结构),Al2Y4O9(单斜结构),Y3Al5O12(立方结构)中的一种或几种的具有双晶粒尺寸分布和优异抗氧化性能的含铝氧化物弥散强化铁素体钢。
进一步地,所述雾化粉的氧含量控制在0.05wt.%以下,并筛选粒度为200-400目的粒子作为机械合金化的备用粉。
进一步地,所述机械合金化参数为:球料比为8:1,球磨介质为不锈钢球,转速设定为300r/min,球磨两小时冷却一小时,球磨时间为40h,得到具有富铝相和富铁相双相分布的机械合金化粉末。
进一步地,所述的机械合金化粉末平均粒径为200μm。
进一步地,所述的球磨介质包括直径为20mm的不锈钢球6个、直径为10mm的不锈钢球400个、直径为6mm的不锈钢球2000个,钢球的总重量为7200g。
进一步地,本发明采用低碳钢包套压制成型,从850℃开始逐渐加压,烧结制度为先升温至850℃保温两小时,再升温至1100℃保温两小时,烧结压力为180MPa。
进一步地,如上所述机械合金化粉末成分为9%Cr,1.6%W,8.0%Al,0.2%V,0.35%Y2O3,其余为Fe。
进一步地,所述的含铝氧化物弥散强化铁素体钢的纳米弥散相为YAlO3(六方结构),YAlO3(正交结构),Al2Y4O9(单斜结构),Y3Al5O12(立方结构)中的一种或几种,其在650℃的抗拉强度为500MPa,总延伸率为15%;在850℃经过1000h氧化后,氧化增重仅为0.175mg/cm2
本发明的有益效果如下:
(1)对铁素体钢的成分进行优化,增强抗腐蚀能力,通过改善球磨工艺,得到具有富铝相和富铁相双相分布的机械合金化粉末。机械合金化粉末特殊的微观结构使其在烧结过程中形成具有双晶粒尺寸分布的氧化物弥散强化钢。
(2)双晶粒尺寸分布的氧化物弥散强化钢可以通过背应力强化提高材料的强度而不损失材料的塑性。
(3)本发明制备的弥散强化钢在室温的抗拉强度为840MPa,总延伸率为18%,650℃的抗拉强度为500MPa,总延伸率为15%,在保证高温强度和塑性的前提下,氧化性能也得到了大幅度的提高,在850℃经过1000h氧化后,氧化增重仅为0.175mg/cm2。本发明所述的含铝氧化物弥散强化铁素体钢可以在第四代核反应堆包壳材料及聚变堆包层材料上应用。
附图说明
图1为实施例2经过机械合金化后的得到具有富铝相和富铁相双相分布的机械合金化粉末的二次电子图和相应的元素分布图:(a)二次电子图;(b)Fe元素分布图;(c)Cr元素分布图;(d)Al元素分布图。
图2为实施例2双晶粒尺寸分布的氧化物弥散强化铁素体钢的背散射电子图。
图3为实施例2所得氧化物弥散强化钢的室温和650℃的拉伸结果。
具体实施方式
实施例1
(1)准备8.5%Cr,1.2%W,0.2%V,6.0%Al、0.35%Y2O3
以上原料纯度均为99.9%,C、N含量小于0.01%,其余为Fe,以上均为质量百分数;
(2)将除Y2O3、Al等之外的全部元素按照步骤(1)中的质量百分数采用氩气雾化法制备合金粉,氧含量控制在0.04wt.%以下,并筛选粒度为200-400目的粒子作为机械合金化的备用粉;
(3)将上述机械合金化的备用粉与步骤(1)中的Y2O3、Al在手套箱中全程氩气保护下装球磨罐,机械合金化参数为:球料比为8:1,球磨介质为不锈钢球,转速为300r/min,按照球磨两小时冷却一小时的方式进行多次球磨,球磨时间为60h,得到平均粒度为200μm的机械合金化粉末;
(4)采用热等静压工艺进行烧结,采用低碳钢包套封装,从800℃开始逐渐加压,烧结制度为先升温至850℃保温两小时,再升温至1100℃保温两小时,烧结压力为180MPa,制得双晶粒尺寸分布的含铝氧化物弥散强化铁素体钢,弥散粒子主要为Y-Al-O粒子,室温抗拉强度为880MPa,总延伸率20%,在850℃经过1000h氧化后,氧化增重仅为0.386mg/cm2
实施例2
(1)准备9.0%Cr,1.6%W,0.2%V,8.0%Al、0.35%Y2O3
以上原料的纯度均为99.9%,C、N含量小于0.01%,其余为Fe,以上均为质量百分数;
(2)将除Y2O3、Al等之外的全部元素按照步骤(1)中的质量百分数采用氩气雾化法制备合金粉,氧含量控制在0.04wt.%以下,并筛选粒度为200-400目的粒子作为机械合金化的备用粉;
(3)将上述机械合金化的备用粉与步骤(1)中的Y2O3、Al在手套箱中全程Ar气保护下装球磨罐,机械合金化参数为:球料比为8:1,球磨介质为不锈钢球,转速为300r/min,按照球磨两小时冷却一小时的方式进行多次球磨,球磨时间为60h,得到平均粒度为200μm的机械合金化粉末;
(4)采用热等静压工艺进行烧结,采用低碳钢包套压制成型,从800℃开始逐渐加压,烧结制度为先升温至850℃保温两小时,再升温至1100℃保温两小时,烧结压力为180MPa,制得双晶粒尺寸分布的含铝氧化物弥散强化铁素体钢,弥散粒子主要为Y-Al-O粒子,室温的抗拉强度为840MPa,总延伸率为18%,650℃抗拉强度为500MPa,总延伸率15%,在850℃经过1000h氧化后,氧化增重仅为0.175mg/cm2

Claims (8)

1.一种双晶粒尺寸分布的铝氧化物弥散强化铁素体钢的制备方法,其特征在于:
(1)成分为(5-10)%Cr,(1.5-2)%W,(6-10.5)%Al,(0.1-0.4)%V,(0.25-0.5)%Y2O3,C、N含量严格控制在0.01%以下,其余为Fe,以上均为质量百分数;
(2)将除Y2O3、Al之外的全部元素按照步骤(1)中的质量百分数采用氩气雾化法制备机械合金化的备用粉;
(3)将上述机械合金化的备用粉与步骤(1)中的Y2O3、Al在手套箱中全程氩气保护下装球磨罐,机械合金化参数为:球料比,即球磨介质与物料的质量比为8-10:1,球磨介质为不锈钢球,转速设定为280-400r/min,按照球磨2-4小时冷却一小时的方式进行多次球磨,球磨时间为30-60h,得到具有富铝相和富铁相双相分布的机械合金化粉末;
(4)采用热等静压工艺进行烧结,采用低碳钢包套压制成型,从800℃开始逐渐加压,烧结制度为先升温至800-850℃保温两小时,再升温至1100-1150℃保温两小时,烧结压力为120-180MPa,制得具有纳米弥散相为YAlO3(六方结构),YAlO3(正交结构),Al2Y4O9(单斜结构),Y3Al5O12(立方结构)中的一种或几种的具有双晶粒尺寸分布和优异抗氧化性能的含铝氧化物弥散强化铁素体钢。
2.根据权利要求1所述的一种双晶粒尺寸分布的铝氧化物弥散强化铁素体钢的制备方法,其特征在于:雾化粉的氧含量控制在0.05wt.%以下,并筛选粒度为200-400目的粒子作为机械合金化的备用粉。
3.根据权利要求1所述的一种双晶粒尺寸分布的铝氧化物弥散强化铁素体钢的制备方法,其特征在于:机械合金化参数为:球料比为8:1,球磨介质为不锈钢球,转速设定为300r/min,每球磨两小时冷却一小时,球磨时间为40h,得到具有富铝相和富铁相双相分布的机械合金化粉末。
4.根据权利要求3所述的一种双晶粒尺寸分布的铝氧化物弥散强化铁素体钢的制备方法,其特在于:所述的机械合金化粉末平均粒径为200μm。
5.根据权利要求1所述的一种双晶粒尺寸分布的铝氧化物弥散强化铁素体钢的制备方法,其特征在于:所述的球磨介质包括直径为20mm的不锈钢球6个、直径为10mm的不锈钢球400个、直径为6mm的不锈钢球2000个,钢球的总重量为7200g。
6.根据权利要求1所述的一种双晶粒尺寸分布的铝氧化物弥散强化铁素体钢的制备方法,其特征在于:采用低碳钢包套压制成型,从850℃开始逐渐加压,烧结制度为先升温至850℃保温两小时,再升温至1100℃保温两小时,烧结压力为180MPa。
7.根据权利要求1-4所述的一种双晶粒尺寸分布的铝氧化物弥散强化铁素体钢的制备方法,其特征在于:机械合金化粉末成分为9%Cr,1.6%W,8.0%Al,0.2%V,0.35%Y2O3,其余为Fe。
8.根据权利要求1-6所述的方法制备得到含铝氧化物弥散强化铁素体钢,其特征在于:所述的含铝氧化物弥散强化铁素体钢的纳米弥散相为YAlO3(六方结构),YAlO3(正交结构),Al2Y4O9(单斜结构),Y3Al5O12(立方结构)中的一种或几种,其在650℃的抗拉强度为500MPa,总延伸率为15%;在850℃经过1000h氧化后,氧化增重仅为0.175mg/cm2
CN201811527046.3A 2018-12-13 2018-12-13 双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法 Active CN109570508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811527046.3A CN109570508B (zh) 2018-12-13 2018-12-13 双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811527046.3A CN109570508B (zh) 2018-12-13 2018-12-13 双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法

Publications (2)

Publication Number Publication Date
CN109570508A true CN109570508A (zh) 2019-04-05
CN109570508B CN109570508B (zh) 2022-03-29

Family

ID=65928447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811527046.3A Active CN109570508B (zh) 2018-12-13 2018-12-13 双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法

Country Status (1)

Country Link
CN (1) CN109570508B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760760A (zh) * 2019-12-05 2020-02-07 中国核动力研究设计院 一种核反应堆结构材料用FeCrAl基合金的制备方法
CN111172447A (zh) * 2020-01-03 2020-05-19 北京科技大学 两步法制备高强高韧含铝氧化物弥散强化铁素体钢的方法
CN113215470A (zh) * 2021-04-29 2021-08-06 西安建筑科技大学 一种纳米级氧化物强化低活化钢复合材料及其制备方法
CN113231648A (zh) * 2021-04-29 2021-08-10 西安建筑科技大学 一种高强度奥氏体不锈钢及其制备方法
CN118028685A (zh) * 2024-04-11 2024-05-14 西安欧中材料科技股份有限公司 一种高端特钢钨基或钴基粉末高速钢的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538674A (zh) * 2009-05-06 2009-09-23 北京科技大学 一种制备氧化物弥散强化型奥氏体不锈钢的方法
CN103173698A (zh) * 2013-04-09 2013-06-26 北京科技大学 弥散析出相强化高Cr高Ni奥氏体不锈钢及热加工方法
US20150252458A1 (en) * 2014-03-05 2015-09-10 Korea Atomic Energy Research Institute Ferritic/martensitic oxide dispersion strengthened steel with enhanced creep resistance and method of manufacturing the same
CN105039857A (zh) * 2015-06-15 2015-11-11 北京科技大学 一种氧化物弥散强化铁素体/马氏体钢及制备方法
CN108950357A (zh) * 2018-07-27 2018-12-07 中南大学 一种多尺度多相弥散强化铁基合金及其制备和表征方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538674A (zh) * 2009-05-06 2009-09-23 北京科技大学 一种制备氧化物弥散强化型奥氏体不锈钢的方法
CN103173698A (zh) * 2013-04-09 2013-06-26 北京科技大学 弥散析出相强化高Cr高Ni奥氏体不锈钢及热加工方法
US20150252458A1 (en) * 2014-03-05 2015-09-10 Korea Atomic Energy Research Institute Ferritic/martensitic oxide dispersion strengthened steel with enhanced creep resistance and method of manufacturing the same
CN105039857A (zh) * 2015-06-15 2015-11-11 北京科技大学 一种氧化物弥散强化铁素体/马氏体钢及制备方法
CN108950357A (zh) * 2018-07-27 2018-12-07 中南大学 一种多尺度多相弥散强化铁基合金及其制备和表征方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760760A (zh) * 2019-12-05 2020-02-07 中国核动力研究设计院 一种核反应堆结构材料用FeCrAl基合金的制备方法
CN111172447A (zh) * 2020-01-03 2020-05-19 北京科技大学 两步法制备高强高韧含铝氧化物弥散强化铁素体钢的方法
CN113215470A (zh) * 2021-04-29 2021-08-06 西安建筑科技大学 一种纳米级氧化物强化低活化钢复合材料及其制备方法
CN113231648A (zh) * 2021-04-29 2021-08-10 西安建筑科技大学 一种高强度奥氏体不锈钢及其制备方法
CN118028685A (zh) * 2024-04-11 2024-05-14 西安欧中材料科技股份有限公司 一种高端特钢钨基或钴基粉末高速钢的制备方法

Also Published As

Publication number Publication date
CN109570508B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN109570508A (zh) 双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法
CN105039857B (zh) 一种氧化物弥散强化铁素体/马氏体钢及制备方法
CN101328562B (zh) 氧化物弥散强化低活化马氏体钢材料及其制备方法
CN110004367B (zh) 一种氧化物弥散强化FeCrAl合金管材的制备方法
CN105274445B (zh) 一种氧化物弥散强化低活化钢及其制备方法
CN106435323A (zh) 一种氧化物弥散强化ods高熵合金及其制备方法
CN104630639B (zh) 一种纳米氮化钇弥散强化铁基合金及制备方法
CN111172447B (zh) 两步法制备高强高韧含铝氧化物弥散强化铁素体钢的方法
CN101948970A (zh) 一种机械合金化制备镍基氧化物弥散强化合金的方法
CN103233182A (zh) 纳米β′相和纳米氧化物复合强化铁基ODS合金的方法
CN102071348A (zh) 一种超细晶粒纳米结构氧化物弥散强化钢的制备方法
KR101586546B1 (ko) 상온 및 고온 강도가 향상된 페라이트계 산화물분산강화 합금 및 이의 제조 방법
CN107699811B (zh) 一种氧化硅弥散强化钢及其制备方法
CN113477929A (zh) 一种高强韧ods钢的高通量制备与成分工艺优选方法
Jia et al. Effect of zirconium content on the microstructure of ODS FeCrAl alloys
CN101979691B (zh) 一种氧化物弥散强化钴基超合金的制备方法
CN110499441B (zh) 一种纳米结构氧化物弥散强化钒合金及其制备方法
CN110016603B (zh) 一种超高强度高热稳定性纳米晶ods钢及其制备方法和应用
KR20150100204A (ko) 인장 및 크리프 강도가 우수한 저방사화 산화물분산강화 강 및 그 제조방법
CN104451225A (zh) 一种制备双连通结构超合金复合材料的方法
CN104073725A (zh) 提高常温及高温强度的铁素体氧化物弥散强化合金及其制造方法
CN104476842B (zh) 一种层状增韧ods钢及其制备方法
US20140294653A1 (en) Martensitic oxide dispersion strengthened alloy with enhanced high-temperature strength and creep property, and method of manufacturing the same
CN107699775A (zh) 采用超低温机械合金化技术制备氧化物弥散强化钢的方法
JP2000282101A (ja) 酸化物分散強化型フェライト鋼の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant