CN109487245A - 一种超疏水水合氧化铝薄膜的制备方法 - Google Patents
一种超疏水水合氧化铝薄膜的制备方法 Download PDFInfo
- Publication number
- CN109487245A CN109487245A CN201811533124.0A CN201811533124A CN109487245A CN 109487245 A CN109487245 A CN 109487245A CN 201811533124 A CN201811533124 A CN 201811533124A CN 109487245 A CN109487245 A CN 109487245A
- Authority
- CN
- China
- Prior art keywords
- hydrophobic
- super
- aluminium film
- aqua oxidation
- oxidation aluminium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1245—Inorganic substrates other than metallic
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
本发明公开了一种超疏水水合氧化铝薄膜的制备方法。该方法包括以下步骤:先分别配制0.94~9.4 wt%的无机铝盐水溶液和0.1~1.0 wt%的醋酸钠水溶液,再将两者混合均匀,置于水热反应釜中。然后将洗净的基材放入反应釜中,在130‑190℃下进行6~12h的水热反应。反应结束后,自然冷却36h,取出长有水合氧化铝薄膜的基材,洗涤,干燥。然后将带有水合氧化铝薄膜的基材放入1‑10 wt%月桂酸的乙醇溶液中浸泡10‑120分钟,取出,室温干燥,制得水合氧化铝超疏水薄膜。本发明具有成本低,工艺简单,易于操作的特点,制备出的材料具有优良的超疏水性。
Description
技术领域
本发明属于超疏水薄膜的制备领域,具体涉及一种超疏水水合氧化铝薄膜的制备方法。
背景技术
超疏水材料因在自清洁、防腐蚀、防冰附以及减阻等功能上具有广泛的应用,吸引了越来越多的关注。目前,超疏水薄膜的主要结构由底层的高比表面层和表层的疏水层构成。其中底层材料主要是二氧化硅、二氧化钛和氧化锌等高比表面无机体系。Wang等制备出了ZnO@SiO2超疏水薄膜(Langmuir, 2009, 25(23):13619-13624)首先利用旋转套膜法在载玻片上均匀涂覆纳米ZnO种子,在聚四氟乙烯高压釜中使种子生长成ZnO纳米线阵列,然后在阵列表面沉积SiO2/聚电解质壳,煅烧除去聚电解质,得到具有SiO2壳的ZnO纳米阵列,最后用化学气相沉积法对ZnO@SiO2进行改性,从而得到超疏水表面。(潘洪波,汪存东,刘建新等.二氧化钛/聚氨酯超疏水涂层的制备及性能. 高分子材料科学与工程,2015,31(5):63-64)以二氧化钛和有机硅改性聚氨酯为原料,乙酸乙酯为分散剂,通过喷涂法制备了TiO2/PU微-纳米复合结构的超疏水涂层。此制备过程包括了有机硅改性聚氨酯的制备、TiO2/PU混合分散液的制备、涂层的制备三个主要步骤,同时制备过程中使用了多种有机溶剂。以上方法存在材料制备过程复杂,成本较高,所用原料对环境污染大。因此,研究者正致力于开发制备简单,成本低,绿色环保的超疏水薄膜。
水合氧化铝因其在催化剂、吸附剂和阻燃剂等领域的广泛应用和较低的制备成本而受到关注,其表面形貌也较为丰富。有关水合氧化铝用于超疏水薄膜的制备仍鲜见报道。“一种透明超疏水涂层的制备方法”(CN103803814A)公开了一种关于透明超疏水涂层的制备方法,此涂层使用勃姆石制备底层结构。该方法主要包括四个步骤:勃姆石溶胶的制备、利用提拉涂膜方法在玻璃基底表面进行种子膜处理、水热反应、超疏水处理。该方法工艺繁琐,操作复杂,有机铝原料的使用也带来成本和环境危害问题。
发明内容
本发明提供一种水合氧化铝超疏水薄膜的制备方法,以解决超疏水薄膜制备中原料成本高、制备工艺复杂和环境危害等问题。该方法使用常规无机原料,采用一步水热法在基材表面直接制备了水合氧化铝薄膜,再对水合氧化铝薄膜进行疏水处理,得到超疏水薄膜。
为实现上述目的本发明采取了如下方案。
一种超疏水水合氧化铝薄膜的制备方法,包括以下步骤:
(1)将九水合硝酸铝和醋酸钠分别溶解于水中,得无机铝盐水溶液和醋酸钠水溶液;然后将无机铝盐水溶液和醋酸钠水溶液混合,搅拌均匀,得混合液;
(2)取一片洗净的基材放入水热反应釜中,将步骤(1)所得混合液倒入所述水热反应釜中进行水热反应,反应结束后自然冷却,将反应后的产物洗涤,干燥,得到水合氧化铝薄膜层;
(3)将步骤(2)得到的水合氧化铝薄膜层放入月桂酸的乙醇溶液中进行疏水处理,取出,干燥,得到超疏水薄膜。
优选的,步骤(1)中所配制的无机铝盐水溶液的浓度为0.94 wt%~9.4 wt%。
优选的,步骤(1)中所配制的醋酸钠水溶液的浓度为0.1 wt%~1.0 wt%。
