CN109502563B - 一种低温合成制备氮化硅陶瓷粉体的方法 - Google Patents
一种低温合成制备氮化硅陶瓷粉体的方法 Download PDFInfo
- Publication number
- CN109502563B CN109502563B CN201811612393.6A CN201811612393A CN109502563B CN 109502563 B CN109502563 B CN 109502563B CN 201811612393 A CN201811612393 A CN 201811612393A CN 109502563 B CN109502563 B CN 109502563B
- Authority
- CN
- China
- Prior art keywords
- silicon nitride
- powder
- water glass
- hydrochloric acid
- nitride ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/068—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6268—Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Composite Materials (AREA)
- Ceramic Products (AREA)
Abstract
一种低温合成制备氮化硅陶瓷粉体的方法,包括以下步骤:(1)将水玻璃、偶联剂、聚乙二醇和盐酸依次加入水中,搅拌制成凝胶;经水洗和醇洗后作为前驱体凝胶;(2)放入无水乙醇中,搅拌并加入酚醛树脂,搅拌至形成糊状体;烘干制成前驱体粉体;(3)加入氮源混合研磨;(4)置于加热炉中,通入惰性气体将空气驱除,在炉压高于大气压条件下,升温进行氮化合成反应;随炉冷却获得粗粉体;(5)在550~650℃条件下保温2~8小时除碳。本发明的方法可以低温合成氮化硅陶瓷粉体,大幅度降低生产成本,具有广泛的应用前景。
Description
技术领域
本发明属于无机非金属材料领域,特别涉及一种低温合成制备氮化硅陶瓷粉体的方法。
背景技术
氮化硅(Si3N4)陶瓷具有优良的电学和力学性能,引起国内外研究者的广泛关注,随着现代科学技术的飞速发展,氮化硅陶瓷在许多高技术领域必将具有广泛的应用前景;然而,目前氮化硅的制备成本较高,主要原因是合成温度高;如碳热还原法的合成温度一般在1300~1500℃左右,直接氮化法一般在1400~1600℃左右;若能以较低的温度制备出氮化硅粉体,必将会大大提高其商业化进程。
截止目前,规模化工业生产氮化硅陶瓷粉体的方法主要有三种:直接氮化法、碳热还原法和高能球磨法;直接氮化法和碳热还原法对应的主要问题是反应温度高、团聚结块,高能球磨法存在的主要问题是粉体极易被二次污染,不能满足高纯度的要求;其中最具商业化生产能力的方法当属碳热还原方法;因此,开发一种污染少成本低的高纯氮化硅陶瓷粉体的低温合成制备方法,是目前急需解决的问题。
发明内容
本发明的目的是提供一种低温合成制备氮化硅陶瓷粉体的方法,通过设计原料组分和工艺路线,在低温条件下合成氮化硅粉体,降低生产成本的同时,减少污染,提高产品的纯度。
本发明的方法包括以下步骤:
1、制备前驱体凝胶:准备硅源水玻璃,催化剂盐酸,表面活性剂偶联剂和聚乙二醇,其中盐酸的质量浓度为5~35%;盐酸占水玻璃的体积百分比为1~30%;偶联剂占水玻璃和盐酸总体积的0.01~10.0%,聚乙二醇为水玻璃和盐酸总质量的0.01~10.0%;将水玻璃、偶联剂、聚乙二醇和盐酸依次加入去离子水中,搅拌均匀制成凝胶;将凝胶经水洗和醇洗后,过滤获得的固相作为前驱体凝胶;
2、制备前驱体粉体:将前驱体凝胶放入无水乙醇中,在搅拌条件下加入酚醛树脂,使酚醛树脂在无水乙醇中溶解,前驱体凝胶被分散,直至全部物料形成糊状体;将糊状体置于烘箱中,在65~200℃条件下烘干去除挥发成分,剩余物料随炉冷却至常温,取出研磨制成前驱体粉体;其中酚醛树脂与水玻璃的摩尔比为0.5~10;
3、制备复合前驱体粉体:向前驱体粉体中加入氮源尿素或三聚氰胺,混合研磨均匀,制成复合前驱体粉体;其中氮源与水玻璃的摩尔比为5~60;
4、合成氮化硅粗粉体:将复合前驱体粉体置于加热炉中,通入惰性气体吹扫将空气驱除,然后在加热炉内气压高于大气压的条件下,升温至800~1000℃后保温2~5小时,进行氮化合成反应;反应后的物料随炉冷却至常温,获得氮化硅粗粉体;
5、脱碳处理:将氮化硅粗粉体置于电阻炉内,在550~650℃条件下保温2~8小时,使残留的碳去除,然后物料随炉冷却至常温,再研磨制成氮化硅陶瓷粉体。
上述的惰性气体为氮气或氩气。
上述的聚乙二醇的聚合度为2000~20000。
上述的步骤1中,去离子水的用量以去离子水与盐酸混合后,全部溶解水玻璃、偶联剂和聚乙二醇为准。
上述的步骤2中,无水乙醇的用量以将全部酚醛树脂溶解为准。
上述的氮化硅陶瓷粉体的粒径100~1000纳米。
上述的步骤4中,升温和保温时控制加热炉内气压高于大气压。
本发明的方法采用水玻璃为硅源,酚醛树脂为碳源,采用尿素或三聚氰胺为氮源替代传统工艺中的氮气或氨气,通过尿素或三聚氰胺的加热分解提供活性较高的氮源,再通过偶联剂和聚乙二醇的接枝、表面改性与分散作用,使胶体微粒得到分散和表面改性,硅源和碳源能够达到原子或分子级别的均匀混合;更主要的是高活性氮源尿素或三聚氰胺加热分解产生的氨气原位与混合均匀的硅源和碳源发生碳热还原反应生成氮化硅;其中使用较多的酚醛树脂是为了使硅源充分反应而没有残留,添加较多的尿素或三聚氰胺也是为了使硅源充分反应而不残留;本发明的方法可以低温合成氮化硅陶瓷粉体,大幅度降低生产成本,因而具有广泛的应用前景。
附图说明
图1为本发明实施例1中氮化硅陶瓷粉体的X射线衍射图;
图2为本发明实施例1中氮化硅陶瓷粉体的SEM照片图。
具体实施方式
本发明实施例中采用的水玻璃、偶联剂、聚乙二醇、酚醛树脂、尿素和三聚氰胺为市购产品。
本发明实施例中的偶联剂选用KH-550、KH-560或KH-570。
本发明实施例中的酚醛树脂选用FQ-9。
本发明实施例中采用X射线衍射仪型号为PW3040/60。
本发明实施例中采用场发射扫描电镜型号为S-4800。
本发明实施例中,水洗和醇洗是将凝胶先置于水中搅拌至少5min,然后置于乙醇中搅拌至少5min。
本发明实施例中,在65~200℃条件下烘干的时间为2~24小时。
本发明实施例中加热炉升温和保温时,因尿素分解产生氨气会导致加热炉内气压升高,当加热炉内的气压高过或等于0.4MPa时,通过开启加热炉上的放气阀门将加热炉内气压降低。
本发明实施例中,开启放气阀门时,放气阀门通过排气管道将气体通入盛水的密闭容器中,使放出的氨气溶于水中回收。
实施例1
准备硅源水玻璃,催化剂盐酸,表面活性剂偶联剂和聚乙二醇;盐酸占水玻璃的体积百分比为1%;表面活性剂中的偶联剂占水玻璃和盐酸总体积的0.01%,聚乙二醇为水玻璃和盐酸总质量的0.01%;将水玻璃、偶联剂、聚乙二醇和盐酸依次加入去离子水中,搅拌均匀制成凝胶;将凝胶经水洗和醇洗后,过滤获得的固相作为前驱体凝胶;盐酸的质量浓度为35%,聚乙二醇的聚合度为2000;去离子水的用量以去离子水与盐酸混合后,全部溶解水玻璃、偶联剂和聚乙二醇为准;
将前驱体凝胶放入无水乙醇中,在搅拌条件下加入酚醛树脂,使酚醛树脂在无水乙醇中溶解,前驱体凝胶被分散,全部物料形成糊状体;将糊状体置于烘箱中,在65℃条件下烘干去除挥发成分,剩余物料随炉冷却至常温,取出研磨制成前驱体粉体;其中无水乙醇的用量以将全部酚醛树脂溶解为准;酚醛树脂与水玻璃的摩尔比为1;
向前驱体粉体中加入氮源尿素,混合研磨均匀,制成复合前驱体粉体;其中氮源与水玻璃的摩尔比为5;
将复合前驱体粉体置于加热炉中,通入氮气吹扫将空气驱除,然后在加热炉内气压高于大气压的条件下,升温至800℃后保温5小时,进行氮化合成反应;反应后的物料随炉冷却至常温,获得氮化硅粗粉体;其中惰性气体为氮气;升温和保温时控制加热炉内气压高于大气压;
将氮化硅粗粉体置于电阻炉内,在550℃条件下保温8小时,使残留的碳去除,除碳后的物料随炉冷却至常温,再研磨粉碎制成氮化硅陶瓷粉体,粒径100~400纳米,XRD衍射图如图1所示,由图可见产品没有明显的杂质,SEM照片如图2所示。
实施例2
方法同实施例1,不同点在于:
(1)盐酸占水玻璃的体积百分比为10%;偶联剂占水玻璃和盐酸总体积的1%,聚乙二醇为水玻璃和盐酸总质量的1%;盐酸的质量浓度为25%,聚乙二醇的聚合度为8000;
(2)酚醛树脂与水玻璃的摩尔比为0.5,前驱体溶胶在100℃条件下烘干去除挥发成分;
(3)加入的氮源为三聚氰胺,氮源与水玻璃的摩尔比为15;
(4)采用的惰性气体为氩气;氮化合成反应温度900℃,时间4小时;
(5)在600℃条件下保温6小时使残留的碳去除;氮化硅陶瓷粉体的粒径200-700纳米。
实施例3
方法同实施例1,不同点在于:
(1)盐酸占水玻璃的体积百分比为20%;偶联剂占水玻璃和盐酸总体积的5%,聚乙二醇为水玻璃和盐酸总质量的5%;盐酸的质量浓度为15%,聚乙二醇的聚合度为12000;
(2)酚醛树脂与水玻璃的摩尔比为5,前驱体溶胶在150℃条件下烘干去除挥发成分;
(3)氮源与水玻璃的摩尔比为30;
(4)氮化合成反应温度1000℃,时间2小时;
(5)在620℃条件下保温4小时使残留的碳去除;氮化硅陶瓷粉体的粒径400~1000纳米。
实施例4
方法同实施例1,不同点在于:
(1)盐酸占水玻璃的体积百分比为30%;偶联剂占水玻璃和盐酸总体积的10%,聚乙二醇为水玻璃和盐酸总质量的10%;盐酸的质量浓度为5%,聚乙二醇的聚合度为20000;
(2)酚醛树脂与水玻璃的摩尔比为10,前驱体溶胶在200℃条件下烘干去除挥发成分;
(3)加入的氮源为三聚氰胺,氮源与水玻璃的摩尔比为60;
(4)采用的惰性气体为氩气;氮化合成反应温度950℃,时间3小时;
(5)在650℃条件下保温2小时使残留的碳去除;氮化硅陶瓷粉体的粒径300~900纳米。
Claims (3)
1.一种低温合成制备氮化硅陶瓷粉体的方法,其特征在于包括以下步骤:
(1)制备前驱体凝胶:准备硅源水玻璃,催化剂盐酸,表面活性剂偶联剂和聚乙二醇,其中盐酸的质量浓度为5~35%;盐酸占水玻璃的体积百分比为1~30%;偶联剂占水玻璃和盐酸总体积的0.01~10.0%,聚乙二醇为水玻璃和盐酸总质量的0.01~10.0%;将水玻璃、偶联剂、聚乙二醇和盐酸依次加入去离子水中,搅拌均匀制成凝胶;将凝胶经水洗和醇洗后,过滤获得的固相作为前驱体凝胶;所述的聚乙二醇的聚合度为2000~20000;去离子水的用量以去离子水与盐酸混合后,全部溶解水玻璃、偶联剂和聚乙二醇为准;
(2)制备前驱体粉体:将前驱体凝胶放入无水乙醇中,在搅拌条件下加入酚醛树脂,使酚醛树脂在无水乙醇中溶解,前驱体凝胶被分散,直至全部物料形成糊状体;无水乙醇的用量以将全部酚醛树脂溶解为准;将糊状体置于烘箱中,在65~200℃条件下烘干去除挥发成分,剩余物料随炉冷却至常温,取出研磨制成前驱体粉体;其中酚醛树脂与水玻璃的摩尔比为0.5~10;
(3)制备复合前驱体粉体:向前驱体粉体中加入氮源尿素或三聚氰胺,混合研磨均匀,制成复合前驱体粉体;其中氮源与水玻璃的摩尔比为5~60;
(4)合成氮化硅粗粉体:将复合前驱体粉体置于加热炉中,通入惰性气体吹扫将空气驱除,所述的惰性气体为氮气或氩气,然后在加热炉内气压高于大气压的条件下,升温至800~1000℃后保温2~5小时,进行氮化合成反应;反应后的物料随炉冷却至常温,获得氮化硅粗粉体;
(5)脱碳处理:将氮化硅粗粉体置于电阻炉内,在550~650℃条件下保温2~8小时,使残留的碳去除,然后物料随炉冷却至常温,再研磨制成氮化硅陶瓷粉体。
2.根据权利要求1所述的一种低温合成制备氮化硅陶瓷粉体的方法,其特征在于所述的氮化硅陶瓷粉体的粒径100~1000纳米。
3.根据权利要求1所述的一种低温合成制备氮化硅陶瓷粉体的方法,其特征在于步骤(4)中,升温和保温时控制加热炉内气压高于大气压。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811612393.6A CN109502563B (zh) | 2018-12-27 | 2018-12-27 | 一种低温合成制备氮化硅陶瓷粉体的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811612393.6A CN109502563B (zh) | 2018-12-27 | 2018-12-27 | 一种低温合成制备氮化硅陶瓷粉体的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109502563A CN109502563A (zh) | 2019-03-22 |
CN109502563B true CN109502563B (zh) | 2022-06-17 |
Family
ID=65755465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811612393.6A Active CN109502563B (zh) | 2018-12-27 | 2018-12-27 | 一种低温合成制备氮化硅陶瓷粉体的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109502563B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101353160A (zh) * | 2008-09-09 | 2009-01-28 | 辽宁工业大学 | 一种氮化硅纳米粉末合成方法 |
CN107758634A (zh) * | 2016-08-16 | 2018-03-06 | 上海纳晶科技有限公司 | 一种基于晶硅太阳能电池产生的硅泥制备高纯α相氮化硅粉体的方法 |
-
2018
- 2018-12-27 CN CN201811612393.6A patent/CN109502563B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101353160A (zh) * | 2008-09-09 | 2009-01-28 | 辽宁工业大学 | 一种氮化硅纳米粉末合成方法 |
CN107758634A (zh) * | 2016-08-16 | 2018-03-06 | 上海纳晶科技有限公司 | 一种基于晶硅太阳能电池产生的硅泥制备高纯α相氮化硅粉体的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109502563A (zh) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109437921B (zh) | 基于表面改性低温合成制备氮化硅陶瓷粉体的方法 | |
CN110436934B (zh) | 一种高α相氮化硅粉体、超长氮化硅纳米线的制备方法 | |
CN108840683B (zh) | 用于制备氮化锆陶瓷微球的工艺及氮化锆陶瓷微球 | |
CN100453508C (zh) | 化学激励燃烧合成氮化硅/碳化硅复合粉体的方法 | |
CN102276260B (zh) | 常压低温烧结β-氮化硅陶瓷的方法 | |
CN101798072A (zh) | 一种制备超细氮化铝粉体的方法 | |
CN108529576B (zh) | 氮化硅及其制备方法 | |
CN110104620B (zh) | 一种利用溶胶-凝胶法制备氮化铝纳米粉体的方法 | |
CN108383530A (zh) | 一种ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺 | |
CN109437919B (zh) | 基于尿素/三聚氰胺氮源制备氮化铝陶瓷粉体的方法 | |
Simonenko et al. | Preparation of MB 2/SiC and MB 2/SiC-MC (M= Zr or Hf) powder composites which are promising materials for design of ultra-high-temperature ceramics | |
CN104291829A (zh) | 一种高α相氮化硅的制备方法 | |
CN109534306A (zh) | 基于尿素氮源制备球形六方氮化硼粉体的方法 | |
CN107285288A (zh) | 纳米氮化硅粉的制备方法 | |
JP3839539B2 (ja) | 結晶性乱層構造窒化硼素粉末とその製造方法 | |
CN109502563B (zh) | 一种低温合成制备氮化硅陶瓷粉体的方法 | |
CN102849694A (zh) | 一种批量制备氮化硼纳米管的制备方法 | |
CN109437131B (zh) | 基于表面改性低温合成氮化铝陶瓷粉体的方法 | |
CN106809808A (zh) | 一种均匀空心球状vn纳米颗粒的制备方法 | |
CN103072960B (zh) | 纳米氮化硅粉的生产方法 | |
Wang et al. | Carbothermal synthesis of approximately spherical Si3N4 particles with homogeneous size distribution | |
JP2021084858A (ja) | 高純度顆粒α相炭化珪素粉末の製造方法 | |
CN114835124B (zh) | 一种基于硝酸铁形状调节剂的纳米碳化硅颗粒的制备方法 | |
KR100596676B1 (ko) | 기상합성법에 의한 단일벽 탄소 나노튜브의 대량 합성 방법 | |
CN111847403B (zh) | 一种氮化铝粉体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |