CN109518066A - 一种预合金化高熵合金多孔材料及其制备方法 - Google Patents

一种预合金化高熵合金多孔材料及其制备方法 Download PDF

Info

Publication number
CN109518066A
CN109518066A CN201910026464.2A CN201910026464A CN109518066A CN 109518066 A CN109518066 A CN 109518066A CN 201910026464 A CN201910026464 A CN 201910026464A CN 109518066 A CN109518066 A CN 109518066A
Authority
CN
China
Prior art keywords
porous material
alloyed
entropy alloy
powder
alcrcunimov
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910026464.2A
Other languages
English (en)
Inventor
肖逸锋
夏秀艳
吴靓
许艳飞
钱锦文
张乾坤
贾友禄
叶明强
曾毅夫
周益辉
贺惠民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201910026464.2A priority Critical patent/CN109518066A/zh
Publication of CN109518066A publication Critical patent/CN109518066A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0876Cooling after atomisation by gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种预合金化的高熵合金多孔材料及其制备技术。预合金化的高熵合金多孔材料成分为等摩尔比的AlCrCuNiMoV。本发明的制备方法主要为:按照等摩尔比称量各金属材料;对称量的金属材料采用真空电弧熔炼后气雾化工艺制备预合金化的粉末;然后在粉末中加入总粉量2~4%的硬脂酸,干燥后通过冷压成型得到压坯;再将压坯置于真空烧结炉中进行烧结制备预合金化的高熵合金多孔材料。本发明制得的预合金化的AlCrCuNiMoV高熵合金多孔材料的制备工艺简单,烧结周期短,且该多孔材料的成分均匀、组织可控,有较高的开孔隙率和丰富的连通孔隙,具有耐高温、耐腐蚀等优点。

Description

一种预合金化高熵合金多孔材料及其制备方法
技术领域
本发明涉及一种耐高温、耐腐蚀的多孔材料及其制备技术,具体涉及一种预合金化的AlCrCuNiMoV高熵合金多孔材料及其制备方法,属于合金材料的制备技术领域。
背景技术
多孔材料具有密度小、比表面积大、透气性好、吸附容量大等优点,广泛应用于冶金、机械、宇航、石化、化工、电子、食品、医学、环保等行业。多孔材料包括陶瓷多孔材料和金属多孔材料。陶瓷多孔材料具有耐高温、耐腐蚀等优异性能,广泛应用于化工与石油化工领域,但是陶瓷多孔材料的脆性、难以焊接和密封性差等不足制约着其应用领域的拓展;金属多孔材料虽然具有良好的力学性能和焊接密封性能,但是金属材料的耐腐蚀性能和抗氧化性能较差,较难应用于高温腐蚀环境。
多孔材料的制备方法有很多,主要有铸造法、粉末冶金烧结法、沉积法、高压气体吹熔法、液态凝固法等。目前,制备多孔材料最常用的方法是粉末冶金法,其造孔机理常采用是元素粉末反应合成法,多孔材料的孔隙是通过元素粉末反应合成制备而来,特别需要说明的是,此法造孔机理主要是基于合金元素的扩散和反应效应,粉末与粉末之间的界面不利于扩散,且其扩散路径较远,因而在其制备的过程中需要在某个高温阶段保温较长的时间才能够获得理想的孔结构,即需要长时间的保温才可以完成造孔所需要的扩散和反应过程。因此,采用元素粉末反应合成制备多孔材料的反应时间长,生产效率低,且孔的结构难于控制,经济性也不太理想。
为了克服上述制备方法的不足,本发明提出采用预合金化的粉末为原材料,即将需要添加的原料真空熔炼后采用气雾化法制成预合金化的粉末,取筛分后合适粒度的雾化粉末为原料,添加粘结剂后造粒,再采用一定的压力压制成形后真空烧结就可制备出多孔材料。此方法主要通过控制粉末粒度、成形压力和粘结剂含量来达到对孔结构的控制,且预合金化粉末的化学成分极为均匀、晶体结构特别细小,烧结过程中不一定需要扩散和反应效应造孔,可克服长时间的扩散带来的能耗增大、以及粉末扩散的不均匀问题,制备的材料组织均匀性大大提高。近年来出现的高熵合金具有耐腐蚀、耐高温氧化、高强度、高硬度、耐磨、耐高温蠕变、耐回火软化等优异的性能,表现出了兼具陶瓷和金属的优异性能,克服了陶瓷和金属材料的固有缺陷,如果其能够被用作多孔材料将极大地拓宽无机多孔材料的应用领域,并适应使用环境对多孔材料的更高要求。目前,预合金化的高熵合金多孔材料的研究尚未受到关注,因此,开发一种耐高温、耐腐蚀的预合金化的AlCrCuNiMoV高熵合金多孔材料具有非常重要的意义。
发明内容
本发明的目的在于开发出一种耐高温、耐腐蚀的预合金化的AlCrCuNiMoV高熵合金多孔材料,使其满足在现代工业中人们对多孔材料在耐高温、耐腐蚀等方面的要求,促进高熵合金多孔材料的广泛应用。
本发明为解决上述技术问题而采取的技术方案为:一种预合金化高熵合金多孔材料,成分为AlCrCuNiMoV,其中,Al:Cr:Cu:Ni:Mo:V的摩尔比依次为:1:1:1:1:1:1。
本发明为解决上述技术问题而采取的技术方案还包括:一种预合金化的AlCrCuNiMoV高熵合金多孔材料的制备方法,其特征在于是按以下步骤完成的:
步骤一、原料称量:按照等摩尔比称量超声处理的Al材料、Cr材料、Cu材料、Ni材料、Mo材料、V材料。
步骤二、雾化制粉:①将步骤一称量的材料放在中频感应熔炼炉内熔融为金属液体;②通过喷咀引入高速喷射的氩气流冲击并剪切金属流,使之破碎成细小的金属液滴,喷咀缝隙尺寸0.5~1.0mm,喷射角为30~60°;③再使液滴在1.8~2.0MPa的纯氩气中急冷为预合金化的固体粉末颗粒;④固体粉末颗粒经200目过筛后的筛下物即为所要的粉末样品。
步骤三、冷压成型:将步骤二制得的AlCrCuNiMoV合金粉料加入总粉量的2~4%的硬脂酸,干燥6~8h后通过冷压成型得到压坯。
步骤四、真空烧结:将步骤三得到的压坯置于真空度为1×10-2~1×10 -3Pa的真空烧结炉中分四阶段烧结。第一阶段:以10~15℃/min的升温速率从室温升至200~280℃,保温40~50min;第二阶段:以9~12℃/min的升温速率升温至580~620℃,保温100~140min;第三阶段:以5~8℃/min的升温速率升温至880~930℃,保温20~30min;第四阶段:以2~4℃/min的升温速率升温至1190~1240℃,保温60~90min;随炉冷却至室温即得到产品。
其中,步骤一中的Al、Cu、Cr、Ni、Mo和V材料的形态均为除粉末状外的片状、块状或大颗粒状,且各自的纯度不小于99.5%。
其中,步骤三粉末成型的压力为50MPa~100MPa,保压时间为20~80s。
本发明采用上述技术方案的优点和效果在于:
(1)本发明所制得的预合金粉末的方法为雾化制粉法,采用该方法所得到的预合金化粉末的化学成分极为均匀,经短时烧结即可得到所发明的多孔材料,避免了采用元素粉末制备多孔材料工艺中的长时间扩散以及难以均匀化的不足。
(2)本发明主要通过控制粉末粒度、成形压力和粘结剂含量来达到对孔结构的控制,烧结过程中不一定需要扩散和反应效应造孔,可克服长时间的扩散带来的能耗增大、以及粉末扩散不均匀的问题,制备的材料组织均匀性大大提高,便于实现工业化大规模生产,生产效率高。
(3)所制得的一种预合金化的AlCrCuNiMoV高熵合金多孔材料,耐高温和耐腐蚀性能优异,具有广阔的应用前景。
总之,本发明制备的预合金化的AlCrCuNiMoV高熵合金多孔材料,制备工艺简单可靠,烧结周期短,成分均匀、组织可控,孔径分布均匀,孔隙丰富,具有优异的耐高温和耐腐蚀性。
具体实施方式
下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
1、一种预合金化的AlCrCuNiMoV高熵合金多孔材料的设计
本实施方式中预合金化的高熵合金多孔材料成分为成分为AlCrCuNiMoV,且Al:Cr:Cu:Ni:Mo:V的摩尔比依次为:1:1:1:1:1:1。
2、一种预合金化的AlCrCuNiMoV高熵合金多孔材料的具体制备过程如下:
步骤一、原料称量:按照等摩尔比称量超声处理的Al材料、Cr材料、Cu材料、Ni材料、Mo材料、V材料;
步骤二、雾化制粉:①将步骤一称量的材料放在中频感应熔炼炉内熔融为金属液体;②通过喷咀引入高速喷射的氩气流冲击并剪切金属流,使之破碎成细小的金属液滴,喷咀缝隙尺寸0.5~1.0mm,喷射角为30~60°;③再使液滴在1.8~2.0MPa的纯氩气中急冷为预合金化的固体粉末颗粒;④固体粉末颗粒经200目过筛后的筛下物即为所要的粉末样品;
步骤三、冷压成型:将步骤二制得的AlCrCuNiMoV合金粉料加入总粉量的2~4%的硬脂酸,干燥6~8h后通过冷压成型得到压坯;
步骤四、真空烧结:将步骤三得到的压坯置于真空度为1×10-2~1×10 -3Pa的真空烧结炉中分四阶段烧结:第一阶段:以10~15℃/min的升温速率从室温升至200~280℃,保温40~50min;第二阶段:以9~12℃/min的升温速率升温至580~620℃,保温100~140min;第三阶段:以5~8℃/min的升温速率升温至880~930℃,保温20~30min;第四阶段:以2~4℃/min的升温速率升温至1190~1240℃,保温60~90min;随炉冷却至室温即得到产品。
其中,步骤一中的Al、Cu、Cr、Ni、Mo和V材料的形态均为除粉末状外的片状、块状或大颗粒状,且各自的纯度不小于99.5%。
其中,步骤三粉末成型的压力为50MPa~100MPa,保压时间为20~80s。
3、预合金化的AlCrCuNiMoV高熵合金多孔材料显微组织分析
将制得的预合金化的AlCrCuNiMoV高熵合金多孔材料,加入丙酮溶液,放置在超音波震荡器中清洗15~30min,震荡后再倒入无水乙醇重复相同的步骤一次,然后置于45℃烘干箱中进行烘干5~6小时,采用扫描电子显微镜对抛光后的试样进行显微组织观察,主要采用背散射电子成像。该材料具有丰富的连通孔隙,孔隙率较丰富。
4、预合金化的AlCrCuNiMoV高熵合金多孔材料的耐腐蚀性能
将制得的预合金化的AlCrCuNiMoV高熵合金多孔材料放置在容器中,加入无水乙醇,放置在超音波震荡器中清洗15~30min,然后置于50℃烘干箱中进行烘干3小时,再进行称量,之后将样品分别浸入浓度为0.5MH2SO4和3.5wt%NaCl溶液10天后取出,分析腐蚀前后试样表面状态及重量变化。利用CS350系列电化学工作站及相关仪器对抛光后的样品进行电化学测验,研究该多孔材料在0.5MH2SO4溶液和3.5wt%NaCl溶液中的腐蚀行为。预合金化的AlCrCuNiMoV高熵合金多孔材料在0.5MH2SO4溶液和3.5wt%NaCl溶液中腐蚀前后的质量变化很小,且多孔材料的表面几无改变;该多孔材料在0.5MH2SO4溶液和3.5wt%NaCl溶液中的腐蚀电位相差不大,但该多孔材料在0.5MH2SO4溶液中腐蚀电流密度比在3.5wt%NaCl溶液中的腐蚀电流密度大了两个数量级,因此,该多孔材料在3.5wt%NaCl溶液中的腐蚀性能比在0.5MH2SO4溶液中的腐蚀性能要好,说明该多孔材料具有优良的耐腐蚀性能。

Claims (3)

1.一种预合金化的高熵合金多孔材料,其特征在于:所述预合金化的高熵合金多孔材料成分为AlCrCuNiMoV,其中,Al:Cr:Cu:Ni:Mo:V的摩尔比依次为:1:1:1:1:1:1;所述预合金化的AlCrCuNiMoV高熵合金多孔材料的制备方法,其特征在于具体是按以下步骤完成的:
步骤一、原料称量:按照等摩尔比称量超声处理的Al材料、Cr材料、Cu材料、Ni材料、Mo材料、V材料;
步骤二、雾化制粉:①将步骤一称量的材料放在中频感应熔炼炉内熔融为金属液体;②通过喷咀引入高速喷射的氩气流冲击并剪切金属流,使之破碎成细小的金属液滴,喷咀缝隙尺寸0.5~1.0mm,喷射角为30~60°;③再使液滴在1.8~2.0MPa的纯氩气中急冷为预合金化的固体粉末颗粒;④固体粉末颗粒经200目过筛后的筛下物即为所要的粉末样品;
步骤三、冷压成型:将步骤二制得的AlCrCuNiMoV合金粉料加入总粉量的2~4%的硬脂酸,干燥6~8h后通过冷压成型得到压坯;
步骤四、真空烧结:将步骤三得到的压坯置于真空度为1×10-2~1×10 -3Pa的真空烧结炉中分四阶段烧结:第一阶段:以10~15℃/min的升温速率从室温升至200~280℃,保温40~50min;第二阶段:以9~12℃/min的升温速率升温至580~620℃,保温100~140min;第三阶段:以5~8℃/min的升温速率升温至880~930℃,保温20~30min;第四阶段:以2~4℃/min的升温速率升温至1190~1240℃,保温60~90min;随炉冷却至室温即得到产品。
2.根据权利要求1所述的一种预合金化的AlCrCuNiMoV高熵合金多孔材料,其特征在于,所述步骤一中的Al、Cu、Cr、Ni、Mo和V材料的形态均为除粉末状外的片状、块状或大颗粒状,且各自的纯度不小于99.5%。
3.根据权利要求1所述的一种高熵合金多孔材料,其特征在于,所述步骤三粉末成型的压力为50MPa~100MPa,保压时间为20~80s。
CN201910026464.2A 2019-01-11 2019-01-11 一种预合金化高熵合金多孔材料及其制备方法 Pending CN109518066A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910026464.2A CN109518066A (zh) 2019-01-11 2019-01-11 一种预合金化高熵合金多孔材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910026464.2A CN109518066A (zh) 2019-01-11 2019-01-11 一种预合金化高熵合金多孔材料及其制备方法

Publications (1)

Publication Number Publication Date
CN109518066A true CN109518066A (zh) 2019-03-26

Family

ID=65798638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910026464.2A Pending CN109518066A (zh) 2019-01-11 2019-01-11 一种预合金化高熵合金多孔材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109518066A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144476A (zh) * 2019-06-04 2019-08-20 中北大学 一种铝钴铬铁镍高熵合金的制备方法
CN110735077A (zh) * 2019-10-14 2020-01-31 中南大学 一种AlCrFeNiSiTi高熵合金多孔材料及其制备方法
CN110735078A (zh) * 2019-10-14 2020-01-31 中南大学 一种CrFeMnMoSiZr高熵合金多孔材料及其制备方法
CN110923542A (zh) * 2019-12-20 2020-03-27 永州市产商品质量监督检验所 一种预合金化高熵合金多孔材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993542B2 (en) * 2006-03-27 2011-08-09 Kabushiki Kaisha Toshiba Magnetic material for magnetic refrigeration
CN103757661A (zh) * 2014-01-24 2014-04-30 福建工程学院 一种铝电解惰性阳极
CN107130125A (zh) * 2017-04-27 2017-09-05 中国科学院兰州化学物理研究所 一种高熵合金的制备方法
US20170314097A1 (en) * 2016-05-02 2017-11-02 Korea Advanced Institute Of Science And Technology High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
CN109161776A (zh) * 2018-10-10 2019-01-08 湘潭大学 一种预合金化CrMoNbTiZr多孔高熵合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993542B2 (en) * 2006-03-27 2011-08-09 Kabushiki Kaisha Toshiba Magnetic material for magnetic refrigeration
CN103757661A (zh) * 2014-01-24 2014-04-30 福建工程学院 一种铝电解惰性阳极
US20170314097A1 (en) * 2016-05-02 2017-11-02 Korea Advanced Institute Of Science And Technology High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
CN107130125A (zh) * 2017-04-27 2017-09-05 中国科学院兰州化学物理研究所 一种高熵合金的制备方法
CN109161776A (zh) * 2018-10-10 2019-01-08 湘潭大学 一种预合金化CrMoNbTiZr多孔高熵合金及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144476A (zh) * 2019-06-04 2019-08-20 中北大学 一种铝钴铬铁镍高熵合金的制备方法
CN110735077A (zh) * 2019-10-14 2020-01-31 中南大学 一种AlCrFeNiSiTi高熵合金多孔材料及其制备方法
CN110735078A (zh) * 2019-10-14 2020-01-31 中南大学 一种CrFeMnMoSiZr高熵合金多孔材料及其制备方法
CN110735078B (zh) * 2019-10-14 2020-08-28 中南大学 一种CrFeMnMoSiZr高熵合金多孔材料及其制备方法
CN110735077B (zh) * 2019-10-14 2020-08-28 中南大学 一种AlCrFeNiSiTi高熵合金多孔材料及其制备方法
CN110923542A (zh) * 2019-12-20 2020-03-27 永州市产商品质量监督检验所 一种预合金化高熵合金多孔材料及其制备方法
CN110923542B (zh) * 2019-12-20 2021-12-28 永州市产商品质量监督检验所 一种预合金化高熵合金多孔材料及其制备方法

Similar Documents

Publication Publication Date Title
CN109518066A (zh) 一种预合金化高熵合金多孔材料及其制备方法
CN108213422B (zh) 一种含碳高熵合金复合材料的制备方法
US11401588B2 (en) Additive manufacturing method of lead-free environmentally-friendly high-strength brass alloy
CN102139371B (zh) 一种钨合金靶材及其制备方法
US20210197277A1 (en) MN-CU-Based Damping Alloy Powder For Use In Selective Laser Melting Process And Preparation Method Thereof
CN109022920B (zh) 一种无裂纹的4d打印钛镍形状记忆合金及其制备方法
US20240123502A1 (en) Titanium alloy powder for selective laser melting 3d printing, selective laser melted titanium alloy and preparation thereof
CN112322933B (zh) 一种高性能近α高温钛合金及其粉末冶金制备方法
CN110172620A (zh) 选区激光熔化技术用Al-Si-Mg合金及其制件制备方法
CN109622979A (zh) 一种预合金化的高熵合金多孔材料的制备方法
CN109338182A (zh) 一种Al-Mg-Er-Zr系列铝合金及制备方法
CN109161776A (zh) 一种预合金化CrMoNbTiZr多孔高熵合金及其制备方法
CN110343887A (zh) 一种粉末挤压制备高致密度细晶钛合金的方法
CN109267084A (zh) 一种预合金化的多孔镍基电解析氢阴极材料的制备方法
CN109648091A (zh) 一种增材制造原位制备铜基形状记忆合金的方法
Zhao et al. Porous bio-high entropy alloy scaffolds fabricated by direct ink writing
CN105803239A (zh) 一种微孔径、高孔隙率镍铬钼多孔材料的制备方法
Liu et al. Microstructure and properties of silver-added W-Cu prepared by infiltration sintering
CN106591610A (zh) 一种放电等离子烧结制备高强高导铜合金的方法
Song et al. Microstructure and mechanical properties of FeAl intermetallics prepared by mechanical alloying and hot-pressing
CN104550979B (zh) 一种钼铌合金靶材板的制备方法
CN109182878A (zh) 一种预合金化的高熵合金多孔材料的制备方法
CN109277572A (zh) 一种预合金化高熵合金多孔材料及其制备方法
CN105803283A (zh) 一种Nb-Si-Ti-W-Cr合金棒材及其制备方法
CN113523282A (zh) 一种通过3d打印制备细小等轴晶钛合金的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190326