优选的,步骤(2)中水热反应的时间为6~12h。
优选的,步骤(2)中水热反应的温度为130~190℃。
优选的,步骤(2)中自然冷却的时间为36h。
优选的,步骤(2)中干燥是在室温下。
优选的,步骤(3)中月桂酸的乙醇溶液的浓度为1~10 wt%。
优选的,步骤(3)中疏水处理时的浸泡时间为10~120分钟。
与现有技术相比,本发明具有以下有益效果:
(1)本发明不使用价格高,环境危害大的有机铝原料;
(2)本发明一步直接水热,无需制备水合氧化铝溶胶;
(3)本发明无需通过提拉涂抹等方法对基底进行种子膜处理;
(4)通过本发明方法制备超疏水薄膜,原料成本低,制备工艺简单;
(5)本发明制备的超疏水薄膜,可广泛应用于玻璃、陶瓷、金属等多种基材的表面疏水处理。
附图说明
图1为实施例1所得的水合氧化铝薄膜的扫描电镜图。
图2为实施例1所得的水合氧化铝薄膜的XRD谱图。
图3为实施例1所得的超疏水水合氧化铝薄膜的接触角状态图。
图4为实施例2所得的超疏水水合氧化铝薄膜的接触角状态图。
图5为实施例3所得的超疏水水合氧化铝薄膜的接触角状态图。
图6为实施例4所得的超疏水水合氧化铝薄膜的接触角状态图。
具体实施例
下面结合具体实施例对本发明制备,但本发明的保护范围不限于下述的实施例。
实施例1
(1)将0.375g(1mmol)九水合硝酸铝和0.04g(0.5mmol)醋酸钠分别溶解于40ml去离子水中,得到浓度为0.94%的九水合硝酸铝溶液和浓度为0.1%的醋酸钠溶液,将两者进行混合,搅拌均匀。
(2)取一片洗净的玻璃片放入水热反应釜,将步骤(1)所得混合液倒入水热反应釜中,在130℃水热反应6h,反应结束后自然冷却36h,将反应后的产物用蒸馏水洗涤两次,自然干燥,得到水合氧化铝薄膜。
(3)将步骤(2)得到的薄膜放入浓度为1wt%的月桂酸的乙醇溶液中处理10分钟,取出,室温干燥,得到超疏水薄膜,其接触角为152.9°。
实施例2
(1)将3.75g(10mmol)九水合硝酸铝和0.4g(5mmol)醋酸钠分别溶解于40ml去离子水中,得到浓度为9.4%的九水合硝酸铝溶液和浓度为1.0%的醋酸钠溶液,将两者进行混合,搅拌均匀。
(2)取一片洗净的金属铝箔放入水热反应釜,将步骤(1)所得混合液倒入水热反应釜中,在190℃水热反应12h,反应结束后自然冷却36h,将反应后的产物用蒸馏水洗涤两次,自然干燥,得到水合氧化铝薄膜。
(3)将步骤(2)得到的薄膜放入浓度为10 wt%月桂酸的乙醇溶液中处理120分钟,取出,室温干燥,得到超疏水薄膜,其接触角为167.1°。
实施例3
(1)将1.88g(5mmol)九水合硝酸铝和0.2g(2.5mmol)醋酸钠分别溶解于40ml去离子水中,得到浓度为4.7%的九水合硝酸铝溶液和浓度为0.5%的醋酸钠溶液,将两者进行混合,搅拌均匀。
(2)取一片洗净的陶瓷片放入水热反应釜,将步骤(1)所得混合液倒入水热反应釜中,在150℃水热反应9h,反应结束后自然冷却36h,将反应后的产物用蒸馏水洗涤两次,自然干燥,得到水合氧化铝薄膜涂层。
(3)将步骤(2)得到的薄膜放入浓度为5 wt%的月桂酸的乙醇溶液中处理60分钟,取出,室温干燥,得到超疏水薄膜,其接触角为160.5°。
实施例4
(1)将3.00g(8mmol)九水合硝酸铝和0. 08g(1mmol)醋酸钠分别溶解于40ml去离子水中,得到浓度为7.5%的九合硝酸铝溶液和浓度为0.2%的醋酸钠溶液,两者进行混合,搅拌均匀。
(2)取一片洗净的金属铜片放入水热反应釜,将步骤(1)所得混合液倒入水热反应釜中,在170℃水热反应12h,反应结束后自然冷却36h,将反应后的产物用蒸馏水洗涤两次,自然干燥,得到水合氧化铝薄膜涂层。
(3)将步骤(2)得到的薄膜放入浓度为7.5 wt%的月桂酸的乙醇溶液中处理30分钟,取出,室温干燥,得到超疏水薄膜,其接触角为162.7°。
Claims (8)
1.一种超疏水水合氧化铝薄膜的制备方法,其特征在于,包括以下步骤:
(1)将九水合硝酸铝和醋酸钠分别溶解于水中,得无机铝盐水溶液和醋酸钠水溶液;然后将无机铝盐水溶液和醋酸钠水溶液混合,搅拌均匀,得混合液;
(2)取一片洗净的基材放入水热反应釜中,将步骤(1)所得混合液倒入所述水热反应釜中进行水热反应,反应结束后自然冷却,将反应后的产物洗涤,干燥,得到水合氧化铝薄膜层;
(3)将步骤(2)得到的水合氧化铝薄膜层放入月桂酸的乙醇溶液中进行疏水处理,取出,干燥,得到超疏水薄膜。
2.根据权利要求1中所述的一种超疏水水合氧化铝薄膜的制备方法,其特征在于,步骤(1)中所配制的无机铝盐水溶液的浓度为0.94 wt%~9.4 wt%。
3.根据权利要求1中所述的一种超疏水水合氧化铝薄膜的制备方法,其特征在于,步骤(1)中所配制的醋酸钠水溶液的浓度为0.1 wt%~1.0 wt%。
4.根据权利要求1中所述的一种超疏水水合氧化铝薄膜的制备方法,其特征在于,步骤(2)中水热反应的时间为6~12h。
5.根据权利要求1中所述的一种超疏水水合氧化铝薄膜的制备方法,其特征在于,步骤(2)中水热反应的温度为130~190℃。
