CN109509881A - 一种圆柱高容量低温锂离子电池 - Google Patents

一种圆柱高容量低温锂离子电池 Download PDF

Info

Publication number
CN109509881A
CN109509881A CN201811635529.5A CN201811635529A CN109509881A CN 109509881 A CN109509881 A CN 109509881A CN 201811635529 A CN201811635529 A CN 201811635529A CN 109509881 A CN109509881 A CN 109509881A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
negative electrode
active material
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811635529.5A
Other languages
English (en)
Inventor
宋泽斌
吴支红
杨清欣
杨晓旭
王卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changhong Sanjie New Energy Co Ltd
Original Assignee
Changhong Sanjie New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changhong Sanjie New Energy Co Ltd filed Critical Changhong Sanjie New Energy Co Ltd
Priority to CN201811635529.5A priority Critical patent/CN109509881A/zh
Publication of CN109509881A publication Critical patent/CN109509881A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种圆柱高容量低温锂离子电池,包括:正极、负极、隔膜、电解液以及圆柱型外壳,正极包括铝箔以及涂覆在铝箔上的正极活性材料、粘结剂、导电剂组成的混合物,负极片包括铜箔以及涂覆在铜箔上的负极活性物质、导电剂、粘结剂组成的混合物,其中正极活性物质使用高镍三元材料或使用高镍三元材料与钴酸锂的混合物。锂离子电池在‑20℃的情况下可以进行8C放电,‑40℃可以进行3C电流进行放电,且放电容量能够达到标称容量的70%以上。并且其具有良好高温性能,60℃贮存7天后其容量保持率>85%,容量恢复率>93%。

Description

一种圆柱高容量低温锂离子电池
技术领域
本发明涉及电池领域,特别是一种支持低温下大电流充放电的圆柱高容量低温锂离子电池。
背景技术
锂离子电池具有高电压、能量密度高、循环寿命长且绿色环保等优点,已经广泛用于智能机器人、电动汽车、贮能、机车启动及消费类电子产品中,且随着产品的改善,已越来越多的应用于各个行业。
锂离子电池由于本身的化学特性,在低温情况下充放电性能会急剧下降,且随着充电电流的增大,低温放电的功率和能量影响也越大。
发明内容
为解决锂离子电池在低温下充放电,特别是在低温下快速充放电的缺陷,本发明的目的是制作一种电池,其不仅在常温下可以进行10C以上的放电,且其在低温下也具有优良的大电流放电性能。
为了达到提升低温下大电流放电的目的,本发明提供了的一种圆柱高容量低温锂离子电池,包括:正极、负极、隔膜、电解液以及圆柱型外壳,正极包括一定厚度的铝箔以及涂覆在铝箔上的正极活性材料、粘结剂、导电剂组成的混合物,负极片包括一定厚度的铜箔以及涂覆在铜箔上的负极活性物质、导电剂、粘结剂组成的混合物,其中正极活性物质使用高镍三元材料或使用高镍三元材料与钴酸锂的混合物,正极材料的活性物质克容量为170mAh/g ~ 200mAh/g,正极的D50为8-12μm,D max ≤ 45μm,正极的压实密度为3.0g/cm3-3.5 g/cm3,正极中所使用的导电剂为CNTS与SP的结合,铝箔为16μm- 30μm ;负极活性物质使用硅硅与石墨的混合物,石墨为二次颗粒的人造石墨与天然石墨的混合物,天然石墨的比例为30%,负极的D50为8-14μm ,负极的压实为1.4g/ cm3-1.7g/ cm3,负极片中所使用的导电剂为SP或SP与CNTS的混合,使用的粘结剂为高分子量的PVDF,铜箔为10μm - 25μm;隔膜使用高孔空隙率高密度、高密度的PE材料,厚度为9μm-20μm、空隙率为43% ~ 55%;负极活性物质的容量与正极活性物质的容量比值为1.06-1.1;电解液为低温电解液,包括溶剂、锂盐、添加剂,其溶剂包括EC、DMC、EMC、EA,锂盐包括LiPF6、LiODFB、LiPF2O2, liPF6的浓度为15-18%,添加剂为VC、FEC,还包括过充添加剂CHB。
以下为本发明的锂离子电池的实施方式,对比例及测试结果。
本发明所述的锂离子电池,为了实现低温下的放电性能提升,需要提升电池的导电子性能,解决锂离子电池所用有机电解液在低温下电导率的急剧降低,以及克服锂离子电池在低温正负极SEI膜所产生的界面阻抗。
实现低温下锂电池电子导电性的提升:(1)提升低温下电池的导电性能,通过使用CNTs与SP的混合导电剂使构成导电网络。(2)使用PVDF作为正、负极的粘结剂,PVDF粘结剂在低温下拥有良好的导电性能,SBR玻璃化温度过高导致的低温阻抗增大的现象。(3)降低正负极材料在箔材上的涂覆厚度,缩短电子的传导路径。(4)人造石墨且在表面进行酚醛树酯进行包覆,增加电池的导电性能。(5)在电解液中加入LiODFB、LiPF2O2锂盐,通过特殊的化成电流设置,使其在正负极表面形成均匀的SEI膜,且使用此二种成分形成的SEI膜在低温下具有良好的膜阻抗。
提升锂子在低温下的的快速迁移:(1)负极材料使用二次颗粒的人造石墨,其一次颗粒为4-8μm的针状焦或石油焦,然后使用酚醛树酯在表面进行碳化包覆,使其形成D50在8-14μm的二次颗粒。(2)隔膜孔隙率,隔膜为高密度的PE聚乙烯膜,其厚度为9μm-20μm且要求其空隙率为43%-55%之间最好,同时也可以在其表面涂覆4μm以内的AL2O3涂层。(3)电解液的liPF6的浓度为15-18%,且使用EC、DMC、EMC、EA作为溶剂,其中部分EA溶剂可以有效改善电解液的低温电导率。(4)LiODFB、LiPF2O2除了做为锂盐外,也是良好的低温溶剂膜添加剂,配合电池化成的工艺,可以有效改善正负极界面的锂离子传导性能。(5)负极采用PVDF做为粘结剂,PVDF在低温下有比SBR更好的玻璃化温度,从而有效减小电池的低温阻抗。(6)为了加大正负极片的吸液能力,正负极片的压实密度一般尽量减小,从而可以保证极片有足够的空隙吸附更多的电解液,其中负极一般在1.3g/cm3-1.7 g/cm3,正极3.0 g/cm3-3.4g/cm3。
本发明使用的负极材料为石墨与SIC的混合物,使用的纳米级硅先用石墨进行包覆,然后再与二次颗粒的人造石墨进行物理混合。根据实验表明采用颗粒6-12um天然改性石墨代替10%-30%本发明中的人造石墨,同样能够保证产品的低温性能。
本发明的锂离子电池在-20℃的情况下可以进行8C放电,-40℃可以进行3C电流进行放电,且放电容量能够达到标称容量的70%以上。并且其具有良好高温性能,60℃贮存7天后其容量保持率>85%,容量恢复率>93%。
附图说明
图1为实施例1的-40℃倍率放电性能测试不同倍率放电曲线图。
图2为实施例1的-20℃倍率放电性能测试不同倍率放电曲线图。
具体实施方式
根据本发明制作的锂离子电池体系实施例如下:
实施例1:制作容量为2500mAh的圆柱18650电池。
(1)正极制备:
将正极活性物质811(克容量190mAh/g)、粘结剂PVDF、导电炭黑SP、碳纳米管CNTS按照96:1.8:1.5进行预混合,预混合完成后加入1.5份的CNTs(干粉已经过球磨分散在NMP中),并分步加入NMP,搅拌均匀成粘度为5000Pa.s的流动性良好的浆料,并涂覆在厚度为0.016mm的铝箔上,涂布的重量为130g/m2,并经过烘干后进行辊压,压实密度为3.1g/cm3,辊压完成后分切成56.5mm宽的极片,并焊接0.1mm*4mm的极耳。
(2)负极制备:
将负极活性物质硅碳(克容量1300mAh/g)、人造石墨(克容量320mAh/g)、PVDF、导电炭黑SP按照10:82:6:2进行预混合,预混合完成后分步加入NMP,搅拌均匀后加入单壁的CNTs(干粉已经过球磨分散在NMP中),搅拌均匀成粘度为2000Pa.s的流动性良好的浆料,并涂覆在厚度为0.009mm的铜箔上,涂布的重量为60g/m2,并经过烘干后进行辊压,压实密度为1.5g/cm3,辊压完成后分切成58mm宽的极片,并在极片头尾焊接0.1mm*4mm宽度的极耳。
(3)电解液:
电解液使用以下的配比进行:
DMC(碳酸二甲酯): EMC(碳酸甲乙酯): EC(碳酸乙烯酯): EA(醋酸乙酯): LiPF6(六氟磷酸锂):ODBF(二氟草酸硼酸锂): LiPO2F2 (二氟磷酸锂):CHB(苯基环已烷):PS(亚硫酸丙烯酯)=30:10:9:30:15:1.2:1:0.8:3
(4)隔膜:
使用20μm湿法PE隔膜,其宽度为60mm,空隙率为45%,透气度为200 s/100ml,穿刺强度≥500 g;
(5)锂离子电池制作:
将上述的正极片、负极片及隔膜卷绕成圆柱型的锂离子电池,并装入圆形外壳,其中负极耳在底部与钢壳焊接,正极耳在顶部通过激光焊与盖帽焊接,经过压缩密封后成圆柱型锂离子电池。
(6)注液后电池进行清洗及套绝缘套管,再放入45℃环境下搁置48-60小时进行电解液渗透。
(7)电池放置常温8小时后,按以下方法进行化成:0.02C充电180min,0.05C充电150min,0.1C充电到4.2V;充电完成后小于15℃环境下搁置48h,再以0.2C进行恒流恒压充电并进行容量分选。
附图1所示本实施例-40℃倍率放电性能测试的曲线由上至下分别为0.2C、1C、3C。容量比表格如下:
附图2为本实施例-20℃倍率放电性能测试的曲线由上至下分别为0.2C、0.5C、1C、10A、20A、30A。容量比表格如下:
实施例2:制作容量为3000mAh的圆柱18650电池。
(1)正极制备:
将正极活性物质811三元材料(克容量190mAh/g)、钴酸锂、粘结剂PVDF、导电炭黑SP按照70:25.5: 1.6:1.3进行预混合,预混合完成后加入1.6份的CNTs(干粉已经过球磨分散在NMP中),并分步加入NMP,搅拌均匀成粘度为5000Pa.s的流动性良好的浆料,并涂覆在厚度为0.014mm的铝箔上,单面的涂布重量为均135g/m2,并经过烘干后进行辊压,压实密度为3.3g/cm3,辊压完成后分切成56.5mm宽的极片,并焊接0.1mm*4mm宽度的极耳。
(2)负极制备:
将负极活性物质硅碳(克容量1300mAh/g)、人造石墨二次颗粒(克容量320mAh/g)、天然改性石墨、PVDF、导电炭黑SP按照10:60:20.5:6:2进行预混合,加入NMP搅拌形成,并涂覆在厚度为0.009mm的铜箔上,单面的涂布重量均为58g/m2,并经过烘干后进行辊压,压实密度为1.35g/cm3,辊压完成后分切成58mm宽的极片,并在极片头尾焊接0.1mm*4mm宽度的极耳。
(3)隔膜:
使用16μm湿法PE隔膜,其宽度为60mm,空隙率为45%,透气度为200s/100ml,穿刺强度≥500 g;
(5)其它均与实例1相同。

Claims (5)

1.一种圆柱高容量低温锂离子电池,包括:正极、负极、隔膜、电解液以及圆柱型外壳,正极包括铝箔以及涂覆在铝箔上的正极活性材料、粘结剂、导电剂组成的混合物,负极片包括铜箔以及涂覆在铜箔上的负极活性物质、导电剂、粘结剂组成的混合物,其中正极活性物质使用高镍三元材料或使用高镍三元材料与钴酸锂的混合物,正极材料的活性物质克容量为170mAh/g -200mAh/g,正极的D50为8-12μm,D max ≤ 45μm,正极的压实密度为3.0g/cm3-3.5 g/cm3,正极中所使用的导电剂为CNTS与SP的结合,铝箔为16μm- 30μm ;负极活性物质使用硅硅与人造石墨的混合物,负极的D50为8-14μm ,负极的压实为1.4g/ cm3-1.7g/cm3,负极片中所使用的导电剂为SP或SP与CNTS的混合,使用的粘结剂为高分子量的PVDF,铜箔为10μm - 25μm;隔膜使用高孔空隙率高密度、高密度的PE材料,厚度为9μm-20μm、空隙率为43% - 55%;负极活性物质的容量与正极活性物质的容量比值为1.06-1.1;电解液为低温电解液,包括溶剂、锂盐、添加剂,其溶剂包括EC、DMC、EMC、EA,锂盐包括LiPF6、LiODFB、LiPF2O2, 添加剂为VC、FEC、PS混合。
2.根据权利要求1所述的一种圆柱高容量低温锂离子电池,其特征是:所述人造石墨为二次颗粒的人造石墨。
3.根据权利要求1或2所述的一种圆柱高容量低温锂离子电池,其特征是:所述人造石墨中替换30%重量的天然石墨或改性天然石墨。
4.根据权利要求1所述的一种圆柱高容量低温锂离子电池,其特征是:所述电温电解液还包括过充添加剂CHB。
5.根据权利要求1所述的一种圆柱高容量低温锂离子电池,其特征是:所述电温电解液中liPF6的浓度为15-18%。
CN201811635529.5A 2018-12-29 2018-12-29 一种圆柱高容量低温锂离子电池 Pending CN109509881A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811635529.5A CN109509881A (zh) 2018-12-29 2018-12-29 一种圆柱高容量低温锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811635529.5A CN109509881A (zh) 2018-12-29 2018-12-29 一种圆柱高容量低温锂离子电池

Publications (1)

Publication Number Publication Date
CN109509881A true CN109509881A (zh) 2019-03-22

Family

ID=65755818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811635529.5A Pending CN109509881A (zh) 2018-12-29 2018-12-29 一种圆柱高容量低温锂离子电池

Country Status (1)

Country Link
CN (1) CN109509881A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768677A (zh) * 2020-12-31 2021-05-07 宇恒电池有限公司 袖珍型高速玩具汽车用锂离子动力电池及其制造方法
CN113921891A (zh) * 2021-09-07 2022-01-11 山东派智新能源科技有限公司 一种低温大倍率圆柱型锂离子电池及其制作方法
CN115064658A (zh) * 2022-06-29 2022-09-16 珠海冠宇电池股份有限公司 一种可快速嵌锂的负极片及包括该负极片的电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066331A (zh) * 2012-11-29 2013-04-24 能一郎科技股份有限公司 一种超低温高倍率型锂离子电池的制备方法
CN103346305A (zh) * 2013-07-01 2013-10-09 华南师范大学 人造石墨为载体的锂电池硅碳复合负极材料的制备和应用
CN107195960A (zh) * 2017-06-16 2017-09-22 江苏三杰新能源有限公司 一种圆柱快充型高倍率锂离子电池
CN108493405A (zh) * 2018-02-24 2018-09-04 西安中科爱姆特氢能源有限公司 新型超低温锂离子电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066331A (zh) * 2012-11-29 2013-04-24 能一郎科技股份有限公司 一种超低温高倍率型锂离子电池的制备方法
CN103346305A (zh) * 2013-07-01 2013-10-09 华南师范大学 人造石墨为载体的锂电池硅碳复合负极材料的制备和应用
CN107195960A (zh) * 2017-06-16 2017-09-22 江苏三杰新能源有限公司 一种圆柱快充型高倍率锂离子电池
CN108493405A (zh) * 2018-02-24 2018-09-04 西安中科爱姆特氢能源有限公司 新型超低温锂离子电池及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768677A (zh) * 2020-12-31 2021-05-07 宇恒电池有限公司 袖珍型高速玩具汽车用锂离子动力电池及其制造方法
CN113921891A (zh) * 2021-09-07 2022-01-11 山东派智新能源科技有限公司 一种低温大倍率圆柱型锂离子电池及其制作方法
CN115064658A (zh) * 2022-06-29 2022-09-16 珠海冠宇电池股份有限公司 一种可快速嵌锂的负极片及包括该负极片的电池

Similar Documents

Publication Publication Date Title
CN105552344B (zh) 一种锂离子电池正极片、锂离子电池及其制备方法
CN108598556B (zh) 一种高温型聚合物锂离子电池及其制备方法
CN103236560B (zh) 一种锂硫电池的硫/碳复合正极材料及其制备方法和应用
CN104008893B (zh) 锂离子混合型电容器的制备方法及其锂离子混合型电容器
CN108417777B (zh) 一种多孔三元复合正极片及其制备方法及其应用
CN109301160A (zh) 一种电极及其制备方法和锂离子电容电池
CN105845906B (zh) 含磷负极复合材料及其制备方法以及锂离子电池
CN106856236B (zh) 一种二次电池负极材料,其制备方法及电池
CN105870449B (zh) 一种全固态锂-空气电池复合正极材料及全固态锂-空气电池
CN106450102A (zh) 用于锂硫电池的石墨改性隔膜及其制备方法与构成的锂硫电池
CN109659496A (zh) 一种锂离子电池正极膜及其制备和应用
CN109273704A (zh) 一种具有高比表面保护层的金属锂负极及其制备方法
CN108394884A (zh) 一种壳聚糖基高比表面积氮/磷共掺杂碳纳米片的制备方法
JP7337049B2 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
CN108493442A (zh) 一种三元锂离子电池
CN103456918B (zh) 电池正极及其制备方法和使用该正极的锂离子电池
CN107195960A (zh) 一种圆柱快充型高倍率锂离子电池
CN108346523A (zh) 一种混合型储能器件的含锂金属负极制备方法
CN102340027B (zh) 一种高能量密度的锂离子电池
US11217826B2 (en) Methods of making sulfide-impregnated solid-state battery
CN111971769A (zh) 锂离子源材料到用于电容器辅助电池的活性炭电极中的结合
CN109216654A (zh) 一种多层负极极片及其制备方法和应用的锂离子电池
CN109509881A (zh) 一种圆柱高容量低温锂离子电池
CN109859951A (zh) 一种碳基复合负极材料及其制备方法以及一种化学电源及其制备方法
CN106972193A (zh) 一种高倍率快充锂离子电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190322