CN1095282C - 全方向成象装置、全方向图象投影装置和全方向成象方法 - Google Patents
全方向成象装置、全方向图象投影装置和全方向成象方法 Download PDFInfo
- Publication number
- CN1095282C CN1095282C CN97194536A CN97194536A CN1095282C CN 1095282 C CN1095282 C CN 1095282C CN 97194536 A CN97194536 A CN 97194536A CN 97194536 A CN97194536 A CN 97194536A CN 1095282 C CN1095282 C CN 1095282C
- Authority
- CN
- China
- Prior art keywords
- image
- omnirange
- additional
- reflector
- scene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title description 10
- 238000000034 method Methods 0.000 claims description 35
- 230000003287 optical effect Effects 0.000 claims description 20
- 230000000007 visual effect Effects 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000002594 fluoroscopy Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 229920000535 Tan II Polymers 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- -1 photogrammetric Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/12—Panospheric to cylindrical image transformations
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19617—Surveillance camera constructional details
- G08B13/19626—Surveillance camera constructional details optical details, e.g. lenses, mirrors or multiple lenses
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19617—Surveillance camera constructional details
- G08B13/19626—Surveillance camera constructional details optical details, e.g. lenses, mirrors or multiple lenses
- G08B13/19628—Surveillance camera constructional details optical details, e.g. lenses, mirrors or multiple lenses of wide angled cameras and camera groups, e.g. omni-directional cameras, fish eye, single units having multiple cameras achieving a wide angle view
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19639—Details of the system layout
- G08B13/19641—Multiple cameras having overlapping views on a single scene
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/58—Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
- H04N5/2628—Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/74—Projection arrangements for image reproduction, e.g. using eidophor
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Stereoscopic And Panoramic Photography (AREA)
- Studio Devices (AREA)
- Image Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
一种全方向成象装置(130),用于从单个观察点探测大致半球面场面的图象,包括一个截削的大致凸的抛物面形反射器(135),被设置为正反射该大致半球面场面的图象,和一个图象探测器(110),被设置为接收该正反射图象。一种全方向图象投影装置,用于投射如同从单个观察点观察到的大致半球面场面的图象,包括一个投射经所述图象调制的准直光束的装置,和一个截削的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器,被设置为正反射经所述图象调制的该准直光束,从而投射此半球面场面。
Description
政府权利声明
本发明属于以国家科学基金青年研究人员奖金,在国防部/原子研究局MURI协议No.00014-95-1-0601下作出的发明,美国政府享有特定的权利。
发明背景
1.发明领域
本发明涉及参照单个观察点的全方向图象探测和投影技术,更具体地说,涉及利用一截削的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器进行的这种图象探测和投影的技术。
2.现有技术
对于很多应用场合,例如监视、远程通信、远程探测、摄影测量、样本搜索、模拟真实、计算机制图,机器观测以及机器人技术,需要成象系统具有大的视场,以便能够获取其周围世界尽可能多的信息。
传统的成象系统包括一个摄影机,它带有能提供图象透视投影的镜头。然而,即使具有极宽角镜头的摄影机也仅具有有限的视场(即覆盖面小于整个半球)。通过使整个成象系统绕其投影中心作俯仰和随动拍摄,可以扩展此有限视场。S.E.Chen的“Quicktime VR-An Image-BasedApproach to Virtual Environment Navigation”〔Proc.of SIGGRAPH 95,(8):29-38,August(1995)〕一文中描述了一种这样的系统。L.McMillan和G.Bishop的“Plenoptic Modeling:An Image-Based Rendering System”(Computer Graphics:Proc.of SIGGRAPH,August 1995,pp.39-46)一文中也描述了一种传统的俯仰随动系统。但是这种类型的系统具有两个严重的缺陷,一是具有严密运动部件的装置所固有的显著缺点,二是为观察周围世界进行一次完全转动所需的较长时间。这种时间限制使其不适于实时应用场合。
增大成象系统视场的另一种方法是采用所谓的“鱼眼”透镜,如E.L.Hall等人的“Omnidirectional Viewing Using a Fish Eye Lens”〔SPIEVol.728 Optics,Illumination,and Image Sensing for MachineVision(1986),p.250〕一文中所述。由于鱼眼透镜具有很短的焦距,其视场可以大至半球面。但是,由于这种透镜明显大于传统透镜且更加复杂,使得在成象系统中采用这种透镜会产生很多问题。另外,制作一个对于相关场面所有点均具有一固定观察点的鱼眼透镜也是很困难的。授予Zimmerman的美国专利US 5,187,667以及授予Kuban等人的美国专利US5,359,363都在于采用鱼眼透镜替代传统的俯仰随动机构,从而具有相同的缺陷。
其它现有技术的装置采用反射面来增大视场。V.S.Nalwa的“A TrueOmnidirectional Viewer”(ATT Bell Laboratories TechnicalMemorandum,BL0115500-960115-01,Jan.1996)一文中公开了一种此类现有技术的装置。Nalwa公开了采用多个平面反射面与多个电荷耦合器件(“CCD”)摄影机一起,获得具有50°半球场面的360°全景图象的方法。特别是,在Nalwa的方法中,以金字塔形设置了四个平面反射镜,在每个平面反射边的上方设有一个摄影机,各摄影机观察略大于90°×50°的半球场面。该系统由于需要多个探测器来获取半球图象而产生严重缺陷。另外,该系统在将分离图象结合在一起以提供完全的360°视场时,由于在“接合处”的象差也会产生许多固有问题。
还可采用弯曲反射面与图象探测器相结合。然而,本领域技术人员公知,对于透视投影,能够产生如同从单个观察点所看到的外界图象的唯一反射面为通过透镜与观察点之间线段中点的平面,其法线沿该线段的方向。因而,对于透视投影,任何曲面都必须具有多个观察点。
在Yagi等人的“Evaluating Effectivity of Map Generation byTracking Vertical Edges in Omnidirectional Image Sequence”(IEEEInternational Conference on Robotics and Automation,June 1995,p.2334)以及Yagi等人的“Map-Based Navigation for a Mobile RobotWith Omnidirectional Image Sensor COPIS”(IEEE Transactions onRobotics and Automation,Vol.II,No.5,Oct.1995)文中,公开了一种锥形投影图象探测器(COPIS),它采用一锥形反射面来收集周围环境的图象,并进行信息处理来指引运动机器人的导航。尽管COPIS能够达到360°的视场,但是它并非真正的全方向图象探测器,因为其视场受到锥形反射镜顶角以及摄影镜头视角的限制。另外,如前所述,曲面之外的反射会产生多个观察点,对于圆锥其观察点的轨迹为一个圆。多观察点导致显著的象差,并且须要对图象进行复杂的计算和变换来重建如同从单个观察点所看到的场面。
Yamazawa等人的“Obstacle Detection With OmnidirectionalImage Sensor HyperOmni Vision”(IEEE International Conference onRobotics and Automation,Oct.1995,p.1062)一文中,公开了一种对COPIS系统的改进,它采用了双曲面反射面来替代锥形反射面。如该文中所述,经反射离开双曲面的光线,不管其初始点在何处,都全部会聚于一点,从而能够实现透视观察。尽管双曲面反射镜的采用有利于其实现完全的透视图象探测,但是因为构成反射图象的光线会聚于反射器的焦点,所以探测器相对于反射面的定位非常苛刻,任何干扰都会损害图象质量。另外,采用透视投影模型必然要求反射镜的截面随着探测器和反射镜之间距离的增大而增大。因此,实际考虑要求反射镜必须置于靠近探测器处,以使反射镜保持合理的尺寸。这反过来增加了图象探测器光学元件的设计复杂性。而且,由于会聚图象的性质,使得给探测图象标绘可用坐标须要进行复杂的校准。
上述现有技术的装置不能提供能够从单个观察点探测大致为半球面场面的真正的全方向成象装置,这些装置同样不能实现如下的成象系统,其中可以观察到大致为半球面场面的任何选定部分,或者可以扫描该场面,既不需要画面重建,也无需复杂的画面变换。
发明概述
本发明基本上改进了现有技术的上述缺陷,按照一个方面,本发明为一种全方向成象装置,具有一截削的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器,被设置为正反射基本为半球面场面的图象,其中反射器的焦点与所述单个观察点相重合。图象探测器被设置为接收正反射的图象。
在本发明的一个实施例中,反射镜的表面基本遵从方程:
该方程以柱坐标表示,其中r为径向坐标,z为旋转轴,h为常数。由于该方程表示一对称旋转曲面,所以其表面形状不是角坐标
的函数。该反射器在基本上垂直于z轴且包括抛物面反射器焦点的平面处被截削。图象探测器最好位于与反射镜z轴相重合的光轴上。
在一个例示性结构中,该图象探测器为电子式的,并提供代表所述正反射图象的图象信号。此图象信号经数字化后传送至一个图象处理装置。该图象处理装置最好被调整为能够观察所述半球面场面的任意部分,能够放大场面的局部,并且能够从既定观察点跟随场面。
本发明的另一个例示性实施例包括一个附加的截削的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器,被设置为正反射来自单个观察点的附加半球面场面的图象。该半球面场面与附加半球面场面互补,使得其结合为一球面场面。一个附加图象探测器被设置为接收从该附加反射器正反射的图象。
在此实施例中,所述反射器和附加反射器背对背设置,并且具有一个与其光轴对齐的共同z轴和一个共同焦点。各反射器都在基本垂直于其共同z轴且包含其共同焦点的平面处被截削。
本发明的另一个方面为一种全方向图象投影装置,用于投射代表如同从单个观察点观察到的大致半球面场面的图象。该全方向图象投影装置包括一个位于带有半球面场面的图象的透明载体之后的准直光源,用以投射经所述图象调制(空间调制,也可以时间调制)的准直光束;和一个截削的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器,被设置为正反射经所述图象调制的该准直光束,从而投射该大致半球面场面。
该全方向图象投影装置的另一个例示性实施例包括一个附加光源和带有图象的透明载体,用以投射经另一图象调制的另一准直光束,此另一图象代表如同从单个观察点观察到的附加大致半球面场面。所述半球面场面与附加半球面场面互补,使得其结合为一大致球面场面。一个附加的截削的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器被设置为正反射该附加准直光束,从而投射该附加半球面场面。所述反射器和附加反射器背对背设置,具有共同光轴和共同焦点。各反射器都在基本垂直于其光轴且包含其共同焦点的平面处被截削。
本发明还提供了一种用于从单个观察点探测大致半球面场面的图象的方法,在一个例示性实施例中该方法包括如下步骤:(a)在一基本遵从方程z=(h2-r2)/2h的抛物面形反射表面上正反射所述大致半球面场面的图象,使得其单个观察点与该反射表面的焦点重合;以及(b)探测该正反射的图象。步骤(b)可以包括从所述反射镜的光轴上的位置探测所述大致正反射的图象。
在此成象方法的另一个例示性实施例中,还包括如下步骤:提供代表所述正反射图象的图象信号,将该图象信号转换成图象数据,并将该图象数据标绘在直角坐标系中,对该图象数据进行内插,以及从所述标绘的图象数据和插值图象数据形成数字图象。如果需要,在确定观察方向、焦距和图象尺寸之后,可以在进行插值步骤之前变焦距(zoom)图象的选定部分。
最后,在此成象方法的再一个例示性实施例中,进一步包括如下步骤:在一附加的基本遵从方程z=(h2-r2)/2h的抛物面形反射表面上正反射一大致半球面场面的附加图象,使得该附加场面的单个观察点与所述附加反射表面的焦点重合,以及探测该附加的正反射图象。
本发明还提供了一种用于投影代表如同从单个观察点观察到的大致半球面场面的图象的方法,在一个例示性实施例中该方法包括如下步骤:(a)将经所述图象调制(空间调制,也可以时间调制)的准直光束投射在一个基本遵从方程z=(h2-r2)/2h的抛物面形反射表面上,以及(b)在基本遵从方程z=(h2-r2)/2h的抛物面形反射表面上正反射经所述图象调制的该准直光束,使得所述图象的单个观察点与该正反射表面的焦点重合。
此图象投影方法的另一个例示性实施例包括如下步骤:投射经一附加图象调制的附加准直光束,其中的附加图象代表如同从单个观察点观察到的一附加大致半球面场面,以及正反射经该附加图象调制的附加准直光束,从而投射所述附加半球面场面,其中该附加半球面场面与所述的另一半球面场面互补。
附图的简要描述
下面参照附图说细描述本发明的实施例,附图中:
图1a为全方向成象装置一个实施例的侧视图;
图1b为一替代实施例的侧视图,其中通过一透明支座将抛物面形反射器与图象探测器相连;
图2为安装在基板上的抛物面形反射器的等角投影图;
图3为以柱坐标系标绘的抛物面形反射器的局部等角投影图;
图4为从弯曲反射面的正反射的几何表示;
图5为从基本为抛物面形反射器正反射至图象探测器的示意图;
图6表示如何从单个观察点观察半球面场面的任意选定部分;
图7为具有两个背对背其表面基本遵从方程z=(h2-r2)/2h的凸面反射器和两个图象探测器的全方向成象系统的侧视图;
图8为两个背对背设置的具有共同旋转轴和共同焦点的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器的剖面图;
图9a为全方向图象投影装置一个实施例的侧视图;
图9b表示用于投影经图象调制的准直光束的例示性结构;
图10为一个全方向图象投影装置的侧视图,该装置具有两个背对背的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器,和两个光源以及两个透明的图象载体,用于将两个基本为半球面场面的相应图象调制的两束准直光束投影向对应的反射器;
图11为以柱坐标系表示的全方向图象投影装置的抛物面形反射器的局部等角投影图;
图12为用于探测和处理从单个观察点观察到的大致半球面场面的图象之方法的例示性实施例的流程图;以及
图13为用于投影表示从单个观察点观察到的大致半球面场面的图象之方法的流程图。
详细说明
图1a表示根据本发明一个实施例的全方向成象装置100。安装在一基板140上的凸抛物面形反射器135被设置为正反射大致半球面场面130的图象。一个图象探测器110,例如商业上可获得的Sony 3CCD彩色视频摄像装置111,带有放大透镜112和远心透镜或远心孔阑113,被设置为接收该正反射图象。远心透镜113用于滤除所有与透镜平面不垂直的光束,即不构成半球面场面的正反射图象的背景光。
尽管此处的描述是针对可见光的,但本发明对于其它的电磁辐射例如紫外光或红外光也可以同样应用。
在图1b所示的本发明成象装置100的替代实施例中,抛物面形反射镜可以通过一透明支座136,例如一截透明管道(a length of clear tubing),耦合至图象探测器上。
重新参照图1a,视频摄像机110产生一个代表正反射图象的模拟视频信号,通过缆线150发出。该视频信号由数字转换器120转换成数字信号,数字转换器120可以是商业上可获得的NTSC视频信号模数转换器。
该数字信号接着通过缆线155传送至一通用计算机125,例如DECAlpha 3000/600工作站。后面将进一步详细说明,计算机125被编程为允许用户观察半球场面的任意所需部分,以变焦距场面的选定部分,或者以任意所需方式扫视图象。
图象探测器110可以就是采用传统摄影胶卷的静止或活动画面摄影机。图象探测器110也可以是能提供数字视频信号输出的摄录机或摄像机116,可以将其输出直接提供给计算机125而无需采用模数转换器120。
图2表示抛物面形反射器135的等角投影图,该反射器从其所由构成的基板140上伸出。基板140的整个表面,包括反射器135,镀有一高反射金属例如银的薄层145。
图3更加详细地表示该抛物面形反射器135的优选几何尺寸,以及大致半球面场面130的图象向图象探测器110上的正反射。图3的反射器135以柱坐标r、φ和z限定,大致遵从如下方程
其中z为旋转轴,r为径向坐标,h为常数。z轴与成象装置的光轴重合,而由方程(1)所限定的抛物面的焦点315与坐标系统的原点重合。图3的反射器135在平面p处被截削,其中平面p基本垂直于z轴310,并且包括其抛物面的焦点315。
所有可能通过焦点315的入射光束305,由抛物面形反射面正反射向图象探测器110。因此,焦点315与观察大致半球面场面130的单个观察点重合。图象探测器110位于成象系统的光轴310上,其感光表面垂直于光轴。
采用正反射能够观察到从单个观察点的大致半球面场面,这是本发明的一个优点,正如本领域所公知的那样,由曲面的反射提供透视投影会产生多个观察点。
参照图4可以说明,正反射使得可以观察到从单个观察点的场面。在图4中,z和r为对于角坐标φ给定值的正交柱坐标。入射光束405相对于轴的角度为θ。入射光束405经反射面415正反射,成为出射光410。
为具有单个观察点420,任何入射光束必须满足θ
tan(θ)=z/r, (3)
并且对于正反射,所有光束必然以角度
α=π/2, (4)
也可以表示为
最后,反射面415在
平面内在反射点处的斜率为
将(6)和(4)代入(5),得
如果a=z/r,上式变为
其中h为积分常数。将z=ra代入方程(9),得方程(1)。
因此,存在一条曲线,当其绕z轴旋转时,产生一个表面,它使得从单个观察点的大致半球面场面可以正反射。该曲线为由方程(1)限定的抛物线,其单个观察点与抛物线的焦点420重合。
除了提供从单个观察点对大致半球面场面的观察之外,本发明的全方向成象装置还可以观察场面的任意部分,可以移向选定部分,并且可以以任意方式跟随场面,这些都是针对单个观察点进行的,无须进行图象重建或复杂的画面变换。
图5表示图象探测器是如何从单个观察点观察大致半球面场面的一部分的。将一个截削的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器135表示在直角坐标系中。成象系统的光轴502与z轴重合,抛物面形的反射器135的焦点501位于原点。来自被观察场面300的一部分的入射光束505、510与反射面相交于点515和520,这两点可由其相应的x和y坐标确定。点515和520分别位于从场面观察点,即抛物面反射器焦点501发出的假想径向直线516和521上。由于这些光束被正反射向具有垂直于z轴的平面感光表面的图象探测器110,所以投射光束将与该感光表面相交于其相等的相应x和y坐标处。只有z坐标会发生改变。相应地,在正射投射光束与反射镜135的交点的x-y坐标和该正射投射光束与图象探测器110的感光表面的交点的x-y坐标之间存在一一对应关系。
在一个优选结构中,图象探测器110包括一具有感光元件阵列的平面电荷耦合器件(“CCD”)图象探测器。各个单元探测其阵列的特定位置处的光强。因此,通过一一对应关系,由覆盖直角坐标系中一定范围x-y坐标的CCD单元所产生的图象信号代表由反射面135在相同x-y坐标范围内的点处所正反射的光束。从而,图象的绘制对于本领域技术人员只是一个简单任务。
考虑到上面所述的一一对应关系,图6说明移向大致半球面场面的任意选定部分的技术。反射器135相对于正交的x、y和z轴的位置与图5中相同。为了变焦焦距为f、以点550为中心一定尺寸的场面的选定部分,仅选择与投射场面选定部分的反射面区域具有相同范围x-y坐标的CCD单元的图象信号加以放大和观察。
更具体地说,为确定场面选定部分点570的确切光强,选择位于580处的CCD单元所产生的光强信号。如图6所示,点570和焦点551之间的线段与反射器135相交于点552。使点570的光强等于580处的CCD单元所产生的图象信号表示的光强,其中位置580在直角坐标系中的x-y坐标最接近点552的x-y坐标。对于与投射场面选定部分的反射面区域相同的x-y坐标范围内的每个CCD单元,重复此过程。上述正反射和一一对应关系使得不须要进行图象重建或复杂的画面变换。本领域技术人员可以容易地将一个通用计算机125编程为执行上述步骤,从而可以从单个观察点观察半球面场面的任意部分,并且还可以变焦任意特定部分以提供该部分的放大图象。另外,通过指定沿反射镜的后继点,可以跟随半球面场面,就象正在从单个观察点观察场面一样。
在上述实施例中,很明显,当变焦场面的较小部分时,向计算机125提供信息的CCD单元数目减少,从而被观察图象的颗粒度增大。在一个优选实施例中,对于场面中不与CCD单元精确对应的点,其信息可以通过内插方法更加接近地加以近似。本说明书附件I包括一种可在计算机125中执行的适用的内插程序。附件I的程序可以将探测到的全方向图象编绘成适于在计算机125上显示的一般透视图象。该程序需要用户输入姓名、中心位置,以及须转换的全方向图象的半径。该程序还需要用户输入所产生透视图象的名称,以及该透视图象的焦距和尺寸。
这样,取代简单地选择最接近CCD单元所产生的图象信号来表示并不是与CCD单元精确对应的图象部分,通过所附程序对这类场面部分的图象进行估计,其中所附程序是根据对应于场面相邻部分的CCD单元所产生的图象信号的适当平均值来计算的。当然,也可以采用本领域技术人员公知的更加复杂的内插程序,例如基于多项式模拟或瞬态模拟的程序,这并未离开如本文权利要求所限定的本发明的范围。
在本发明的再一个例示性实施例中,全方向成象装置包括一个附加的大致抛物面形反射镜735,如图7所示。该附加反射镜设置为正射投射与半球面场面130互补的附加半球面场面730的图象,从而这两个半球面场面一起构成球面场面。设置一附加图象探测器710,用以接收由附加反射镜735所正射投射的图象。
附加反射器735正反射的图象信号由转换器720以上述相同方式转换成数字信号,并通过缆线725发送给相同的通用计算机125。
如图8所示,反射器135和735背对背设置,具有一个亦为成象装置光轴的共同旋转轴810和一个共同焦点805,并且都在平面p处被截削,其中平面p基本垂直于旋转轴810且包含焦点805。
图9a表示本发明全方向图象投影装置的一个例示性实施例,用于投影如同从单个观察点所观察到的大致半球面场面的图象。该全方向图象投影装置包括一准直光源910,带有大致半球面场面的图象的一透明载体920。透明图象载体可以是由上述全方向成象装置所产生的摄影透明片,或者是带有大致半球面场面的静止或运动画面图象的透明液晶显示器(LCD)。
光源910通过透明图象载体920投射准直光束940,从而产生经透明载体920上图象空间调制(也可以时间调制)的准直光束940。其表面基本遵从方程z=(h2-r2)/2h的凸面反射器930,在本实施例中为上面参照图2和3所述的反射器,被设置为正反射该准直的图象调制光束940,以便投影该大致半球面场面。
在图9b中所示的本发明投影系统的一个替代实施例中,采用一个由通用计算机970控制的图象投影系统960来取代准直光源和透明的图象载体。该图象投影系统960产生经所需图象信息调制的准直光束940。为此目的,计算机970控制从投影系统960的出射光940的光强分布。
图10中所示的本发明全方向图象投影系统的再一个实施例,包括一个带有表示附加的大致半球面场面的附加图象的附加透明图象载体1020,一个附加的准直光源1010,和一个附加的其表面基本遵从方程z=(h2-r2)/2h的抛物面形反射镜1030。大致半球面场面和附加的大致半球面场面互补,从而其结合为一球面场面。
附加的其表面基本遵从方程z=(h2-r2)/2h的抛物面形反射镜1030设置为正反射附加准直光束1040,从而用于投影附加半球面场面。
这两个反射镜背对背设置,具有共同的旋转轴和共同焦点,与图8所示方式相同。它们都在一个大致垂直于其共同旋转轴并包含其共同焦点的平面处被截削。
参照图12,图中画出的流程图1200表示根据本发明一个例示性实施例的用于从单个观察点探测大致半球面或球面场面的图象的方法。流程图1200画出了从单个观察点探测半球面场面的必要步骤。该方法需要正反射大致半球面场面1210,以及探测该正反射图象1220。
该方法还包括如下步骤:将图象信号转换成图象信号数据1230,将图象数据标绘在直角坐标系中1240,对图象数据进行内插1260以得出丢失图象数据的近似值,以及根据标绘的图象数据和插值图象数据形成数字图象1270。在内插步骤之前最好进行如下步骤:确定观察方向、焦距和图象尺寸1245,变焦该图象数据的选定部分1250。
最后,图13表示的流程图1300为根据本发明例示性实施例的用于投影如同从单个观察点观察到的大致半球面场面的图象的方法。该方法包括如下步骤:投射经图象调制的准直光束1310,以及在一基本遵从方程z=(h2-r2)/2h的抛物面形反射面上正反射所述准直光束1320,使得图象的单个观察点与反射面的焦点重合。
该方法还包括如下步骤:作为附加准直光束投射代表如同从单个观察点观察到的附加大致半球面场面的附加图象1330,以及正反射该附加准直光束1340,以重新产生附加的大致半球面场面。
另外,本发明提供了一种用于探测从单个观察点的大致半球面场面的不带任何运动部件的全方向成象装置。本发明装置采用正反射以提供改进的象质,并且可以无须进行复杂的图象重建或复杂的画面变换而变焦场面的任何部分和跟随场面。
本发明还提供了一种全方向图象投影装置,它能够投影代表如同从单个观察点观察到的大致半球面场面的图象。
上述描述只是本发明原理的说明。本发明的其它改型对于本领域技术人员来说是显而易见的,因而应当理解,本发明的范围只能由所附的权利要求加以限定。
附件I
compute_image.c #include"stdlib.h" #include"imageutil.h" #include"stdio.h" #include"math.h" /*int main(int argc,char**argv) */ main(argc,argv) int argc; char *argv[];{ double sqrt(),atan(),sin(),cos(),acos(); unsigned char*r,*g,*b; unsigned char *red; unsigned char *green; unsigned char *blue; int xsize,ysize; int xosize,yosize; int i,j,x0,y0,x1,y1; double theta,phi; double ox,oy,oz; double px,py,pz; double qx,qy,qz; double tempx,tempy,tempz; double sx,sy,sz; double rad,mag; double xs,ys,zs; double dispx,dispy; int xcent,ycent,xnew,ynew, xpix,ypix,xpoint, ypoint; int xpixel,ypixel,indexx,indexy,xcenter,ycenter; float radius,focal; <dp n="d13"/> /* printf("completed initializations\n\n");*/ if(argc !=4){ printf("arguments:xcenter,ycenter,radius\n"); exit(0); } printf("\n"); xcent=atoi(argv[1]); ycent=atoi(argv[2]); radius=atof(argv[3]); printf("omni-image:xcenter=%d ycenter=%d radius=%f\n\n", xcent,ycent,(float)radius); printf("input view pixel[xnovel ynovel]:"); scanf("%d%d",&xnew,&ynew); printf("\n"); printf("selected view pixel:xnew=%d ynew= %d\n\n",xnew,ynew); printf("input new image parameters[xpixels ypixels focal]:"); scanf("%d%d%f",&xpix,&ypix,&focal); printf("\n"); printf("output image:xpixels=%d ypixels=%d focal=%f\n\n", xpix,ypix,(float)focal); loadPPM("test.ppm",&r,&g,&b,&xsize,&ysize); printf("loaded omni-image file\n\n"); <dp n="d14"/> xosize=xpix; yosize=ypix; /*printf("set new img size,xsize=%d,ysize=%d \n\n",xosize,yosize);*/ red=(unsigned char*)malloc(xosize*yosize* sizeof(unsigned char)); green=(unsigned char*)malloc(xosize*yosize* sizeof(unsigned char)); blue=(unsigned char*)malloc(xosize*yosize* sizeof(unsigned char)); printf("allocated memory for new image file\n\n"); xcenter=xcent; ycenter=ycent; xpoint=ynew-ycent; ypoint=xnew-xcent; tempx=(double)xpoint; tempy=(double)ypoint; tempz=(radius*radius-(tempx*tempx+ tempy*tempy))/(2*radius); ox=tempx/sqrt(tempx*tempx+tempy*tempy+ tempz*tempz); oy=tempy/sqrt(tempx*tempx+tempy*tempy+ tempz*tempz); oz=tempz/sqrt(tempx*tempx+tempy*tempy+ tempz*tempz); /★计算出光轴(Z)★/ tempx=-oy; <dp n="d15"/> tempy=ox; tempz=o; px=tempx/sqrt(tempx*tempx+tempy*tempy+ tempz*tempz); py=tempy/sqrt(tempx*tempx+tempy*tempy+ tempz*tempz); pz=tempz/sqrt(tempx*tempx+tempy*tempy+ tempz*tempz); /★计算出水平轴★/ tempx=py*oz-pz*oy; tempy=pz*ox-px*oz; tempz=px*oy-py*ox; qx=tempx/sqrt(tempx*tempx+tempy*tempy+ tempz*tempz); qy=tempy/sqrt(tempx*tempx+tempy*tempy+ tempz*tempz); qz=tempz/sqrt(tempx*tempx+tempy*tempy+ tempz*tempz); /★计算出垂直轴★/ printf("computed perspective image frame\n\n"); /★光栅扫描透视图象平面★/ for(i=0;i<ypix;i++){ dispy=(double)i-(double)ypix/2; for(j=0;j<xpix;j++){ dispx=(double)xpix/2-(double)j; sx=ox*focal+px*dispx+qx*dispy; <dp n="d16"/> sy=oy*focal+py*dispx+qy*dispy; sz=oz*focal+pz*dispx+qz*dispy; mag=sqrt(sx*sx+sy*sy+sz*sz); sx=sx/mag; sy=sy/mag; sz=sz/mag; /★计算出当前象素方向的矢量★/ phi=atan2(sy,sx); theta=acos(sz/sqrt(sx*sx+sy*sy+sz*sz)); /★将矢量转换成极坐标★/ rad=2*radius*(1-cos(theta))/(1-cos(2*theta)); /★求得与抛物面交点半径★/. xs=rad*sin(theta)*cos(phi); ys=rad*sin(theta)*sin(phi); zs=rad*cos(theta); /★求得抛物面x,y,z坐标★/ /*printf("xs=%f ys=%f zs=%f\n\n",(float)xs, (float)ys,(float)zs);*/ /★从输入图象读取XS,YS并存入输出图象★/ /★判断图象点是否位于抛物面图象之外★/ if(sqrt(xs*xs+ys*ys)>radius){ <dp n="d17"/> red[i*xpix+j]=255; green[i*xpix+j]=255; blue[i*xpix+j]=255; } else{ indexx=(int)ys+xcenter; indexy=(int)xs+ycenter; /* printf("one pixel\n\n");*/ /★将最接近颜色值写入象素★/ red[i*xpix+j]=r[indexy*xsize+ indexx]; green[i*xpix+j]=g[indexy*xsize+ indexx]; blue[i*xpix+j]=b[indexy*xsize+ indexx]; } } } printf("computed perspective image\n\n"); savePPM("out.ppm",red,green,blue,xpix,ypix); printf("saved new image file\n\n"); system("xv out.ppm &"); <dp n="d18"/> free(r); free(g); free(b); free(red); free(green); free(blue); printf("freed allocated memory\n\n"); return 0; }
Claims (35)
1.一种全方向成象装置,用于从单个观察点探测大致半球面场面的图象,包括:
(a)一个截削的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器,被设置为正反射所述大致半球面场面的图象,该抛物面形反射器的焦点与所述单个观察点重合;和
(b)一个图象探测器,被设置为接收所述图象的正反射图象。
2.如权利要求1所述的全方向成象装置,其中所述图象探测器包括电荷耦合器件图象探测器。
3.如权利要求1所述的全方向成象装置,其中所述图象探测器包括摄影胶片。
4.如权利要求1所述的全方向成象装置,其中所述图象探测器包括视频摄像机。
6.如权利要求1所述的全方向成象装置,其中所述反射器具有一旋转轴,并且包括一个在基本上垂直于所述旋转轴且包含该反射器所述焦点的平面处被截削的反射镜。
7.如权利要求1所述的全方向成象装置,其中所述图象探测器沿所述反射器的旋转轴定位。
8.如权利要求1所述的全方向成象装置,还包括一个透明支座,用于耦合所述反射器和所述图象探测器,以保持其相对位置。
9.如权利要求1所述的全方向成象装置,其中所述图象探测器提供代表所述正反射图象的图象信号,还包括一个与所述图象探测器耦合的图象信号处理装置,以将所述图象信号转换成图象信号数据并且将该图象信号数据标绘在直角坐标系中。
10.如权利要求9所述的全方向成象装置,其中所述图象信号处理装置还包括用于提供插值图象数据的内插装置,从而使该插值图象数据和图象信号数据结合,以形成所述数字图象。
11.如权利要求10所述的全方向成象装置,其中所述图象信号处理装置还包括用于变焦距所述数字图象的预选部分的装置,从而从预定焦距提供所述预选部分的放大图象。
12.如权利要求1所述的全方向成象装置,还包括至少一个透镜,用于光学耦合所述图象探测器和所述反射器,并且位于该图象探测器和反射器之间。
13.如权利要求12所述的全方向成象装置,其中所述至少一个透镜之一为远心透镜。
14.如权利要求12所述的全方向成象装置,还包括一个远心光阑,用于光学耦合所述图象探测器和所述反射器,并且位于该图象探测器和反射器之间。
15.如权利要求1所述的全方向成象装置,还包括一个附加的截削的其表面基本遵从方程z=(h2-r2)/2h的抛物面形反射镜,该附加反射镜被设置为正反射来自所述单个观察点的附加半球面场面的图象,所述半球面场面与所述附加半球面场面互补,使得其结合为一大致球面场面;以及一个附加图象探测器,被设置为接收所述附加半球面场面的图象的正反射图象。
16.如权利要求15所述的全方向成象装置,其中所述反射器和所述附加反射器背对背设置,具有共同光轴和共同焦点,并且其中各反射器都包括一个在基本上垂直于所述光轴且包含所述共同焦点的平面处被截削的反射镜。
17.一种全方向图象投影装置,用于投射代表如同从单个观察点观察到的大致半球面场面的图象,包括:
(a)用于将所述图象作为经所述图象调制的准直光束加以投射的装置,和
(b)一个截削的其表面基本遵从方程z=(h2-r2)/2h的凸面反射器,被设置为正反射经所述图象调制的该准直光束,从而投射所述大致半球面场面。
18.如权利要求17所述的全方向图象投影装置,其中所述投射图象的装置包括一个带有所述大致半球面场面的图象的透明载体,和一个准直光源,所述载体位于该准直光源和所述反射器之间。
19.如权利要求18所述的全方向图象投影装置,其中所述透明载体为摄影透明片。
20.如权利要求18所述的全方向图象投影装置,其中所述透明载体为液晶显示器。
21.如权利要求17所述的全方向图象投影装置,其中所述投射图象的装置包括计算机和图象投影器。
23.如权利要求17所述的全方向图象投影装置,其中所述反射器具有一旋转轴和一焦点,并且包括一个在基本上垂直于所述旋转轴且包含该反射器所述焦点的平面处被截削的反射镜。
24.如权利要求17所述的全方向图象投影装置,还包括用于将一附加图象作为经该附加图象调制的附加准直光束加以投射的装置,所述附加图象代表如同从单个观察点观察到的附加大致半球面场面,所述半球面场面与所述附加半球面场面互补,使得其结合为一大致球面场面;以及一个附加的截削的大致凸的抛物面形反射器,被设置为正反射经所述附加图象调制的附加准直光束,从而投射所述附加大致半球面场面。
25.如权利要求24所述的全方向图象投影装置,其中所述反射器和所述附加反射器背对背设置,具有共同旋转轴和共同焦点,并且其中各反射器都包括一个在基本上垂直于所述共同旋转轴且包含所述共同焦点的平面处被截削的反射镜。
26.一种全方向成象方法,用于从单个观察点探测大致半球面场面的图象,该方法包括如下步骤:
(a)在一基本遵从方程z=(h2-r2)/2h的抛物面形反射表面上正反射所述大致半球面场面的图象,使得所述场面的单个观察点与所述反射表面的焦点重合;以及
(b)探测所述正反射的图象。
27.如权利要求26所述的方法,其中步骤(b)包括从所述反射器的旋转轴上的位置探测所述大致正反射的图象。
28.如权利要求27所述的方法,还包括如下步骤:提供代表所述正反射图象的图象信号;将该图象信号转换成图象信号数据;以及将该图象数据标绘在直角坐标系中。
29.如权利要求28所述的方法,还包括如下步骤:对所述图象数据进行内插以确定丢失图象数据的近似值;以及从所述标绘的图象数据和插值图象数据形成数字图象。
30.如权利要求29所述的方法,还包括如下步骤:变焦距所述数字图象的预选部分,从而从预定焦距获得该预选部分的放大图象;对所述图象数据进行内插以确定丢失图象数据的近似值;以及从所述标绘的图象数据和插值图象数据形成数字图象。
31.如权利要求27所述的方法,还包括如下步骤:正反射一附加的大致半球面场面的附加图象;以及探测该附加的正反射图象。
32.一种用于投影代表如同从单个观察点观察到的大致半球面场面的图象的方法,该方法包括如下步骤:
(a)将所述图象作为经该图象调制的准直光束加以投射;以及
(b)在一基本遵从方程z=(h2-r2)/2h的抛物面形反射表面上正反射该准直光束,使得所述图象的单个观察点与该反射表面的焦点重合。
33.如权利要求32所述的方法,还包括如下步骤:作为附加准直光束投射代表如同从单个观察点观察到的附加的大致半球面场面的附加图象;以及正反射该附加准直光束,以重新产生该附加的大致半球面场面。
34.如权利要求32所述的方法,其中投射步骤包括通过一片带有所述图象的摄影透明片投射经该图象调制的准直光束。
35.如权利要求32所述的方法,其中投射步骤包括通过液晶显示器投射准直光束。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/644,903 | 1996-05-10 | ||
US08/644,903 US5760826A (en) | 1996-05-10 | 1996-05-10 | Omnidirectional imaging apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1222280A CN1222280A (zh) | 1999-07-07 |
CN1095282C true CN1095282C (zh) | 2002-11-27 |
Family
ID=24586825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN97194536A Expired - Fee Related CN1095282C (zh) | 1996-05-10 | 1997-04-30 | 全方向成象装置、全方向图象投影装置和全方向成象方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US5760826A (zh) |
EP (1) | EP0897636B1 (zh) |
JP (1) | JP4023827B2 (zh) |
CN (1) | CN1095282C (zh) |
AT (1) | ATE257301T1 (zh) |
BR (1) | BR9709067A (zh) |
DE (1) | DE69727052T2 (zh) |
HK (1) | HK1021282A1 (zh) |
RU (1) | RU2195085C2 (zh) |
WO (1) | WO1997043854A1 (zh) |
Families Citing this family (209)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5877897A (en) | 1993-02-26 | 1999-03-02 | Donnelly Corporation | Automatic rearview mirror, vehicle lighting control and vehicle interior monitoring system using a photosensor array |
US5670935A (en) | 1993-02-26 | 1997-09-23 | Donnelly Corporation | Rearview vision system for vehicle including panoramic view |
US6822563B2 (en) | 1997-09-22 | 2004-11-23 | Donnelly Corporation | Vehicle imaging system with accessory control |
US6891563B2 (en) | 1996-05-22 | 2005-05-10 | Donnelly Corporation | Vehicular vision system |
US7655894B2 (en) | 1996-03-25 | 2010-02-02 | Donnelly Corporation | Vehicular image sensing system |
US6118474A (en) * | 1996-05-10 | 2000-09-12 | The Trustees Of Columbia University In The City Of New York | Omnidirectional imaging apparatus |
US6331869B1 (en) | 1998-08-07 | 2001-12-18 | Be Here Corporation | Method and apparatus for electronically distributing motion panoramic images |
US6373642B1 (en) | 1996-06-24 | 2002-04-16 | Be Here Corporation | Panoramic imaging arrangement |
US6459451B2 (en) | 1996-06-24 | 2002-10-01 | Be Here Corporation | Method and apparatus for a panoramic camera to capture a 360 degree image |
US6341044B1 (en) | 1996-06-24 | 2002-01-22 | Be Here Corporation | Panoramic imaging arrangement |
US6493032B1 (en) | 1996-06-24 | 2002-12-10 | Be Here Corporation | Imaging arrangement which allows for capturing an image of a view at different resolutions |
AUPO397696A0 (en) * | 1996-12-02 | 1997-01-02 | Australian National University, The | Imaging system |
US6466254B1 (en) | 1997-05-08 | 2002-10-15 | Be Here Corporation | Method and apparatus for electronically distributing motion panoramic images |
US6356296B1 (en) * | 1997-05-08 | 2002-03-12 | Behere Corporation | Method and apparatus for implementing a panoptic camera system |
US6043837A (en) | 1997-05-08 | 2000-03-28 | Be Here Corporation | Method and apparatus for electronically distributing images from a panoptic camera system |
JPH114398A (ja) * | 1997-06-11 | 1999-01-06 | Hitachi Ltd | デジタルワイドカメラ |
JP3086204B2 (ja) * | 1997-12-13 | 2000-09-11 | 株式会社アコウル | 全方位撮影装置 |
US6034716A (en) * | 1997-12-18 | 2000-03-07 | Whiting; Joshua B. | Panoramic digital camera system |
US6226035B1 (en) * | 1998-03-04 | 2001-05-01 | Cyclo Vision Technologies, Inc. | Adjustable imaging system with wide angle capability |
JP3523783B2 (ja) * | 1998-05-14 | 2004-04-26 | 康史 八木 | 全方位視角センサ |
US6304285B1 (en) * | 1998-06-16 | 2001-10-16 | Zheng Jason Geng | Method and apparatus for omnidirectional imaging |
US20010015751A1 (en) * | 1998-06-16 | 2001-08-23 | Genex Technologies, Inc. | Method and apparatus for omnidirectional imaging |
EP0977068A3 (en) * | 1998-07-31 | 2000-04-19 | Loyal Port Company Limited | Image inverting device |
US6285365B1 (en) | 1998-08-28 | 2001-09-04 | Fullview, Inc. | Icon referenced panoramic image display |
US6195204B1 (en) * | 1998-08-28 | 2001-02-27 | Lucent Technologies Inc. | Compact high resolution panoramic viewing system |
US6144501A (en) * | 1998-08-28 | 2000-11-07 | Lucent Technologies Inc. | Split mirrored panoramic image display |
US6141145A (en) * | 1998-08-28 | 2000-10-31 | Lucent Technologies | Stereo panoramic viewing system |
US6028719A (en) * | 1998-10-02 | 2000-02-22 | Interscience, Inc. | 360 degree/forward view integral imaging system |
US6717610B1 (en) * | 1998-11-25 | 2004-04-06 | Donnelly Corporation | Wide angle image capture system for vehicle |
US6369818B1 (en) | 1998-11-25 | 2002-04-09 | Be Here Corporation | Method, apparatus and computer program product for generating perspective corrected data from warped information |
US6201642B1 (en) | 1999-07-27 | 2001-03-13 | Donnelly Corporation | Vehicular vision system with a wide angle lens including a diffractive element |
ATE278202T1 (de) | 1999-01-04 | 2004-10-15 | Cyclovision Technologies Inc | Vorrichtung zur aufnahme von panoramabildern |
US6175454B1 (en) | 1999-01-13 | 2001-01-16 | Behere Corporation | Panoramic imaging arrangement |
US6754614B1 (en) | 1999-02-25 | 2004-06-22 | Interscience, Inc. | Linearized static panoramic optical mirror |
AU4221000A (en) * | 1999-04-08 | 2000-10-23 | Internet Pictures Corporation | Remote controlled platform for camera |
AU5315700A (en) * | 1999-06-02 | 2000-12-18 | Cyclovision Technologies, Inc. | Omni-directional security and lighting system |
JP2001008232A (ja) * | 1999-06-25 | 2001-01-12 | Matsushita Electric Ind Co Ltd | 全方位映像出力方法と装置 |
US6757109B2 (en) | 1999-07-27 | 2004-06-29 | Donnelly Corporation | Plastic lens system for vehicle imaging system |
US7015954B1 (en) * | 1999-08-09 | 2006-03-21 | Fuji Xerox Co., Ltd. | Automatic video system using multiple cameras |
US7176960B1 (en) * | 1999-09-20 | 2007-02-13 | The Trustees Of Columbia University In The City Of New York | System and methods for generating spherical mosaic images |
WO2001022728A1 (en) * | 1999-09-20 | 2001-03-29 | The Trustees Of Columbia University In The City Of New York | Systems and methods for generating spherical mosaic images |
WO2001068540A2 (en) * | 2000-03-16 | 2001-09-20 | Lee Scott Friend | Imaging apparatus |
US6396408B2 (en) | 2000-03-31 | 2002-05-28 | Donnelly Corporation | Digital electrochromic circuit with a vehicle network |
JP3627914B2 (ja) * | 2000-05-23 | 2005-03-09 | シャープ株式会社 | 車両の周囲監視システム |
JP2001333303A (ja) | 2000-05-23 | 2001-11-30 | Sharp Corp | 全方位視覚システム |
JP2002006024A (ja) * | 2000-06-16 | 2002-01-09 | Nishimatsu Constr Co Ltd | Gps電波障害物評価装置およびgps電波障害物評価方法 |
KR100343836B1 (ko) * | 2000-06-27 | 2002-07-20 | 이성환 | 파노라마 영상 감시 시스템 및 그 제어방법 |
AU2001277110A1 (en) * | 2000-07-21 | 2002-02-05 | The Trustees Of Columbia University In The City Of New York | Method and apparatus for reducing distortion in images |
GB2365143A (en) * | 2000-07-21 | 2002-02-13 | Lee Scott Friend | Omindirectional imaging apparatus with two imaging systems |
US6392821B1 (en) | 2000-09-28 | 2002-05-21 | William R. Benner, Jr. | Light display projector with wide angle capability and associated method |
JP3804916B2 (ja) * | 2001-02-09 | 2006-08-02 | シャープ株式会社 | 撮像システムとその画像データ制御に用いられるプログラムおよびその撮像システムにおける撮像画像の歪み補正方法とその手順を記憶させた記憶媒体 |
US7126630B1 (en) * | 2001-02-09 | 2006-10-24 | Kujin Lee | Method and apparatus for omni-directional image and 3-dimensional data acquisition with data annotation and dynamic range extension method |
US6409351B1 (en) * | 2001-02-12 | 2002-06-25 | Thomas R. Ligon | Spherical image projection system using a convex reflecting image dispersing element |
US6856472B2 (en) * | 2001-02-24 | 2005-02-15 | Eyesee360, Inc. | Panoramic mirror and system for producing enhanced panoramic images |
AU2002244132A1 (en) * | 2001-02-24 | 2002-09-12 | Eyesee360, Inc. | Panoramic mirror and system for producing panoramic images |
US6933965B2 (en) * | 2001-03-13 | 2005-08-23 | Tacshot, Inc. | Panoramic aerial imaging device |
US20020147991A1 (en) * | 2001-04-10 | 2002-10-10 | Furlan John L. W. | Transmission of panoramic video via existing video infrastructure |
US6733136B2 (en) | 2001-06-06 | 2004-05-11 | Spitz, Inc. | Video-based immersive theater |
US6744569B2 (en) | 2001-06-19 | 2004-06-01 | Genex Technologies, Inc | Method and apparatus for omnidirectional three dimensional imaging |
US6882287B2 (en) | 2001-07-31 | 2005-04-19 | Donnelly Corporation | Automotive lane change aid |
US7697027B2 (en) | 2001-07-31 | 2010-04-13 | Donnelly Corporation | Vehicular video system |
AU2002334705A1 (en) * | 2001-09-27 | 2003-04-07 | Eyesee360, Inc. | System and method for panoramic imaging |
DE10158415C2 (de) * | 2001-11-29 | 2003-10-02 | Daimler Chrysler Ag | Verfahren zur Überwachung des Innenraums eines Fahrzeugs, sowie ein Fahrzeug mit mindestens einer Kamera im Fahrzeuginnenraum |
WO2003063513A1 (en) * | 2002-01-23 | 2003-07-31 | Tenebraex Corporation | D of creating a virtual window |
FR2835925A1 (fr) * | 2002-02-11 | 2003-08-15 | Egg Solution Optronics | Dispositif de correction de toute ou d'une partie de l'image, pouvant etre inclus notamment dans un dispositif de zoom, pour un dispositif d'acquisition d'image panoramique |
US7183989B2 (en) | 2002-04-10 | 2007-02-27 | Lockheed Martin Corporation | Transportable rolling radar platform and system |
US6850201B2 (en) * | 2002-04-10 | 2005-02-01 | Lockheed Martin Corporation | Gravity drive for a rolling radar array |
US7199764B2 (en) * | 2002-04-10 | 2007-04-03 | Lockheed Martin Corporation | Maintenance platform for a rolling radar array |
US6912341B2 (en) * | 2002-04-10 | 2005-06-28 | Lockheed Martin Corporation | Optical fiber link |
US6882321B2 (en) * | 2002-04-10 | 2005-04-19 | Lockheed Martin Corporation | Rolling radar array with a track |
EP1504276B1 (en) | 2002-05-03 | 2012-08-08 | Donnelly Corporation | Object detection system for vehicle |
TW552400B (en) * | 2002-06-21 | 2003-09-11 | Lite On It Corp | Automatic measurement method of optical calibration apparatus |
US7429996B2 (en) * | 2002-07-16 | 2008-09-30 | Intel Corporation | Apparatus and method for sensing depth in every direction |
AU2003253980A1 (en) * | 2002-07-22 | 2004-02-09 | Spitz, Inc. | Foveated display system |
US20040184653A1 (en) * | 2003-03-20 | 2004-09-23 | Baer Richard L. | Optical inspection system, illumination apparatus and method for use in imaging specular objects based on illumination gradients |
US7620220B2 (en) * | 2003-03-21 | 2009-11-17 | Boston Scientific Scimed, Inc. | Scan conversion of medical imaging data from polar format to cartesian format |
US20040254424A1 (en) * | 2003-04-15 | 2004-12-16 | Interscience, Inc. | Integrated panoramic and forward view endoscope |
US20050024493A1 (en) * | 2003-05-15 | 2005-02-03 | Nam Ki Y. | Surveillance device |
US7336299B2 (en) * | 2003-07-03 | 2008-02-26 | Physical Optics Corporation | Panoramic video system with real-time distortion-free imaging |
US7308341B2 (en) | 2003-10-14 | 2007-12-11 | Donnelly Corporation | Vehicle communication system |
US7038846B2 (en) * | 2003-11-24 | 2006-05-02 | Electronic Scripting Products, Inc. | Solid catadioptric lens with a single viewpoint |
US7268956B2 (en) * | 2003-11-24 | 2007-09-11 | Electronic Scripting Products, Inc. | Solid catadioptric lens with two viewpoints |
US7526103B2 (en) | 2004-04-15 | 2009-04-28 | Donnelly Corporation | Imaging system for vehicle |
US7298548B2 (en) * | 2004-08-16 | 2007-11-20 | International Electronic Machines Corp. | Multi-directional viewing and imaging |
US7881496B2 (en) | 2004-09-30 | 2011-02-01 | Donnelly Corporation | Vision system for vehicle |
US7720580B2 (en) | 2004-12-23 | 2010-05-18 | Donnelly Corporation | Object detection system for vehicle |
EP1900216A2 (en) * | 2005-05-12 | 2008-03-19 | Tenebraex Corporation | Improved methods of creating a virtual window |
US8698894B2 (en) | 2006-02-07 | 2014-04-15 | Magna Electronics Inc. | Camera mounted at rear of vehicle |
CN101496387B (zh) | 2006-03-06 | 2012-09-05 | 思科技术公司 | 用于移动无线网络中的接入认证的系统和方法 |
US20080013820A1 (en) * | 2006-07-11 | 2008-01-17 | Microview Technology Ptd Ltd | Peripheral inspection system and method |
US8446509B2 (en) * | 2006-08-09 | 2013-05-21 | Tenebraex Corporation | Methods of creating a virtual window |
WO2008024639A2 (en) | 2006-08-11 | 2008-02-28 | Donnelly Corporation | Automatic headlamp control system |
US8471892B2 (en) * | 2006-11-23 | 2013-06-25 | Z. Jason Geng | Wide field-of-view reflector and method of designing and making same |
JP2010530087A (ja) | 2006-12-19 | 2010-09-02 | 創太 清水 | 画像処理プロセッサ |
WO2008077132A1 (en) * | 2006-12-19 | 2008-06-26 | California Institute Of Technology | Imaging model and apparatus |
WO2008127752A2 (en) | 2007-01-25 | 2008-10-23 | Magna Electronics | Radar sensing system for vehicle |
US8570373B2 (en) * | 2007-06-08 | 2013-10-29 | Cisco Technology, Inc. | Tracking an object utilizing location information associated with a wireless device |
US7914187B2 (en) | 2007-07-12 | 2011-03-29 | Magna Electronics Inc. | Automatic lighting system with adaptive alignment function |
US8017898B2 (en) | 2007-08-17 | 2011-09-13 | Magna Electronics Inc. | Vehicular imaging system in an automatic headlamp control system |
US8451107B2 (en) | 2007-09-11 | 2013-05-28 | Magna Electronics, Inc. | Imaging system for vehicle |
US8446470B2 (en) | 2007-10-04 | 2013-05-21 | Magna Electronics, Inc. | Combined RGB and IR imaging sensor |
US8791984B2 (en) * | 2007-11-16 | 2014-07-29 | Scallop Imaging, Llc | Digital security camera |
EP2223526B1 (en) * | 2007-11-16 | 2015-01-28 | Scallop Imaging, LLC | Systems and methods of creating a virtual window |
US20090290033A1 (en) * | 2007-11-16 | 2009-11-26 | Tenebraex Corporation | Systems and methods of creating a virtual window |
US8355041B2 (en) | 2008-02-14 | 2013-01-15 | Cisco Technology, Inc. | Telepresence system for 360 degree video conferencing |
US8797377B2 (en) | 2008-02-14 | 2014-08-05 | Cisco Technology, Inc. | Method and system for videoconference configuration |
US8319819B2 (en) | 2008-03-26 | 2012-11-27 | Cisco Technology, Inc. | Virtual round-table videoconference |
US8390667B2 (en) | 2008-04-15 | 2013-03-05 | Cisco Technology, Inc. | Pop-up PIP for people not in picture |
US8188430B2 (en) * | 2008-05-22 | 2012-05-29 | International Electronic Machines Corporation | Omnidirectional monitoring using near-infrared electromagnetic radiation |
JP4409618B2 (ja) * | 2008-06-04 | 2010-02-03 | 暁 吉井 | 全視野投影装置および全視野映像システム |
US20100020170A1 (en) | 2008-07-24 | 2010-01-28 | Higgins-Luthman Michael J | Vehicle Imaging System |
CN102177468A (zh) | 2008-08-14 | 2011-09-07 | 远程保真公司 | 三反射镜全景相机 |
US8694658B2 (en) | 2008-09-19 | 2014-04-08 | Cisco Technology, Inc. | System and method for enabling communication sessions in a network environment |
WO2010099416A1 (en) | 2009-02-27 | 2010-09-02 | Magna Electronics | Alert system for vehicle |
US8477175B2 (en) | 2009-03-09 | 2013-07-02 | Cisco Technology, Inc. | System and method for providing three dimensional imaging in a network environment |
US8659637B2 (en) | 2009-03-09 | 2014-02-25 | Cisco Technology, Inc. | System and method for providing three dimensional video conferencing in a network environment |
US8376595B2 (en) | 2009-05-15 | 2013-02-19 | Magna Electronics, Inc. | Automatic headlamp control |
US8659639B2 (en) | 2009-05-29 | 2014-02-25 | Cisco Technology, Inc. | System and method for extending communications between participants in a conferencing environment |
EP2459416B2 (en) | 2009-07-27 | 2019-12-25 | Magna Electronics Inc. | Parking assist system |
US9495876B2 (en) | 2009-07-27 | 2016-11-15 | Magna Electronics Inc. | Vehicular camera with on-board microcontroller |
US9082297B2 (en) | 2009-08-11 | 2015-07-14 | Cisco Technology, Inc. | System and method for verifying parameters in an audiovisual environment |
WO2011028686A1 (en) | 2009-09-01 | 2011-03-10 | Magna Mirrors Of America, Inc. | Imaging and display system for vehicle |
US8253576B2 (en) * | 2009-09-04 | 2012-08-28 | Raytheon Company | Search and rescue using ultraviolet radiation |
WO2011037964A1 (en) * | 2009-09-22 | 2011-03-31 | Tenebraex Corporation | Systems and methods for correcting images in a multi-sensor system |
TW201120409A (en) * | 2009-12-10 | 2011-06-16 | Ind Tech Res Inst | Surveillance camera system and method |
US8890955B2 (en) | 2010-02-10 | 2014-11-18 | Magna Mirrors Of America, Inc. | Adaptable wireless vehicle vision system based on wireless communication error |
US9225916B2 (en) | 2010-03-18 | 2015-12-29 | Cisco Technology, Inc. | System and method for enhancing video images in a conferencing environment |
USD628968S1 (en) | 2010-03-21 | 2010-12-14 | Cisco Technology, Inc. | Free-standing video unit |
USD628175S1 (en) | 2010-03-21 | 2010-11-30 | Cisco Technology, Inc. | Mounted video unit |
USD626102S1 (en) | 2010-03-21 | 2010-10-26 | Cisco Tech Inc | Video unit with integrated features |
USD626103S1 (en) | 2010-03-21 | 2010-10-26 | Cisco Technology, Inc. | Video unit with integrated features |
US9313452B2 (en) | 2010-05-17 | 2016-04-12 | Cisco Technology, Inc. | System and method for providing retracting optics in a video conferencing environment |
US9117123B2 (en) | 2010-07-05 | 2015-08-25 | Magna Electronics Inc. | Vehicular rear view camera display system with lifecheck function |
US8896655B2 (en) | 2010-08-31 | 2014-11-25 | Cisco Technology, Inc. | System and method for providing depth adaptive video conferencing |
US8599934B2 (en) | 2010-09-08 | 2013-12-03 | Cisco Technology, Inc. | System and method for skip coding during video conferencing in a network environment |
US8599865B2 (en) | 2010-10-26 | 2013-12-03 | Cisco Technology, Inc. | System and method for provisioning flows in a mobile network environment |
US9876953B2 (en) | 2010-10-29 | 2018-01-23 | Ecole Polytechnique Federale De Lausanne (Epfl) | Omnidirectional sensor array system |
US8699457B2 (en) | 2010-11-03 | 2014-04-15 | Cisco Technology, Inc. | System and method for managing flows in a mobile network environment |
US9338394B2 (en) | 2010-11-15 | 2016-05-10 | Cisco Technology, Inc. | System and method for providing enhanced audio in a video environment |
US8902244B2 (en) | 2010-11-15 | 2014-12-02 | Cisco Technology, Inc. | System and method for providing enhanced graphics in a video environment |
US8730297B2 (en) | 2010-11-15 | 2014-05-20 | Cisco Technology, Inc. | System and method for providing camera functions in a video environment |
US9143725B2 (en) | 2010-11-15 | 2015-09-22 | Cisco Technology, Inc. | System and method for providing enhanced graphics in a video environment |
US8542264B2 (en) | 2010-11-18 | 2013-09-24 | Cisco Technology, Inc. | System and method for managing optics in a video environment |
US8723914B2 (en) | 2010-11-19 | 2014-05-13 | Cisco Technology, Inc. | System and method for providing enhanced video processing in a network environment |
US9111138B2 (en) | 2010-11-30 | 2015-08-18 | Cisco Technology, Inc. | System and method for gesture interface control |
WO2012075250A1 (en) | 2010-12-01 | 2012-06-07 | Magna Electronics Inc. | System and method of establishing a multi-camera image using pixel remapping |
USD678307S1 (en) | 2010-12-16 | 2013-03-19 | Cisco Technology, Inc. | Display screen with graphical user interface |
USD682293S1 (en) | 2010-12-16 | 2013-05-14 | Cisco Technology, Inc. | Display screen with graphical user interface |
USD678320S1 (en) | 2010-12-16 | 2013-03-19 | Cisco Technology, Inc. | Display screen with graphical user interface |
USD678308S1 (en) | 2010-12-16 | 2013-03-19 | Cisco Technology, Inc. | Display screen with graphical user interface |
USD682864S1 (en) | 2010-12-16 | 2013-05-21 | Cisco Technology, Inc. | Display screen with graphical user interface |
USD682294S1 (en) | 2010-12-16 | 2013-05-14 | Cisco Technology, Inc. | Display screen with graphical user interface |
USD678894S1 (en) | 2010-12-16 | 2013-03-26 | Cisco Technology, Inc. | Display screen with graphical user interface |
USD682854S1 (en) | 2010-12-16 | 2013-05-21 | Cisco Technology, Inc. | Display screen for graphical user interface |
CN102186007A (zh) * | 2010-12-17 | 2011-09-14 | 王光树 | 遥感观察镜 |
US9264672B2 (en) | 2010-12-22 | 2016-02-16 | Magna Mirrors Of America, Inc. | Vision display system for vehicle |
US9085261B2 (en) | 2011-01-26 | 2015-07-21 | Magna Electronics Inc. | Rear vision system with trailer angle detection |
US8692862B2 (en) | 2011-02-28 | 2014-04-08 | Cisco Technology, Inc. | System and method for selection of video data in a video conference environment |
US9194943B2 (en) | 2011-04-12 | 2015-11-24 | Magna Electronics Inc. | Step filter for estimating distance in a time-of-flight ranging system |
US9357208B2 (en) | 2011-04-25 | 2016-05-31 | Magna Electronics Inc. | Method and system for dynamically calibrating vehicular cameras |
US9834153B2 (en) | 2011-04-25 | 2017-12-05 | Magna Electronics Inc. | Method and system for dynamically calibrating vehicular cameras |
US8670019B2 (en) | 2011-04-28 | 2014-03-11 | Cisco Technology, Inc. | System and method for providing enhanced eye gaze in a video conferencing environment |
US8786631B1 (en) | 2011-04-30 | 2014-07-22 | Cisco Technology, Inc. | System and method for transferring transparency information in a video environment |
US8934026B2 (en) | 2011-05-12 | 2015-01-13 | Cisco Technology, Inc. | System and method for video coding in a dynamic environment |
WO2013016409A1 (en) | 2011-07-26 | 2013-01-31 | Magna Electronics Inc. | Vision system for vehicle |
WO2013019707A1 (en) | 2011-08-01 | 2013-02-07 | Magna Electronics Inc. | Vehicle camera alignment system |
DE112012003931T5 (de) | 2011-09-21 | 2014-07-10 | Magna Electronics, Inc. | Bildverarbeitungssystem für ein Kraftfahrzeug mit Bilddatenübertragung undStromversorgung über ein Koaxialkabel |
US9146898B2 (en) | 2011-10-27 | 2015-09-29 | Magna Electronics Inc. | Driver assist system with algorithm switching |
US9491451B2 (en) | 2011-11-15 | 2016-11-08 | Magna Electronics Inc. | Calibration system and method for vehicular surround vision system |
US8947493B2 (en) | 2011-11-16 | 2015-02-03 | Cisco Technology, Inc. | System and method for alerting a participant in a video conference |
US10099614B2 (en) | 2011-11-28 | 2018-10-16 | Magna Electronics Inc. | Vision system for vehicle |
US9762880B2 (en) | 2011-12-09 | 2017-09-12 | Magna Electronics Inc. | Vehicle vision system with customized display |
US8682087B2 (en) | 2011-12-19 | 2014-03-25 | Cisco Technology, Inc. | System and method for depth-guided image filtering in a video conference environment |
CN104024911A (zh) | 2012-01-03 | 2014-09-03 | 潘-维森有限责任公司 | 具有超半球视野的物镜 |
ITVI20120004A1 (it) | 2012-01-03 | 2013-07-04 | Pan Vision S R L | Dispositivo ottico per l¿ottenimento di un ingrandimento di una determinata zona di un campo di vista panoramico a 360° e relativi sistema ottico e apparati per la ripresa/proiezione di immagini tridimensionali |
US20130215271A1 (en) | 2012-02-22 | 2013-08-22 | Magna Electronics, Inc. | Indicia and camera assembly for a vehicle |
US10457209B2 (en) | 2012-02-22 | 2019-10-29 | Magna Electronics Inc. | Vehicle vision system with multi-paned view |
WO2013126715A2 (en) | 2012-02-22 | 2013-08-29 | Magna Electronics, Inc. | Vehicle camera system with image manipulation |
US9558409B2 (en) | 2012-09-26 | 2017-01-31 | Magna Electronics Inc. | Vehicle vision system with trailer angle detection |
US9446713B2 (en) | 2012-09-26 | 2016-09-20 | Magna Electronics Inc. | Trailer angle detection system |
US9723272B2 (en) | 2012-10-05 | 2017-08-01 | Magna Electronics Inc. | Multi-camera image stitching calibration system |
CN102890400A (zh) * | 2012-10-17 | 2013-01-23 | 中国人民解放军第四军医大学 | 一种全景拍摄及全景放映的装置 |
US9681154B2 (en) | 2012-12-06 | 2017-06-13 | Patent Capital Group | System and method for depth-guided filtering in a video conference environment |
US10179543B2 (en) | 2013-02-27 | 2019-01-15 | Magna Electronics Inc. | Multi-camera dynamic top view vision system |
US9688200B2 (en) | 2013-03-04 | 2017-06-27 | Magna Electronics Inc. | Calibration system and method for multi-camera vision system |
US9508014B2 (en) | 2013-05-06 | 2016-11-29 | Magna Electronics Inc. | Vehicular multi-camera vision system |
US9843621B2 (en) | 2013-05-17 | 2017-12-12 | Cisco Technology, Inc. | Calendaring activities based on communication processing |
US9205776B2 (en) | 2013-05-21 | 2015-12-08 | Magna Electronics Inc. | Vehicle vision system using kinematic model of vehicle motion |
US9563951B2 (en) | 2013-05-21 | 2017-02-07 | Magna Electronics Inc. | Vehicle vision system with targetless camera calibration |
RU2523858C1 (ru) * | 2013-10-15 | 2014-07-27 | Вячеслав Михайлович Смелков | Устройство панорамного телевизионного наблюдения |
US10160382B2 (en) | 2014-02-04 | 2018-12-25 | Magna Electronics Inc. | Trailer backup assist system |
US9487235B2 (en) | 2014-04-10 | 2016-11-08 | Magna Electronics Inc. | Vehicle control system with adaptive wheel angle correction |
US10328932B2 (en) | 2014-06-02 | 2019-06-25 | Magna Electronics Inc. | Parking assist system with annotated map generation |
US9916660B2 (en) | 2015-01-16 | 2018-03-13 | Magna Electronics Inc. | Vehicle vision system with calibration algorithm |
US10946799B2 (en) | 2015-04-21 | 2021-03-16 | Magna Electronics Inc. | Vehicle vision system with overlay calibration |
US10214206B2 (en) | 2015-07-13 | 2019-02-26 | Magna Electronics Inc. | Parking assist system for vehicle |
US10078789B2 (en) | 2015-07-17 | 2018-09-18 | Magna Electronics Inc. | Vehicle parking assist system with vision-based parking space detection |
US10086870B2 (en) | 2015-08-18 | 2018-10-02 | Magna Electronics Inc. | Trailer parking assist system for vehicle |
US10875403B2 (en) | 2015-10-27 | 2020-12-29 | Magna Electronics Inc. | Vehicle vision system with enhanced night vision |
US11277558B2 (en) | 2016-02-01 | 2022-03-15 | Magna Electronics Inc. | Vehicle vision system with master-slave camera configuration |
US11433809B2 (en) | 2016-02-02 | 2022-09-06 | Magna Electronics Inc. | Vehicle vision system with smart camera video output |
US10160437B2 (en) | 2016-02-29 | 2018-12-25 | Magna Electronics Inc. | Vehicle control system with reverse assist |
US20170253237A1 (en) | 2016-03-02 | 2017-09-07 | Magna Electronics Inc. | Vehicle vision system with automatic parking function |
US10132971B2 (en) | 2016-03-04 | 2018-11-20 | Magna Electronics Inc. | Vehicle camera with multiple spectral filters |
US10057562B2 (en) | 2016-04-06 | 2018-08-21 | Facebook, Inc. | Generating intermediate views using optical flow |
US10210660B2 (en) | 2016-04-06 | 2019-02-19 | Facebook, Inc. | Removing occlusion in camera views |
JP6429829B2 (ja) | 2016-05-25 | 2018-11-28 | キヤノン株式会社 | 画像処理システム、画像処理装置、制御方法、及び、プログラム |
ES2684492B1 (es) * | 2017-03-30 | 2019-08-13 | Univ Rey Juan Carlos | Teleobjetivo plegable de bajo coste |
CN115220293A (zh) * | 2021-04-14 | 2022-10-21 | 中强光电股份有限公司 | 投影装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3240113A (en) * | 1961-08-29 | 1966-03-15 | Visophone Internat Establishme | Pickup and projection mirror system for panoramic photography and panoramic picture projection at horizontal plane angles |
DE2332209A1 (de) * | 1973-06-25 | 1975-01-16 | Hans Fickenscher | Rundbild - optik |
FR2508183A1 (fr) * | 1981-06-23 | 1982-12-24 | Thomson Csf | Dispositif de surveillance panoramique optique |
JPS59115677A (ja) * | 1982-12-22 | 1984-07-04 | Hitachi Ltd | 画像処理装置 |
US5185667A (en) * | 1991-05-13 | 1993-02-09 | Telerobotics International, Inc. | Omniview motionless camera orientation system |
US5359363A (en) * | 1991-05-13 | 1994-10-25 | Telerobotics International, Inc. | Omniview motionless camera surveillance system |
US5530650A (en) * | 1992-10-28 | 1996-06-25 | Mcdonnell Douglas Corp. | Computer imaging system and method for remote in-flight aircraft refueling |
JPH07504285A (ja) * | 1992-11-24 | 1995-05-11 | フランク・データ・インターナショナル・ナムローゼ・フェンノートシャップ | パノラマ画像の形成方法及び装置並びにパノラマ画像探索方法及び装置 |
US5461228A (en) * | 1994-04-07 | 1995-10-24 | Owens-Brockway Glass Container Inc. | Optical inspection of container dimensional parameters using a telecentric lens |
US5610391A (en) * | 1994-08-25 | 1997-03-11 | Owens-Brockway Glass Container Inc. | Optical inspection of container finish dimensional parameters |
JPH08275066A (ja) * | 1995-03-29 | 1996-10-18 | Toshiba Corp | パノラマカメラ |
-
1996
- 1996-05-10 US US08/644,903 patent/US5760826A/en not_active Expired - Lifetime
-
1997
- 1997-04-30 WO PCT/US1997/007331 patent/WO1997043854A1/en active IP Right Grant
- 1997-04-30 JP JP54090197A patent/JP4023827B2/ja not_active Expired - Fee Related
- 1997-04-30 AT AT97921474T patent/ATE257301T1/de not_active IP Right Cessation
- 1997-04-30 BR BR9709067-0A patent/BR9709067A/pt not_active Application Discontinuation
- 1997-04-30 DE DE1997627052 patent/DE69727052T2/de not_active Expired - Lifetime
- 1997-04-30 EP EP97921474A patent/EP0897636B1/en not_active Expired - Lifetime
- 1997-04-30 CN CN97194536A patent/CN1095282C/zh not_active Expired - Fee Related
- 1997-04-30 RU RU98122310/09A patent/RU2195085C2/ru not_active IP Right Cessation
-
2000
- 2000-01-07 HK HK00100119A patent/HK1021282A1/xx not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
ATE257301T1 (de) | 2004-01-15 |
US5760826A (en) | 1998-06-02 |
WO1997043854A1 (en) | 1997-11-20 |
HK1021282A1 (en) | 2000-06-02 |
EP0897636B1 (en) | 2004-01-02 |
DE69727052T2 (de) | 2004-11-18 |
JP4023827B2 (ja) | 2007-12-19 |
EP0897636A1 (en) | 1999-02-24 |
EP0897636A4 (en) | 2000-12-27 |
CN1222280A (zh) | 1999-07-07 |
JP2000510307A (ja) | 2000-08-08 |
RU2195085C2 (ru) | 2002-12-20 |
BR9709067A (pt) | 2000-01-11 |
DE69727052D1 (de) | 2004-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1095282C (zh) | 全方向成象装置、全方向图象投影装置和全方向成象方法 | |
KR100599423B1 (ko) | 전방향성 이미징 장치 | |
CN105678783B (zh) | 折反射全景相机与激光雷达数据融合标定方法 | |
US6856472B2 (en) | Panoramic mirror and system for producing enhanced panoramic images | |
KR100922250B1 (ko) | 왜곡없는 실시간 이미징을 구현하는 파노라마 비디오시스템 | |
CN104778656B (zh) | 基于球面透视投影的鱼眼图像校正方法 | |
US20030081952A1 (en) | Method and apparatus for omnidirectional three dimensional imaging | |
EP0695085A1 (en) | Method and apparatus for hemispheric imaging | |
JPH1195344A (ja) | 全方位ステレオ画像撮影装置 | |
CN100492170C (zh) | 一种全向立体视觉成像方法及装置 | |
JPH1118007A (ja) | 全方向性画像表示システム | |
CN1332564A (zh) | 全方位成像和传递的方法及其系统 | |
KR100482727B1 (ko) | 전방향성결상장치및방법 | |
CA2251879C (en) | Omnidirectional imaging apparatus | |
Tagoe | Developing an accurate close-range photogrammetric technique for extracting 3D information from spherical panoramic images | |
CN117036440A (zh) | 一种基于激光扫描模组的实时全景三维成像感知方法 | |
JP2002262157A (ja) | 多重焦点全方位撮像装置 | |
Zhang et al. | Image Acquisition Modes | |
Gilbert et al. | Panoramic projection system using a panoramic annular lens | |
CN117351278A (zh) | 场景内异物的识别方法、识别系统、识别装置和电子设备 | |
CN117368874A (zh) | Fod的识别方法、识别系统、识别装置和电子设备 | |
Godber | The development of novel stereoscopic imaging sensors | |
Unger et al. | An optical system for single-image environment maps. | |
Belbachir et al. | 360SCAN: High-speed rotating line sensor for real-time 360ß panoramic vision | |
CA2439296A1 (en) | Panoramic mirror and system for producing panoramic images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20021127 Termination date: 20140430 |