6.根据权利要求1中所述的一种超疏水水合氧化铝薄膜的制备方法,其特征在于,步骤(2)中自然冷却的时间为36h。
7.根据权利要求1中所述的一种超疏水水合氧化铝薄膜的制备方法,其特征在于,步骤(3)中月桂酸的乙醇溶液的浓度为1~10 wt%。
8.根据权利要求1中所述的一种超疏水水合氧化铝薄膜的制备方法,其特征在于,步骤(3)中疏水处理时的浸泡时间为10~120分钟。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811533124.0A CN109487245B (zh) | 2018-12-14 | 2018-12-14 | 一种超疏水水合氧化铝薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811533124.0A CN109487245B (zh) | 2018-12-14 | 2018-12-14 | 一种超疏水水合氧化铝薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109487245A true CN109487245A (zh) | 2019-03-19 |
CN109487245B CN109487245B (zh) | 2021-07-20 |
Family
ID=65710312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811533124.0A Active CN109487245B (zh) | 2018-12-14 | 2018-12-14 | 一种超疏水水合氧化铝薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109487245B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110790294A (zh) * | 2019-11-22 | 2020-02-14 | 华南理工大学 | 一种NaAl3(SO4)2(OH)6超亲水薄膜及其制备方法 |
CN112225467A (zh) * | 2020-10-15 | 2021-01-15 | 云南开放大学 | 一种超光滑氧化铝薄膜的制备方法 |
CN112707680A (zh) * | 2020-12-28 | 2021-04-27 | 北京科技大学 | 一种疏水改性勃姆石涂层及其制备方法 |
CN113772704A (zh) * | 2021-09-13 | 2021-12-10 | 中山大学 | 一种二维氧化铝粉的制备方法 |
CN116024520A (zh) * | 2022-12-29 | 2023-04-28 | 武汉苏泊尔炊具有限公司 | 不粘炊具及其制造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1668778A (zh) * | 2002-07-09 | 2005-09-14 | 新材料公共服务公司研究所 | 包含光催化TiO2层的基片 |
CN102277721A (zh) * | 2011-06-28 | 2011-12-14 | 东华大学 | 一种纳米氧化铝无氟超疏水织物的整理方法 |
CN103803814A (zh) * | 2013-12-27 | 2014-05-21 | 东华大学 | 一种透明超疏水涂层的制备方法 |
-
2018
- 2018-12-14 CN CN201811533124.0A patent/CN109487245B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1668778A (zh) * | 2002-07-09 | 2005-09-14 | 新材料公共服务公司研究所 | 包含光催化TiO2层的基片 |
CN102277721A (zh) * | 2011-06-28 | 2011-12-14 | 东华大学 | 一种纳米氧化铝无氟超疏水织物的整理方法 |
CN103803814A (zh) * | 2013-12-27 | 2014-05-21 | 东华大学 | 一种透明超疏水涂层的制备方法 |
Non-Patent Citations (2)
Title |
---|
T. E. BELL ET AL.: ""Single-step synthesis of nanostructured g-alumina with solvent reusability to maximise yield and morphological purity"", 《J. MATER. CHEM. A》 * |
XIANG YING CHEN: ""pH-Dependent formation of boehmite (γ-AlOOH) nanorods and nanoflakes"", 《CHEMICAL PHYSICS LATTERS》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110790294A (zh) * | 2019-11-22 | 2020-02-14 | 华南理工大学 | 一种NaAl3(SO4)2(OH)6超亲水薄膜及其制备方法 |
CN112225467A (zh) * | 2020-10-15 | 2021-01-15 | 云南开放大学 | 一种超光滑氧化铝薄膜的制备方法 |
CN112225467B (zh) * | 2020-10-15 | 2023-04-07 | 云南开放大学 | 一种超光滑氧化铝薄膜的制备方法 |
CN112707680A (zh) * | 2020-12-28 | 2021-04-27 | 北京科技大学 | 一种疏水改性勃姆石涂层及其制备方法 |
CN113772704A (zh) * | 2021-09-13 | 2021-12-10 | 中山大学 | 一种二维氧化铝粉的制备方法 |
CN116024520A (zh) * | 2022-12-29 | 2023-04-28 | 武汉苏泊尔炊具有限公司 | 不粘炊具及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109487245B (zh) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109487245A (zh) | 一种超疏水水合氧化铝薄膜的制备方法 | |
CN104910776B (zh) | 一种透明耐磨超疏水涂料及其制备方法和涂覆工艺 | |
Song et al. | Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method | |
CN105855151B (zh) | 一种长效疏水疏油表面处理工艺 | |
CA2233876C (en) | Coating method of amorphous type titanium peroxide | |
CN106800885A (zh) | 一种透明超疏水/超双疏涂层的规模化制备方法 | |
CN104475309B (zh) | 一种超疏水功能材料的制备方法、超疏水功能材料及应用 | |
CN105694715A (zh) | 一种SiO2/PDMS复合透明超疏水涂层的制备方法 | |
WO1999058451A1 (fr) | Sel d'oxyde de titane, film mince et procedes de production de ces derniers | |
CN108587447A (zh) | 一种适应多种基底的耐久性透明超疏水涂层的制备方法 | |
CN101549959B (zh) | 在浮法玻璃生产线上生产纳米自清洁玻璃的方法 | |
CN109023319A (zh) | 一种制备树枝状微纳米结构氧化铜超疏水涂层的方法 | |
CN103182369B (zh) | 一种在金属基体上制备混杂多阶结构的超疏水薄膜的方法 | |
Wang et al. | Reversible superhydrophobic coatings on lifeless and biotic surfaces via dry-painting of aerogel microparticles | |
CN105820605A (zh) | 一种基于花状二氧化钛纳米颗粒的普适性超双疏纳米涂层的制备方法 | |
CN108047773B (zh) | 一种可喷涂透明超双疏涂料的制备方法 | |
CN104761153A (zh) | 一种玻璃用超亲水防雾涂料及其制备方法 | |
CN105951162A (zh) | 一种在金属基体上实现超亲水/超疏水润湿性图案的方法 | |
Sun et al. | A universal method to create surface patterns with extreme wettability on metal substrates | |
Gawali et al. | Synthesis of zinc oxide nanorods from chemical bath deposition at different pH solutions and impact on their surface properties | |
CN101891144A (zh) | 具有纳米尺度图案的二氧化钛薄膜及其制备方法 | |
CN109505115A (zh) | 一种Co3O4纳米阵列超疏水材料涂层及其制备方法 | |
CN110144135A (zh) | 一种超双疏涂覆材料及其制备方法、以及超双疏涂层 | |
CN110436795A (zh) | 一种制备含蛋挞状结构的二氧化硅薄膜的方法 | |
CN107858024A (zh) | 一种表面羟基化介孔SiO2‑TiO2复合自清洁涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |