CN109489540B - 一种利用非共价键改性提高导电纤维应变传感性能的方法 - Google Patents

一种利用非共价键改性提高导电纤维应变传感性能的方法 Download PDF

Info

Publication number
CN109489540B
CN109489540B CN201811232155.2A CN201811232155A CN109489540B CN 109489540 B CN109489540 B CN 109489540B CN 201811232155 A CN201811232155 A CN 201811232155A CN 109489540 B CN109489540 B CN 109489540B
Authority
CN
China
Prior art keywords
conductive
polymer
solution
covalent bond
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811232155.2A
Other languages
English (en)
Other versions
CN109489540A (zh
Inventor
李云涛
陈钦
向东
王雷
赵春霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201811232155.2A priority Critical patent/CN109489540B/zh
Publication of CN109489540A publication Critical patent/CN109489540A/zh
Application granted granted Critical
Publication of CN109489540B publication Critical patent/CN109489540B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/38Polyurethanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明公开了一种利用非共价键改性提高导电纤维应变传感性能的方法,包括以下步骤:将活性碳材料与芘甲酸分散在N,N‑二甲基甲酰胺溶剂中进行超声分散2小时;然后再将聚合物材料加入其中,在60℃条件下加热搅拌直到聚合物材料全部溶解,再超声分散2小时,得到聚合物纳米复合材料溶液;将制备好的聚合物纳米复合溶液涂覆在弹性纤维上;把涂覆后的弹性纤维接上电极绑上导线制作成传感器。本发明不仅使得导电活性材料在聚合物基体上具有了很好的分散性,而且导电活性纳米材料本身的结构没有被破坏,及其优良的导电性能和机械性能没有被损坏;这种改性方法简单高效,低碳环保,没有“三废”需要处理。

Description

一种利用非共价键改性提高导电纤维应变传感性能的方法
技术领域
本发明涉及一种利用非共价键改性提高导电纤维应变传感性能的方法,属于传感技术领域。
背景技术
应变传感器是一种可以将机械形变转变为电信号的电子器件。传统的应变传感器大多数是基于金属或半导体材料,但由于其可工作应变范围小、穿戴体验效果差在可穿戴传感器方面的发展受阻。目前有相关报道已经将导电活性纳米材料(炭黑、碳纳米管、石墨烯)引入到聚合物基体制备柔性传感器来克服传统应变传感器的缺点。尽管这种方法有效的解决了传统传感器工作应变范围小、机械性能差等问题,但是这里仍然存在两个技术问题限制了柔性传感器的广泛应用。一方面是由于活性的导电填料易团聚而不能很好的分散在聚合物基体里严重影响了传感器的稳定性。另一方面则是由于基体与导电活性填料之间较弱的界面结合力使得在传感器使用过程中会对其导电通路造成不可逆的破坏。
为了改善导电活性填料在聚合物基体的分散性能及提高基体与导电活性填料之间的界面作用力。我们采用非共价键结合的方案,让芘甲酸分子通过π-π堆垛的方式吸附在导电活性填料的表面防止其团聚。其次是通过热塑性聚氨酯分子的官能团上的氮原子与芘甲酸分子羧基上的氢原子形成氢键,从而达到增强聚合物基体与导电填料间的界面结合力。现如今可穿戴的柔性传感器还可以通过纤维、织物或其他可穿戴配件与人体结合,用于监测人体的生理体征用于医疗诊断、健康监测等方面。
发明内容
本发明主要是克服现有技术中的不足之处,提出一种利用非共价键改性提高导电纤维应变传感性能的方法,这该方法不仅能有效的将碳纳米活性材料分散在聚合物基体里,而且还不会破坏导电纳米填料的导电性、机械性等优良性能。
本发明解决上述技术问题所提供的技术方案是:一种利用非共价键改性提高导电纤维应变传感性能的方法,包括以下步骤:
(1)将活性碳材料与芘甲酸分散在N,N-二甲基甲酰胺溶剂中进行超声分散2小时;
(2)然后再将聚合物材料加入其中,在60℃条件下加热搅拌直到聚合物材料全部溶解,再超声分散2小时,得到聚合物纳米复合材料溶液;
(3)将制备好的聚合物纳米复合溶液涂覆在弹性纤维上;
(4)把涂覆后的弹性纤维接上电极绑上导线制作成传感器。
进一步的技术方案是,所述步骤(1)中活性碳材料为导电活性纳米材料。
进一步的技术方案是,所述导电活性纳米材料为碳纳米管、石墨烯、炭黑中的任意一种。
进一步的技术方案是,所述活性碳材料为多壁碳纳米管,并且多壁碳纳米管和芘甲酸的质量比为1:0.165。
进一步的技术方案是,所述步骤(2)中聚合物材料为聚氨酯、聚乙烯醇、硅胶聚合物弹性体中的任意一种。
进一步的技术方案是,所述步骤(3)中采用涂覆机将聚合物纳米复合材料涂覆到弹性纤维上,再经过干燥处理将聚合物纳米复合材料固定在弹性纤维上。
进一步的技术方案是,所述涂覆机的转速设置为2rap/min,干燥温度为150±5℃。
进一步的技术方案是,所述弹性纤维为莱卡纤维。
本发明具有以下优点:
(1)该非共价键改性导电活性纳米材料的方法不仅使得导电活性材料在聚合物基体上具有了很好的分散性,而且导电活性纳米材料本身的结构没有被破坏,及其优良的导电性能和机械性能没有被损坏;这种改性方法简单高效,低碳环保,没有“三废”需要处理;
(2)采用本发明方法制备的柔性应变传感器不仅弥补了传统传感器工作应变范围小,可穿戴性差等方面的不足,而且还克服了目前柔性传感器在制备过程中遇到的技术难题;同时该传感器可以在不同应变、不同频率下响应,并且具有很好的重复性、稳定性和耐疲劳性能;
(3)弹性纤维为莱卡纤维,这种纤维可以在不损伤材料原本弹性、柔性的情况下缝进服装里,为制备智能可穿戴设备提供了很好的便利,这种优势是传统的金属和半导体材料制备的传感器很难实现的;
(4)本发明使用的原料已经实现工业化生产,来源广泛,且制备工艺简单,有望实现工业化生产。
附图说明
图1为本发明的制备流程图;
图2为导电性能对比图;
图3为单向拉伸测试其应变范围及灵敏度的对比图。
图4为循环加载测试对比图。
图5为实施例1对人体手腕运动情况的监测结果。
图6为实施例1对人体面部表情微笑的监测结果。
图7为实施例1对人说话行为的监测结果。
具体实施方式
下面结合实施例和附图对本发明做更进一步的说明。
实施例1
本发明的一种利用非共价键改性提高导电纤维应变传感性能的方法,包括以下步骤:
步骤1、将多壁碳纳米管与芘甲酸按1:0.165的质量比分别加入N,N-二甲基甲酰胺溶剂,超声分散2小时;
步骤2、然后再往得到的悬浮液里加入聚合物粉末树脂,加热搅拌,直到所有的聚合物粉树脂末全部溶解,再超声分散2小时,导电纳米复合溶液制备完成;
步骤3、将制备好的导电纳米复合溶液倒入涂覆槽里,然后把涂覆机的转速设置为2rap/min,然后将莱卡纤维经过导轮导入涂覆槽,涂上导电纳米复合溶液后再经导轮导入干燥管里进行干燥;
步骤4、将经涂覆后的莱卡纤维裁成一定长度的纤维,然后再选取固定长度的两点绑上导线,涂上导电膏,纤维传感器就制备完成了。
将实施例1和未经芘甲酸改性的纳米复合材料做导电性实验,其结果如图2所示。从图2可以看出在相同填料的情况下经过芘甲酸修饰的纳米复合材料的的导电性明显比未经修饰的纳米复合材料要好。为了达到相同导电性经修饰的纳米复合材料需要更少的导电填料。这也就说明了在同一导电填料含量的情况下,经过芘甲酸修饰的导电填料体系里形成了更多且更完善的导电通路。从而也反映出芘甲酸有助于导电填料在聚合物基体的分散。
将实施例1制备的纤维传感器和未修饰的多壁碳纳米管制备的导电纳米复合涂覆液涂覆的导电纤维一起做单向拉伸测试,其结果如图3所示。
从图3可以看出,实施例1具有更大的工作应变范围,但是与未经修饰的传感器相比较而言灵敏度(相对电阻变化在单位应变上的变化)较低。这是由于芘甲酸的加入有利于多壁碳纳米管在聚合物基体里的分散,从而形成了比较完整的导电通路,与未经修饰的传感器相比较,在拉伸相同应变的条件下,导电通路的变化改变量没有未经修饰的传感器多。其次,由于芘甲酸与多壁碳纳米管之间的π-π作用力使得在聚合物集体里形成的导电通路更复杂、更完善。
将实施例1和未经芘甲酸修饰的纳米复合纤维传感器做相同应变条件下的循环加载测试对比,其结果如图4所示,可以从图可知实施例1的纤维传感器具有很好的重复性、稳定性和可靠性。
将实施例1做应用探究实验,实验结果如图5、图6和图7所示,用胶带将该传感器固定在测试人员的手腕处,然后测试人员连续做出伸直状态—弯曲—回复的运动,就会出现如图所示的相对电阻变化—时间的峰形图。每做一个动作就会有相应的响应。除了能够监测到手腕关节的运动外还可以监测较为细微的运动,比如说人的面部表情微笑。把纤维传感器直接用胶带固定在人的脸上,然后连续做出平静状态—微笑—保持微笑—恢复平静这样一个过程,就会出现如图6所示的峰形。这些峰形能够保持较好的重复性和稳定性。其次,这种传感器还可以监测人说话发音的行为信号,首先要将纤维传感器固定在人的颈部喉结上,测试人员一次说出“Hi”、“Lucky”和“Wonderful”,在这过程中,实时测定应变传感器的相对电阻的变化情况,测定结果如图7所示。可以看出,该种纤维传感器能比较精确的反映出较为复杂且微小的动作,而且不同发音对应出不同的峰形,这有潜力应用在人工智能语音识别领域。
综上所述,本发明制备出的纤维柔性传感器,其可以在不同应变、不同频率条件下响应,并且有优良的可重复性、稳定性和耐久性。其次该纤维传感器可以对人体关节运动、面部表情、语音识别等进行实时监测。同时莱卡纤维可以在不牺牲其优良性能的条件下缝进衣服里,为制备可穿戴智能服装提供了参考意义。而且制备该纤维传感器的材料已经实现工业化生产,来源广泛,为其工业化生产提供了理论数据支撑。
以上所述,并非对本发明作任何形式上的限制,虽然本发明已通过上述实施例揭示,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些变动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (2)

1.一种利用非共价键改性提高导电纤维应变传感性能的方法,其特征在于,包括以下步骤:
(1)将多壁碳纳米管与芘甲酸按1:0.165的质量比分别加入N,N-二甲基甲酰胺溶剂,超声分散2小时;
(2)然后再将聚合物材料加入其中,在60℃条件下加热搅拌直到聚合物材料全部溶解,再超声分散2小时,得到聚合物纳米复合材料溶液;
(3)采用涂覆机将聚合物纳米复合材料涂覆到莱卡纤维上,再经过干燥处理将聚合物纳米复合材料固定在莱卡纤维上;
(4)把涂覆后的莱卡纤维接上电极绑上导线制作成传感器。
2.根据权利要求1所述的一种利用非共价键改性提高导电纤维应变传感性能的方法,其特征在于,所述涂覆机的转速设置为2rap/min,干燥温度为150±5℃。
CN201811232155.2A 2018-10-22 2018-10-22 一种利用非共价键改性提高导电纤维应变传感性能的方法 Expired - Fee Related CN109489540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811232155.2A CN109489540B (zh) 2018-10-22 2018-10-22 一种利用非共价键改性提高导电纤维应变传感性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811232155.2A CN109489540B (zh) 2018-10-22 2018-10-22 一种利用非共价键改性提高导电纤维应变传感性能的方法

Publications (2)

Publication Number Publication Date
CN109489540A CN109489540A (zh) 2019-03-19
CN109489540B true CN109489540B (zh) 2020-12-25

Family

ID=65692291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811232155.2A Expired - Fee Related CN109489540B (zh) 2018-10-22 2018-10-22 一种利用非共价键改性提高导电纤维应变传感性能的方法

Country Status (1)

Country Link
CN (1) CN109489540B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006327B (zh) * 2019-03-28 2019-11-08 西南石油大学 一种基于双轴拉伸技术的柔性应变传感器的快速制备方法
CN111649665B (zh) * 2020-06-18 2022-03-18 西南石油大学 一种可识别应变方向的蛛网状柔性应变传感器及制备方法
CN111732744B (zh) * 2020-06-28 2022-04-05 西南石油大学 一种利用双向拉伸技术制备柔性应变传感器的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320599B (zh) * 2011-08-02 2012-12-05 同济大学 一种纳米氧化石墨烯表面聚合物功能化的方法
CN103130211B (zh) * 2011-11-29 2015-10-21 西安电子科技大学 石墨烯的制备方法
CN104401976B (zh) * 2014-10-28 2016-04-20 华中科技大学 一种改性石墨烯及其制备方法
CN104934236A (zh) * 2015-04-30 2015-09-23 河海大学 一种电活性分子接枝石墨烯掺杂导电聚合物电极材料的制备方法
CN104910333B (zh) * 2015-06-24 2018-02-27 深圳职业技术学院 一种改性氧化石墨烯聚合物复合材料及其制备方法
CN105348526B (zh) * 2015-11-20 2017-09-26 青岛理工大学 聚吡咯@石墨烯导电压敏复合材料及其应用
CN107167180B (zh) * 2017-05-19 2020-01-14 北京邮电大学 一种弹性纤维传感器及其制备方法
CN108050926B (zh) * 2018-01-23 2020-05-01 郑州大学 具有高灵敏度和大应变响应的应变传感器及其制备方法

Also Published As

Publication number Publication date
CN109489540A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
CN109489540B (zh) 一种利用非共价键改性提高导电纤维应变传感性能的方法
Jiao et al. Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel
Zhu et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires
Zhang et al. Three-dimensional binary-conductive-network silver nanowires@ thiolated graphene foam-based room-temperature self-healable strain sensor for human motion detection
CN105455804B (zh) 一种柔性可穿戴干电极及其制备方法
Li et al. Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation
CN113152088B (zh) 一种柔性织物基应变传感器及其制备方法
Wang et al. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications
CN108050926B (zh) 具有高灵敏度和大应变响应的应变传感器及其制备方法
Lin et al. Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication
US20200255981A1 (en) High-stretchable high-sensitive flexible force-sensitive sensing fiber and preparation method therefor
Chen et al. Design of flexible strain sensor with both ultralow detection limit and wide sensing range via the multiple sensing mechanisms
Li et al. Ultra-stretchable, super-hydrophobic and high-conductive composite for wearable strain sensors with high sensitivity
Huang et al. Highly stretchable and bio-based sensors for sensitive strain detection of angular displacements
Chen et al. Construction of sensitive strain sensing nanofibrous membrane with polydopamine-modified MXene/CNT dual conductive network
CN109914146A (zh) 一种超疏水纸基柔性应变传感器及其制备方法
Lv et al. Scalable manufacturing of conductive rubber nanocomposites with ultralow percolation threshold for strain sensing applications
CN110006327B (zh) 一种基于双轴拉伸技术的柔性应变传感器的快速制备方法
Ma et al. Flexible Ti3C2Tx MXene/ink human wearable strain sensors with high sensitivity and a wide sensing range
Zhao et al. A fast self-healable and stretchable conductor based on hierarchical wrinkled structure for flexible electronics
Wang et al. Anisotropic hydrogels with high-sensitivity and self-adhesion for wearable sensors
Tang et al. Biomass-derived multifunctional 3D film framed by carbonized loofah toward flexible strain sensors and triboelectric nanogenerators
Liu et al. High-sensitivity crack-based flexible strain sensor with dual hydrogen bond-assisted structure for monitoring tiny human motions and writing behavior
Yu et al. High electrical self-healing flexible strain sensor based on MWCNT-polydimethylsiloxane elastomer with high gauge factor and wide measurement range
Tan et al. Highly sensitive and extremely durable wearable e-textiles of graphene/carbon nanotube hybrid for cardiorespiratory monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201225

Termination date: 20211022

CF01 Termination of patent right due to non-payment of annual fee